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PREFACE 

Anna is a language extension of Ada to include facilities for formally specifying the intended behavior 
of Ada programs. It is designed to meet a perceived need to augment Ada with precise machine- 
processable annotations so that well established formal methods of specification and documentation 
can be applied to Ada programs. 

The current Anna design includes annotations of all Ada constructs except tasking. Similar 
extensions for formal specification can be made io other Algol-like languages such as Pascal, PL-1, 
Concurrent Pascal, and Modula; essentially, these extensions would be subsets of Anna. 

The design of Anna was initiated in 1980 by Bernd I<rieg-Brueckner and David Luckham. An outline of 
some of the main features of Anna was presented at the Ada Symposium held in Boston, December 
1980 [12]. This was based on the preliminary Ada design [11]. The current Anna design is a 
significant development from the 1980 version and was undertaken by the four present authors over 
the period 1981 - -  1984. This effort proceeded in parallel with the Ada language revisions. It was 
sponsored by the Defense Advanced Research Projects Agency as part of the research project of the 
Program Analysis and Verification Group at Stanford University. The current Anna design 
corresponds to the latest Ada design, ANSI/MIL-STD 1815A. 

Design Goals 
The design of Anna was undertaken from the beginning with four principal considerations: 

1. Constructing annotations should be easy for the Ada programmer and should depend as 
much as possible on notation and concepts of Ada. 

2. Anna should possess language features ~hat are widely used in the specification and 
documentation of programs. 

3. Anna should provide a framework within which the various established theories of 
formally specifying programs may be applied to Ada. 

4. Annotations should be equally well suite.d for different possible applications during the 
life cycle of a program. Such applications include not only testing, debugging and formal 
verification of a finished program, but also specification of program parts during the 
earlier stages of requirements analysis and program design. 

Adaption to Ada 
Goal (1) has had a major influence on both the syntax and semantics of Anna. The Anna syntax is a 
straightforward extension of the Ada syntax. Formal comments occur within the Ada comment 
framework. Anna programs are therefore accepted by Ada compilers. Ada concepts such as scope 
and visibility, elaboration, and generic instantiation apply to annotations. Most new concepts in Anna 
are extensions of concepts in Ada. For example Boolean expressions are extended to allow 
quantification. Collections of designated values associated with access types are available in 
annotations using the attribute notation of Ada. The central specification concept in Anna, the 
declarative annotation, is a generaJization of the constraint concept in Ada and obeys the same Ada 
scope rules. 



2 ANNA REFERENCE MANUAL 

Ba:~ic Specification Techniques 
Goal (2) requires that the underlying annotation language should be at least as powerful as any first 
order logic; i.e., it should contain the syntactic category of Ada expressions extended by logical 
qu~ntifiers and implication operators. This choice is clearly dictated by the fact that most comments 
(informal or formal) are Boolean relationships between program variables. Also, in practice, 
annotations will often contain partially defined expressions, so the semantics of Anna must define 
clearly the meaning of such annotations. 

Previous studies in program specification also indicate that inclusion of Ada text as formal comments 
- -  called virtual Ada text - -  should be permitted in Anna. This provides a powerful method of 
constructing executable specifications and syntactically separating them from the subject text. 

Based on these decisions, the simplest kinds of annotations in Anna permit previous techniques for 
specifying Pascal programs to be applied to Ada [7, 10, 15, 17]. 

Established Specification Methods 
Goal (3) is concerned with providing facilities for applying various established specification 
techniques that go beyond the simple comment or assertionat techniques. For example, the most 
successful method of specifying access variable manipulations requires that annotations may refer to 
objects that are not available in the programming language, i.e., Collections [15]. (See also [Ada83 
3.8 (3)].) TherePore access type collections and standard operations on them are provided in Anna as 
predefined attributes. Similarly, techniques for specifying module constructs by means of sequences 
of operations have been developed in previous literature, e.g.,j16,4] and[13]. Facilities for 
specifying packages in Anna include package states and sequences of state transitions. These 
facilities, together with the package axiom annotation, also enable the Anna user to apply other 
specification methods, e.g., the various algebraic methods of specifying abstract data types [8, 5], to 
packages. 

To allow the .specification of programs that may raise or propagate exceptions, propagation 
annotations are included in a notation adapted to Ada from [14]. 

Applications of Formal Annotations 
Goal (4) is concerned with developing new applications of formal annotations. Use of Anna is not 
intended to bE; restricted to only verification of existing programs in the conventional proof-theoretic 
sense although this is clearly a major possible future application. A significant part of this document 
is devoted to describing a method of transforming annotations into runtime checks. It is applicable to 
most kinds of 4]nnotations. Consequently, an Anna program (ok, in the most general case, large parts 
of an Anna program) can be transformed into an Ada program with runtime checks for consistency 
with the original annotations. This method can be implemented more easily than a formal verification 
system, and will provide a useful tool for testing and debugging Ada programs. 

Anna is also intended for use during the design of a program, e.g., for formal specification of 
subprograms and packages prior to implementation of their bodies. Anna specifications may be 
generated as part of the development process from earlier requirements [3], and may then 
accompany a program through all stages of its development. (See also [2].) 
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Future Versions of Anna 
Our philosophy in the current Anna design has been to provide a minimal set of basic kinds of 
annotations and predefined annotation concepts. It is the user's responsibility to define the special 
concepts needed for an application. As experience with Ada specifications and annotations 
accumulates we expect to revise and expand future versions. 

tt is certainly true that some features of Ada make it difficult to design an adequate annotation 
language. Any attempt to provide for every possibility, or to overly generalize facilities, will lead to a 
very complicated design. 

The problems are caused to some extent by the basic set of Ada constructs, for example, access 
types and tasking. Specification of access type manipulations has always been a problem in previous 
languages such as Pascal, and one wishes that high level languages would progress to a stage where 
access types were omitted. Previous facilities appear to be the bare minimum for specification but do 
not seem to make the job easy in any real sense. The current facilities in Anna for specifying access 
type manipulations in particular, and composite types in general, may be extended in future versions. 

Anna does not include any specific annotations for tasking. Some annotation can be provided for 
tasks by means of the facilities for subprograms. In general we feet that research in the overall area of 
specification of concurrent computation needs to progress before we make any extensions to Anna 
for tasking. 

Most complications in the Anna design, however, are caused by the generality and permissiveness of 
Ada visibility rules, naming, overloading, and elaboration. In some cases the complicated Ada rules 
spill over into Anna; this we cannot avoid. In others, e.g., packages, the specialized annotations will 
not be useful if the programmer uses Ada in the wildest possible ways. Certainly, part of useful 
annotation is disciplined use of Ada; this matter will be addressed in one of the forthcoming Anna 
documents. 

Anna can be modified for use as a program design language (PDL) at early stages of the software 
development process. This possibility is being studied and seems to improve on existing PDLs. It 
would provide automated analysis for some kinds of design errors during early systems design 
phases. 

Documents and Support Tools 
The preliminary reference manual is the first of a number of documents and planned support tools for 
Anna. Documents in preparation include: (1) An introduction to the use of Anna. This will include 
examples of various applications of formal annotations and a rationale for certain parts of the design. 
(2) Transformations from annotations to Ada runtime checks. (3) An axiomatic semantics of Anna. 

Anna support tools currently being developed include : (1) syntax analyzers, structured editors, and 
tools for detecting simple kinds of errors; (2) a runtime checking system that will translate most 
annotations into Ada runtime checks. Development of this system as part of an environment of tools 
for debugging and testing by directly executing an Ada program against its Anna specifications is 
planned. A formal verification system is regarded as a longer-term undertaking. 
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