
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

260

David C. Luckham
Friedrich W. von Henke
Bernd Krieg-BrSckner
Olaf Owe

ANNA
A Language for
Annotating Ada Programs
Reference Manual

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

Editorial Board

D. Barstow W. Brauer R Br inch Hansen D. Cr ies D. Luckham
C. Moler A. Pnueli G. SeegmLYler J. Stoer N. Wirth

Authors

David C. Luckham
Computer Systems Laboratory, Stanford University
Stanford, CA 94305-2192, USA

Friedrich W. von Henke
SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025, USA

Bemd Krieg-Br/Jckner
FB 3 Mathematik-lnformatik, Universit~.t Bremen
Postfach 330 440, 2800 Bremen 33
Federal Republic of Germany

Olaf Owe
Institute of Informatics, University of Oslo
EO. Box t080, Blindern, 0316 Oslo 3, Norway

CR Subject Classification (1987): D.2.1, D.2.2, D.2.4, D.2.5, D.2.10, D.3.2, 1.2.2,
1.2.4

ISBN 3-540-17980-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-17980-1 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. ANNA, a language for annotating Ada
programs, (Lecture notes in computer science; 260) Bibliography: p, Includes index. 1. ANNA
(Computer program language) 2. Ada (Computer program language) I. Luckham, David C.
I1. Title: ANNA, 111. Series.
QA?6.T&A54A56 1987 005.13 8'7-13030
ISBN 0-387-17980-1 (U.S.)
This work is subject to copyright. All rights are reserved, whether the whole or I~rt of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany
Printing and binding: Druckhaus Beltz, Hernsbach/Bergetr.
2145/3140-548210

Table of Contents
PREFACE

1. BASIC ANNA CONCEPTS

1.1 VIRTUAL ADA TEXT

1.2 ANNOTATIONS

1.3 SEMANTICS OF ANNOTATIONS

1.3.1 Program States
1.3.2 Assertions and the Anna Kernel
1.3.3 Consistency of Anna Programs
1.3,4 Definedness of Annotations

1.4 CONSISTENCY CHECKING

1.5 STRUCTURE OF THE MANUAL

1.6 CLASSIFICATION OF ERRORS

2. LEXICAL ELEMENTS

2.1 CHARACTER SET

2.2 LEX ICAL ELEMENTS, SEPARATORS, AND DELIMITERS

2.7 FORMAL COMMENTS

2.9 RE!:;ERVED WORDS

2.10 At.LOWED REPLACEMENTS OF CHARACTERS

3. ANNOTATIONS OF DECLARATIONS AND TYPES

3.1 DECI.ARATIVE ANNOTATIONS

3.2 ANNOTATIONS OF OBJECTS

3.2.1 Transformation of Object Constraints
3.3 ANNOTATIONS OF TYPE AND SUBTYPE DECLARATIONS

3,3.3 Operations on All Types
3.4 ANNOTATIONS OF. DERIVED TYPES

3.5 OPERATIONS OF SCALAR TYPES

3.6 ANNOTATIONS OF ARRAY TYPES

3.6.2 Operations of Array Types
3.6.4 Array States

3.7 ANNOTATIONS OF RECORD TYPES

3.7.4 Operations of Record Types
3.7.5 Record States

3.8 ANNOTATIONS OF ACCESS TYPES

:3.8.2 Operations of Access Types
3.8.3 Constraints on Access Types
3.8.4 Collection States

3.9 DECLARATIVE PARTS

4. NAMES AND EXPRESSIONS IN ANNOTATIONS

4.1 NAMES IN ANNOTATIONS

4.1.4 Attributes
4.4 EXPRESSIONS IN ANNOTATIONS

4.5 OPERATORS AND EXPRESSION EVALUATION

1

5

5
7
8
8
9
9

10
11
12
13

15

15
15
16
16
17

19

19
20
23
24
27
28
28
29
29
3O
31
31
32
34
34
35
36
39

41

41
41
41
42

IV

4.5,1 Logical Operators
4.5.2 Relational Operators and Membership Tests

4.6 TYPE CONVERSIONS
4,7 QUALIFIED EXPRESSIONS
4.11 QUANTIFIED EX PRESStONS

4. t 1.1 Transformation of Quantif ied Expressions into the Anna Kernel
4.12 CONDITIONAL EXPRESSIONS
4.13 MODIFIERS
4.14 DEFINEDNESS OF EX PRESSIONS

5. STATEMENT ANNOTATIONS

5.1 ANNOTATIONS OF SIMPLE AND COMPOUND STATEMENTS
5.5 ANNOTATIONS OF LOOP STATEMENTS
5.8 ANNOTATIONS OF RETURN STATEMENTS

6. ANNOTATION OF SUBPROGRAMS

6.1 ANNOTATIONS OF SUBPROGRAM DECLARATIONS
6.2 ANNOTATION OF FORMAL PARAMETERS
6.3 ANNOTATIONS OF SUBPROGRAM BODIES
6.4 ANNOTATIONS OF SUBPROGRAM CALLS
6.5 RESU LT ANNOTATIONS OF FUNCTION SUBPROGRAMS
6.6 OVERLOADING OF SUBPROGRAMS IN ANNOTATIONS
6.7 OVERLOADING OF OPERATORS
6.8 ATTRIBUTES OF SUBPROGRAMS

7. PACKAGE ANNOTATIONS

7.1 PACKAGE STRUCTURE
7.2 VISIBLE ANNOTATIONS IN PACKAGE SPECIFICATIONS

7.2.1 Annotat ions of a Visible Type
7.3 HIDDEN PACKAGE ANNOTATIONS
7.4 ANNOTATIONS ON PRIVATE TYPES

7.4.1 Use of Private Types in Annotat ions
7.4.2 Operations of a Private Type
7.4.4 Redefinit ion of Equality for Limited Types

7.7 PACKAGE STATES
7.7.1 State Types
7.7.2 Initial and Current States
7.7.3 Successor Package States
7.7.4 Function Calls Relative to Package St~des
7.7.5 Annotat ions on State Types

7.8 AXIOMATIC ANNOTATIONS
7.8.1 Simplified Notation for Axioms
7.8.2 hnplicit Axioms for Equality

7.9 CONSISTENCY OF ANNA PACKAGES
7.9.1 Consistency of the Package Body
7.9.2 Consistency of Visible Annotat ions with the Package Body

7.10 EXAMPLE OF A PACKAGE WITH ANNOTATIONS

43
43
44
45
45
47
48
49
51

55

55
57

5 8

59

59
61
62
62
63
64
64
64

67

67
68
69
7O
72
74
74
75
76
77

79
81
82
83
85
88
89
9O
9O
91
95

V

8. VISIBILITY RULES IN ANNOTATIONS

8.2 SCOPE OF DECLARATIONS AND DECLARATIVE ANNOTATIONS

8.3 VISIBILITY

8.5 RENAMING DECLARATIONS

8.7 THE CONTEXT OF OVERLOAD RESOLUTION

9. TASK ANNOTATIONS

10. PROGRAM STRUCTURE

10.1 ANNOTATIONS OF COMPILATION UNITS

10.1.1 Virtual Context Clauses
10.1.3 Context Annotations

10.2 ANNOTATIONS OF SUBUNITS

1 1. EXCEPTION ANNOTATIONS

11,2 ANNOTATION OF EXCEPTION HANDLERS

11.3 ANNOTATION OF RAISE STATEMENTS

11.4 PROPAGATION ANNOTATIONS

11.7 SUPPRESSING CHECKS OF ANNOTATIONS

12. ANNOTATION OF GENERIC UNITS

12.1 ANNOTATIONS OF GENERIC DECLARATIONS

12.1,1 Annotation of Generic Formal Objects
12.1,2 Annotation of Generic Formal Types
12.1.3 Annotation of Generic Formal Subprograms

12.3 INSTANTIATION OF GENERIC ANNOTATIONS

12.4 EXAMPLE OF A GENERIC PACKAGE WITH ANNOTATIONS

12.5 CONSISTENCY OF GENERIC UNITS

13. ANNOTATION OF IMPLEMENTATION-DEPENDENT FEATURES

13.8 ANNOTATIONS FOR MACHINE CODE INSERTIONS

13.9 ANNOTATIONS OF INTERFACES TO OTHER LANGUAGES

13.10 ANNOTATIONS OF UNCHECKED PROGRAMMING

13.10.1 Annotations of Unchecked Storage Deallocation
13.10.2 Annotations of Unchecked Type Conversions

A. PREDEFINED ANNA ATTRIBUTES

C. PREDEFINED ANNA ENVIRONMENT

E. ANNA SYNTAX SUMMARY

H. EXAMPLES OF ANNA PROGRAMS

1. A SYMBOL TABLE PACKAGE

2. DIJKSTRA'S DUTCH NATIONAL FLAG PROGRAM

References

Index

99

99
99

100
101

103

105

105
105
105
107

109

109
109
110
112

113

113
1-15
115
116
117
t18
119

121

121
121
122
122
122

123

125

127

133

133
136

139

141

PREFACE

Anna is a language extension of Ada to include facilities for formally specifying the intended behavior
of Ada programs. It is designed to meet a perceived need to augment Ada with precise machine-
processable annotations so that well established formal methods of specification and documentation
can be applied to Ada programs.

The current Anna design includes annotations of all Ada constructs except tasking. Similar
extensions for formal specification can be made io other Algol-like languages such as Pascal, PL-1,
Concurrent Pascal, and Modula; essentially, these extensions would be subsets of Anna.

The design of Anna was initiated in 1980 by Bernd I<rieg-Brueckner and David Luckham. An outline of
some of the main features of Anna was presented at the Ada Symposium held in Boston, December
1980 [12]. This was based on the preliminary Ada design [11]. The current Anna design is a
significant development from the 1980 version and was undertaken by the four present authors over
the period 1981 - - 1984. This effort proceeded in parallel with the Ada language revisions. It was
sponsored by the Defense Advanced Research Projects Agency as part of the research project of the
Program Analysis and Verification Group at Stanford University. The current Anna design
corresponds to the latest Ada design, ANSI/MIL-STD 1815A.

Design Goals
The design of Anna was undertaken from the beginning with four principal considerations:

1. Constructing annotations should be easy for the Ada programmer and should depend as
much as possible on notation and concepts of Ada.

2. Anna should possess language features ~hat are widely used in the specification and
documentation of programs.

3. Anna should provide a framework within which the various established theories of
formally specifying programs may be applied to Ada.

4. Annotations should be equally well suite.d for different possible applications during the
life cycle of a program. Such applications include not only testing, debugging and formal
verification of a finished program, but also specification of program parts during the
earlier stages of requirements analysis and program design.

Adaption to Ada
Goal (1) has had a major influence on both the syntax and semantics of Anna. The Anna syntax is a
straightforward extension of the Ada syntax. Formal comments occur within the Ada comment
framework. Anna programs are therefore accepted by Ada compilers. Ada concepts such as scope
and visibility, elaboration, and generic instantiation apply to annotations. Most new concepts in Anna
are extensions of concepts in Ada. For example Boolean expressions are extended to allow
quantification. Collections of designated values associated with access types are available in
annotations using the attribute notation of Ada. The central specification concept in Anna, the
declarative annotation, is a generaJization of the constraint concept in Ada and obeys the same Ada
scope rules.

2 ANNA REFERENCE MANUAL

Ba:~ic Specification Techniques
Goal (2) requires that the underlying annotation language should be at least as powerful as any first
order logic; i.e., it should contain the syntactic category of Ada expressions extended by logical
qu~ntifiers and implication operators. This choice is clearly dictated by the fact that most comments
(informal or formal) are Boolean relationships between program variables. Also, in practice,
annotations will often contain partially defined expressions, so the semantics of Anna must define
clearly the meaning of such annotations.

Previous studies in program specification also indicate that inclusion of Ada text as formal comments
- - called virtual Ada text - - should be permitted in Anna. This provides a powerful method of
constructing executable specifications and syntactically separating them from the subject text.

Based on these decisions, the simplest kinds of annotations in Anna permit previous techniques for
specifying Pascal programs to be applied to Ada [7, 10, 15, 17].

Established Specification Methods
Goal (3) is concerned with providing facilities for applying various established specification
techniques that go beyond the simple comment or assertionat techniques. For example, the most
successful method of specifying access variable manipulations requires that annotations may refer to
objects that are not available in the programming language, i.e., Collections [15]. (See also [Ada83
3.8 (3)].) TherePore access type collections and standard operations on them are provided in Anna as
predefined attributes. Similarly, techniques for specifying module constructs by means of sequences
of operations have been developed in previous literature, e.g.,j16,4] and[13]. Facilities for
specifying packages in Anna include package states and sequences of state transitions. These
facilities, together with the package axiom annotation, also enable the Anna user to apply other
specification methods, e.g., the various algebraic methods of specifying abstract data types [8, 5], to
packages.

To allow the .specification of programs that may raise or propagate exceptions, propagation
annotations are included in a notation adapted to Ada from [14].

Applications of Formal Annotations
Goal (4) is concerned with developing new applications of formal annotations. Use of Anna is not
intended to bE; restricted to only verification of existing programs in the conventional proof-theoretic
sense although this is clearly a major possible future application. A significant part of this document
is devoted to describing a method of transforming annotations into runtime checks. It is applicable to
most kinds of 4]nnotations. Consequently, an Anna program (ok, in the most general case, large parts
of an Anna program) can be transformed into an Ada program with runtime checks for consistency
with the original annotations. This method can be implemented more easily than a formal verification
system, and will provide a useful tool for testing and debugging Ada programs.

Anna is also intended for use during the design of a program, e.g., for formal specification of
subprograms and packages prior to implementation of their bodies. Anna specifications may be
generated as part of the development process from earlier requirements [3], and may then
accompany a program through all stages of its development. (See also [2].)

PREFACE 3

Future Versions of Anna
Our philosophy in the current Anna design has been to provide a minimal set of basic kinds of
annotations and predefined annotation concepts. It is the user's responsibility to define the special
concepts needed for an application. As experience with Ada specifications and annotations
accumulates we expect to revise and expand future versions.

tt is certainly true that some features of Ada make it difficult to design an adequate annotation
language. Any attempt to provide for every possibility, or to overly generalize facilities, will lead to a
very complicated design.

The problems are caused to some extent by the basic set of Ada constructs, for example, access
types and tasking. Specification of access type manipulations has always been a problem in previous
languages such as Pascal, and one wishes that high level languages would progress to a stage where
access types were omitted. Previous facilities appear to be the bare minimum for specification but do
not seem to make the job easy in any real sense. The current facilities in Anna for specifying access
type manipulations in particular, and composite types in general, may be extended in future versions.

Anna does not include any specific annotations for tasking. Some annotation can be provided for
tasks by means of the facilities for subprograms. In general we feet that research in the overall area of
specification of concurrent computation needs to progress before we make any extensions to Anna
for tasking.

Most complications in the Anna design, however, are caused by the generality and permissiveness of
Ada visibility rules, naming, overloading, and elaboration. In some cases the complicated Ada rules
spill over into Anna; this we cannot avoid. In others, e.g., packages, the specialized annotations will
not be useful if the programmer uses Ada in the wildest possible ways. Certainly, part of useful
annotation is disciplined use of Ada; this matter will be addressed in one of the forthcoming Anna
documents.

Anna can be modified for use as a program design language (PDL) at early stages of the software
development process. This possibility is being studied and seems to improve on existing PDLs. It
would provide automated analysis for some kinds of design errors during early systems design
phases.

Documents and Support Tools
The preliminary reference manual is the first of a number of documents and planned support tools for
Anna. Documents in preparation include: (1) An introduction to the use of Anna. This will include
examples of various applications of formal annotations and a rationale for certain parts of the design.
(2) Transformations from annotations to Ada runtime checks. (3) An axiomatic semantics of Anna.

Anna support tools currently being developed include : (1) syntax analyzers, structured editors, and
tools for detecting simple kinds of errors; (2) a runtime checking system that will translate most
annotations into Ada runtime checks. Development of this system as part of an environment of tools
for debugging and testing by directly executing an Ada program against its Anna specifications is
planned. A formal verification system is regarded as a longer-term undertaking.

Acknowledgements
Numerous comments on the November 1982 version of the preliminary Anna manual have been
he!pful in revising the design and producing this present manual. We owe special thanks to Norman
Cohen, Anthony Gargaro, and Alec D. Hill for detailed reviews of that document which were most
helpfut. We are also greatly indebted to Rosemary Brock for her consistent efforts in preparing the
manuscripts of the various versions of this manual over the past two years.

Acknowledgement to the first revision
This revision incorporates many of the corrections and suggestions over the past two years arising
from the use of Anna and from the implementation of tools to support its applications. Our thanks are
due to Doug Bryan, Chris Byrnes, Rob Chang, Geoff Mendal, Randall Neff, David Rosenblum, Sriram
Sankar, and Will Tracz. As before, we are again indebted to Rosemary for overseeing the manuscript.

This work was supported by the Advanced Research Projects Agency, Department of Defense, under
contracts N00039-82-C-0250 and N00039-84-C-O2t 1.

