Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

253

J.D. Becker I. Eisele (Eds.)

WOPPLOT 86 Parallel Processing: Logic, Organization, and Technology

Proceedings of a Workshop Neubiberg, Federal Republic of Germany, July 2–4, 1986

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editors

Jörg D. Becker Ignaz Eisele Institut für Physik, Fakultät für Elektrotechnik Universität der Bundeswehr München Werner-Heisenberg-Weg 39, D-8014 Neubiberg, FRG

CR Subject Classification (1987): B.7.1, C.1.2, C.1.3, F.1.3, F.4.1, I.2.3, J.2.

ISBN 3-540-18022-2 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-18022-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1987 Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2145/3140-543210

PREFACE

"Where else can you listen to a philosopher and a cyberneticist discussing the nature of time?" exclaimed enthusiastically one of the participants to WOPPLOT 86. His reaction characterizes best the spirit of the workshop. Three years after WOPPLOT 83 (which was published as Vol. 196 of Springer Lecture Notes in Physics) we decided to hold another workshop. Our aim was to collect some current work as well as some future perspectives of parallel processing in order to get some feeling for the necessary technological developments.

Silicon technology, in particular in connection with molecular beam epitaxy, could provide for more local memory and more connections in the course of the next years, even if many problems have still to be solved. A possible competitor is molecular electronics; but with structures in silicon getting smaller and smaller it might be difficult for molecular electronics to catch up.

One of the basic questions of parallel processing is that of the organizational structure, which - up to now - is more dictated by technology than by needs. However, since the invention of structured design and object-oriented programming it has become clear that there ought to be an intimate relationship between problem structure, logical structure, and organizational structure.

A structure that occurs frequently is hierarchical organization ("pyramid architecture"). It is also the only one for which a closed, consistent theory exists, at least in the case of equilibrium.

Whereas the state of the art concerning SIMD machines is quite satisfactory, a general concept for MIMD machines is still missing. That such machines should exist is suggested at least by considering the brain. Mental representations are therefore of interest also for parallel processing. Furthermore, the above-mentioned connection between structure and logics may suggest that we cannot expect MIMD machines to work in the framework of Boolean logics.

In spite of many open questions (including that of parallelizability) parallel computation is already being applied to many practical problems, mainly in physics and in image processing.

Some of the papers have been modified after the workshop. For this and also for some technical reasons there has been some delay in the publishing of the proceedings. We should like to thank the editors of LNCS and the Springer-Verlag for their patience and cooperation.

We gratefully acknowledge financial support from our sponsors: Siemens AG, München Freundeskreis der Universität der Bundeswehr München, Neubiberg

Neubiberg, May 1987

J. Becker I. Eisele

CONTENTS

I. Eisele	
Technological Developments for Three-Dimensional Circuitry	1
M. Mehring, H. Sixl	
Molecular Electronics: Storage and Iransport	11
H. Ritter, K. Schulten	20
Planning a bynamic irajectory via Path Finding in Discretized Phase space	29
G. Fritsch	
Numerical Simulation of Physical Phenomena by Parallel Computing	40
V. Cantoni, M. Ferretti	
Pyramidal Architectures for Image Processing	58
P. Weidner	
MIMD Algorithms and Their Implementation	75
G. Scarpetta, G. Simoncelli	
Self-Organizing Hierarchical Modular Systems	87
P. Molzberger	
Analyzing Mental Representation by Means of NLP (Neuro Linguistic Programming)	120
G. Brewka	
Nonmonotonic Reasoning: Formalizations and Implementations	136
A. v. Müller	
Towards a Complex Notion of Time	150
J. D. Becker	
Structure and Parallel Processing	158
U. Rückert, K. Gonser	
Adaptive Associate Systems for VLSI	166
M. R. B. Forshaw	
Pattern Storage and Associative Memory in Quasi-Neural Networks	185

E.R. Caianiello, M. Marinaro	
Neural Nets and Cellular Automata	198
A. Bertoni, M. Goldwurm, G. Mauri, N. Sabadini	
Parallel Algorithms and the Classification of Problems	206