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Abstract  

A new framework is presented, based on the notion of a partially ordered multiset (or 
pomset), which is able to provide not only a precise operational semantics of parallel func- 
tional program evaluation, but also a handle through which to control such behavior. As an 
operational semantics, pomsets are able to distinguish between call-by-value, call-by-name, 
call-by-need, and call-by-speculation evaluation strategies (even though all but the first of 
these have the same standard semantics); and as a "handle" from which to control opera- 
tional behavior, pomsets can express most of the behaviors achieved by previously proposed 
annotations that control not only evaluation order but also the spatial mapping of program 
to machine. 

1 Introduction 

The use of functional languages in writing parallel programs is hardly new, having its roots 
in research on dataflow machines which begau almost 20 years ago. The claimed advantages 
of using functional languages include the facts that "parallelism is implicit" (that is, derived 
solely from data dependencies) and "results are determinate" (meaning one is free to choose 
a variety of, including parallel, execution orders). Based on these advantages, reseachers have 
concentrated on completely automatic techniques for parallel execution of functional programs 

- their goal has been for the user to remain completely unaware of the underlying parallelism. 
Dataflow and reduction machines [15], hybrid machines [3,6,11], and fancy compilation strategies 
[7] have all contributed to the success of this line of research. 

On the other hand, there are times when the programmer would like to understand, and 
ultimately control, lower-level operational behavior. For example, if one wants to know what 
kind of parallelism to expect from the expression ](x), one needs to know a great deal about the 
implementation, independent of the "standard" semantics (which we assume models normal- 
order reduction), tn this example, one needs to know first of all whether or not the system is 
able to infer that the function f is strict. If so, is the argument then evaluated in parallel with the 
call? And if f is not strict~ is the argument evaluated "eagerly" anyway? As we shall soon see~ 
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there are many variations on even these simple questions, and they are all reasonable ones to ask 
when trying to reason about the efficiency of a program. In fact, such questions are not restricted 
to parallel operational  behavior - the subtle difference between lazy evaluation and "fully lazy 
evaluation" is an example of sequential behavior tha t  is implementation dependent,  and that  
can have a significant impact on performance. How can we provide this level of understanding 
to the user? 

Even if one understands a part icular implementation well, the resultant behavior is not 
always what  the programmer desires. Indeed, there are often specific operational details that  a 
programmer would like to control - details that  one can never expect an automatic system to 
infer - but  for which conventional functional languages have no means to express. Controlling 
evaluation order and mapping a program onto a part icular machine topology are our canonical 
examples of such operational behaviors. How can we provide this level of expressiveness to the 
user? 

One solution to both of these problems, of course, is to give up on functional languages 
altogether, and resort to a much lower-level language such as OCCAM, Concurrent Pascal, 
Ada, or some other parallel imperative language. But this would mean giving up all of the 
things that  we like about functional languages, and would amount to throwing out the baby 
with the bath  water! It is our thesis that  most of the time a programmer need not be concerned 
with operational behavior, and thus functional languages are indeed an effective vehicle for 
parallel computation. On the other hand, we feel that  the situations, however few, in which one 
needs to reason about and control such behavior cannot be ignored. 

In this paper  we present a new framework, based on the notion of a partially ordered mul- 
tiset (or pomset), which is able to provide not only a precise operational semantics of paralIel 
functional program evaluation, but  also a handle through which to control such behavior. As an 
operational semantics, pomsets are able to distinguish between call-by-value, call-by-name, call- 
by-need, and call-by-speculation evaluation strategies (even though all but  the first of these have 
the same s tandard  semantics), including the subtle distinction between "lazy evaluation" and 
"fully lazy evaluation" (which are refiined versions of call-by-need). Furthermore, as a "handle" 
from which to control operational behavior, pomsets allow us to express most of the behaviors 
achieved by previously proposed annotations that  control not only evaluation order [1,8,14], but  
also the spatial  mapping of program to machine [5,8,12]. In addition, we have used pomset-based 
annotations to express several other non-trivial operational behaviors, including the routing of 
da ta  through a multiprocessor network (dually, the path taken in accessing a value), and the 
synchronized, lock-step execution of two (unrelated) recursive function calls. 

There are those who believe that  the need for recta-linguistic devices to refine operational 
behavior is a sign of weakness in functional languages. Thus there has been a tendency in 
the functional programming community to ignore such techniques as being too "ad hoc" and 
"impure." We do not feel this way, and one of our goals is to bring some respectability to this area 
by not only providing a formal semantics for such mechanisms, but  also to show that  the resulting 
programs can be very elegant, and are still a considerable improvement over their counterparts 
written in parallel imperative languages. The overall approach suggests what we call a "para- 
functional programming" methodology in which a programmer may refine operational  behavior 
without restructuring the whole program or completely rewriting it in some other language. The 
separation of operationM and functional behavior, both  semantically and in the language itself, 
is what  makes the methodoIogy attractive; and by concentrating on functional behavior first, 
the methodology is consistent with the software engineering notions of "rapid prototyping" and 
"get it right first." 



236 

1 . 1  W h y  P o m s e t s ?  

The utility of pomsets as a tool for modelling concurrency is well demonstrated by Pratt  [13], 
who is able to express a surprising diversity of concurrent behaviors clearly and concisely. Our 
contribution here is to show how they can be used to reason about and control parallel functional 
program evaluation. But why choose pon~sets? In our seaa'ch for a vehicle to not only express, but 
control, operational behavior, we considered and ultimately rejected several other alternatives. 
The most prominent, of these were dataflow graphs, temporal logic, and execution trees, each of 
which we discuss briefly below. 

Dataflow graphs actually share much of the appeal of pomsets, since they display naturally 
the partial-order of expression evaluation. However, they are inadequate for our purposes for 
several reasons: First, the most common versions of datafiow graphs are first-order and call- 
by-value. The extensions necessary to make them work with higher-order functions and lazy 
evaluation are cumbersome at best. Second, even if the appropriate extensions are made, they do 
not capture all of the detail that we are after, such as the fact that multiple demands for the same 
value do not cause recomputation. To capture such behavior requires a further interpretation of 
the dataflow graphs themselves (perhaps using pomsets!). Finally, it is not clear how dataflow 
graphs could be used as a basis from which to refine operational behavior. 

Among other possible mechanisms for exressing control over evaluation order is temporal 
logic. However, temporal logic is unable to express the spatial relationships that we also wish 
control of, and seems to be inadequate, or at best cumbersome, in expressing the operational 
semantics of a language. Furthermore, Pratt  has shown that pomsets in some sense subsume 
temporal logic in that they can be used as a model of temporal logic semantics (we do not know 
ff the converse is true). For this reason we view temporal logic as a possible recta-language for 
refining operational behavior, but with pomsets still forming the semantic foundation. 

In earlier work on the formM semantics of para-functional programming languages we intro- 
duced a notion of execution trees to capture the evaluation history of a program [4]. However, 
execution trees, being trees, do not capture any notion of sharing, which is crucial to the se- 
mantics of, for example, lazy evaluation. Extending the trees to graphs results in a form of 
"unwound ~' dataflow graph, which has all of the at tendant  problems mentioned above. 

1 . 2  O v e r v i e w  o f  P a p e r  

We begin our technical discussion in the next section with a definition of pomsets, processes, and 
various operations on them. To demonstrate their use as a foundation for operational semantics, 
we use them to describe four common parallel evaluation strategies in Section 3. Then in Section 
4 we demonstrate their use as a handle from which to refine operational behavior. Taken 
together, these results suggest the possibility of a formal semantical fi'amework with which to 
reason about operational behavior, which we discuss in Section 5. Finally, we discuss problems 
with our approach and point to future research in Section 6. 

2 A n  I n t r o d u c t i o n  to  P o m s e t s  

A pomset is a natural  generalization of a st'~ing, in which the string's total, or linear order is 
replaced with a partial order. MuItisets are needed instead of sets, because there may be multiple 
occurrences of the same entity - just  as there may be multiple occurrences of the same character 
in a string. In fact, a string may be thought of as a totally-ordered multiset (or tomset). The 

following definitions are taken mostly from [13]: 
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D e f i n i t i o n :  A partially ordered multiset, or pomset, is a 4-tuple (V, E,-<, p), where: 1 

1. V is the  vertex set, representing events. 

2. E is the alphabet, representing actions. 

3. -< is a partial order, representing an ordering between events, and  represented as a b inary  
relat ion in V x V. 

4. p is a labelling function with functionali ty V --+ ~. 

Recall tha t  as a part ial  order, -< is reflexive, transitive, and anti-symmetric.  When the dist inction 
is necessary, we use the symbol  -< as the irreflexive version of ~ .  Notationally, for a pomset  p 
we write Vs, Ep, -<p, and  l~p to denote its four components,  and  e E p as shor thand for e E Vp. 
We denote the "empty pomset" by e. 

Pomsets should be thought  of as modelling the concurrency ( temporal  or otherwise) of events, 
the events being instances of part icular  actions. In  our  context, actions and  events will be tied 
to the evaluat ion of expressions; the details of this are forthcoming. 

D e f i n i t i o n :  We say tha t  p is an augment of q, iff Vp = Vq, ~p = ~q, #p = ~tq, and  ___pD_~q. In 
other words, p augments  q by being as constrained or more constrained than  q. The opposite 
of augment  is subsume. 

D e f i n i t i o n :  We say tha t  p is a prefix of q, iff p is obtained from q by deleting some of the events 
of q, under  the constra int  tha t  if u is deleted and  u % v, then  v is also deleted. This  corresponds 
to the not ion  of a s tr ing prefix. The opposite of prefix is suj~x. 

2 . 1  O p e r a t i o n s  o n  P o m s e t s  

Given the not ion  of a pomset,  one can imagine a variety of operations on them, operations tha t  
collectively form an  algebra of pomsets. The choice of operations depends primaxily on one's 
application. A fairly general set of operations is described in [13], from which we derive the 
following set sui table for our purposes: 

D e f i n i t i o n :  The concurrence of pomsets p and q, denoted (Pl[q), is defined as the pomset  
( ~  u Vq, Ep u Eq,-<_p U ~_q,#p U/tq). Concurrence corresponds to the not ion  of two pomsets 
happening  concurrent ly - there is no ordering relatiollship between events chosen pairwise from 
p and  q. 

D e f i n i t i o n :  The  concatenation of two pomsets p and q, denoted (p.q), is defined as the pomset 
(Vp t_) Vq, Ep U Eq, ~_p U ~q U(Vp x Vq), ltp U #q). Concatenat ion corresponds to the not ion of two 
pomsets happening  sequentially - every event in p is forced to occur before every event in q. 

D e f i n i t i o n :  The orthocurrenee of two pomsets p and q, denoted (p® q), is defined as the pomset 
{Vp x Vq, Ep x Eq, ~p x ~q, pp x #q). Lett ing < =  (_-<p x _q), we thus have that  (a, a') ~ (b, b I) just  
when a ___p b and a I _-<q b I. Orthocurrence corrresponds to the conventional  not ion of cartesian 
product  - the pair ing of unrela ted objects - bu t  in addit ion preserves the internal  s t ructure  (i.e. 
elemental  ordering) of the objects. 

Figure 1 shows a graphical representation of the concm'rence, concatenat ion,  and  orthocur- 
rence of the pomsets  p = 0.1 and  q = a.b. 

1In [13] this definition is actually for a labdled parHal order, or lpo, and a pomset is defined as the isomorphism 
class of an lpo. However this technical distinction is unnecessary in our context. 
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a - * b  

pllq 

p°q 

p ~ q  =-- 

a-.+b 

O ~ l ~ a ~ b  

[ (o, a) --~ O, a> "~ 

) <o,b> -~ (~,b> 

Figure 1: Graphical Representations of Concurrence, Concatenation, and Orthocurrence 

The observant reader will note that concurrence and concatentation are at opposite ends of 
a spectrum - concurrence represents minimal order, concatentation maximal (i.e. total) order. 
There are clearly a number of orders that fall between the two extremes. We can express such 
orderings through the notion of restricted concatenation, in which concatenation is restricted to 
those events satisfying a particulax predicate. Informally, P'pr¢dq is a pomset in which every event 
in p occurs before every event in q that satisfies pred. Formally, p "pr~ q = (Vp U Vq, Ep U Eq, __p 
U -<q U (Vp x {e E Vq [ pred(e)}),#p u #q}. A similar definition applies for Ppr,d'q. The most 
common use of restricted concatenation is where pred simply tests for a particular label, in 
which case we replace the predicate with that label. For example, p "x q specifies that every 
event in p must  precede every event e in q such that/*(e) = x. 

One should note that  p .  q is an augment of p "p~a q, which is in turn  an augment of Pllq. 
Indeed, Pllq is essentially the same as P'/,l,~q, where false is the empty predicate. Conceptually, 
the easiest way to create an augment of an existing pomset is to somehow "add arrows" to the 
pomset's partial order. We occasionally have a need to do this, in which case we do so explicitly. 

Finally, we introduce the notion of pomset homomorphism. The technical definition of pomset 
homomorphism follows exactly that of string homomorphism, and thus we omit the details. 
Notationally we write p[x ~-~ q] for the result of applying to p the homomorphism that maps 
events with label x to the pomset q; i.e., "substitute q for x in p." For example: 

((a.b)lt(e.a.d))[a~--+(uHv)] = ((ullv).b)H(c.(uIlv).d) 

2 . 2  P r o c e s s e s  

Sometimes a single pomset is not sufficient to model a certain behavior, just  as a single string 
is not always sufficient to characterize an entire language. 

De f in i t i on :  A process is a set of pomsets. 

Intuitively, a process models something that may exhibit any one of a set of possible concur- 
rent behaviors. From a mathematical perspective, a process is to a pomset as a language is to 
a string. The most general (i.e. least constrained) process over alphabet E is just  the set of all 
possible pomsets constructed over E, which we denote E~:, in analogy to E * being the set of all 
strings over alphabet E. 

We extend the previously defined operations oll pomsets to processes, in the obvious point- 
wise manner. Furthermore, the following operations are useful: 

Def in i t i on :  The augment closure of a pomset p, written a(p), is the set of all augments of p. 

Def in i t ion :  The prefix closure of a pomset p, written ~r(p), is the set of all prefixes of p. 
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Def in i t i on :  The set of l inearizat ions of a pomset p, written A(p), is the set of all linear (i.e. to- 
tally ordered) augments of p. 

3 P o m s e t  I n t e r p r e t a t i o n s  of  F u n c t i o n a l  P r o g r a m s  

3 . 1  P r e l i m i n a r i e s  

For purposes of exposition we use an extremely simple functional language which we will call 
PFL,  whose abstract  syntax is given by: 

c E Con ,  constants, including primitive functions. 

x E Id ,  identifiers. 
e E E x p ,  expressions, defined by: 

e ::= e I x  I b I ~x.e l el e~ 1 f i x  x.e 

PFL can be viewed as the unrestricted lambda calculus with constants. Constructs such as letrec 
and whereree can be transformed easily into a f i x  expression if need be. Co n  normally embodies 
all primitive functions, but  for clarity we give specific examples involving the conditional and 
strict ari thmetic operators,  using the syntax el--~e2, ea and el op e2, respectively. 

Without  loss of generality, we make two simplifying assumptions about PFL  programs: First,  
all bound variables are unique. This is convenient when dealing with scoping rules. Second, 
every expression has associated with it a unique label. Labels are needed to distinguish syntactic 
expressions that  otherwise would appear  identical - for example, multiple occurrences of the 
same bound variable. When necessary, we write te for an expression e whose label is 1. 

We assume the existence of two semantic functions, £~ and £n, that  compute the s tandard 
applicative-order and normal-order denotational semantics, respectively, of PFL.  More specifi- 
cally, their functionality is given by: 

£a: E x p  ---* E n v  -~ D 

£n: E x p  --~ E n v  --+ D 
d E D = B a s  + (D ~ D) 

env  e E n v  = I d  --* D 

The base domain B a s  is left unspecified, but  is presumed to contain the necessary objects to 
capture the meaning of elements of Con.  

Henceforth the phrase "standard semantics" shall mean the semantics computed by one of 
these two semantic functions, depending on whether one wishes applicative-order or normal- 
order semantics. 

3.2 A c t i o n s  and  E v e n t s  in E x p r e s s i o n  E v a l u a t i o n  

A good start ing point in making the connection between pomsets and expression evaluation is 
to decide what,  exactly, we wish our pomsets to model - in other words, what  is the meaning 
to be at tached to act ions and  events? It should be clear tha t  our concerns are rooted in very 
operational issues, and the meaning that  we seek is not something typically captured in a 
language's s tandard  denotational semantics. 

Although there are many complicating details in any particular evaluation strategy, we have 
found that  it is sufficient to consider as our set of underlying actions simply the demand  for and 
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re turn  of each syntactic expression's value. Thus for every labelled expression le we associate 
two events, D, e and R,e, corresponding to the demand and return, respectively, of e's value. 
When the context is clear we often omit either the label or expression part, and simply write D, 
or De. In addition, if used in a context requiring a pomset, we interpret D~, Rl, etc. as singleton 
pomsets. 

A syntactic expressioll, of course, may be evaluated in many different contexts (i.e. environ- 
ments). Furthermore, depending on the semantics being captured, there can be more than one 
demand for an expression in a particular context, and for each such demand there is typically 
a corresponding return of value. Each of these occurrences of a particular action is, of course, 
simply an even t  in our model. The pomset interpretation of a PFL program is thus a pomset 
(or possibly set of pomsets) that captures the demand/return behavior resulting from program 
evaluation. 

Now normally there are other events (actually, a pomset of events) that intervene between 
the demand and return of an expression e, corresponding naturally to the evaluation of other 
things needed to compute e's value. Of particular interest is the evaluation of an i den t i f i e r  - if 
the value was previously computed there may be no intervening events, otherwise there may be 
an entire pomset of events, corresponding to the evaluation of the actual parameter to which 
the identifier was bound. 

To make these and other ideas more concrete, we shall take the reader on a tour of pom- 
set interpretations of four common evaluation strategies, shown graphically in Figure 2, and 
described intuitively below: 

® In  a cal l -by-value  semantics there is never  an  intervening pomset, because the expression 
corresponding to the actual parameter is completely evaluated before the call. 

s Conversely, in a ca l l -by -name  semantics there is always  an intervening pomset. 

® Alternatively, in a cal l -by-need  (i.e. lazy) semantics there is either zero (if the argument is 
never needed) or exac t l y  one  occurrence of a bound vaxiable with an intervening pomset. 

® Finally, ca l l -by -specu la t ion  is a blend between call-by-value and call-by-need, in which the 
evaluation of the arguments is begun at the time of the call, but  the evaluation of the 
body proceeds as in call-by-need, blocking only if an argument is needed that hasn' t  been 
completely evaluated yet. 

One of the complicating factors in all of these semantics is the proper treatment of higher-order  

f u n c t i o n s .  Such treatment becomes especially critical in call-by-need evaluation, where in fact 
we shall discuss two versions of the semantics, one that we call lazy  eva lua t ion  and one that 
we call f u l l y  lazy  e v a l u a t i o n  - the difference lies in the way higher-order functions share free 
variables. 

Note, as mentioned earlier, that the standard semantics will differentiate call-by-value from 
the other three, but will not differentiate call-by-need (where the result is "cached") from call- 
by-name (where the value is recomputed on each demand) oi" call-by-speculation. Nor will it 
differentiate lazy from fully lazy evaluation. 

Also note that, although the standard semantics is deterministic, there are some aspects of 
operational behavior that are non-deterministic. For example, we may allow two expressions 
to be evaluated in parallel, but which actually begins (or ends) first is non-deterministic. The 
Church-Rosser property, of course, normally allows us to completely ignore this issue, since a 
deterministic result is guaranteed in either case. As we shall soon see, however, when shar ing  
is manifest (such as in call-by-need evaluation) we must specify the non-deterministic behavior 
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Figure 2: Four Common Evaluation Strategies 
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quite carefully, and we will find that a single pomset is inadequate - we must use a set of 
pomsets, or process. 

In the remainder of this section we assume that our universe of pomsets is given by: 

E = I d U  {n ,  ] l E Lab} U {D, I l E Lab} W {error}  

p e Pore  = E$ 
ps E Proc  = fl (Pore)  

Thus Pore  is the domain of pomsets, and Proc  the domain of processes. 

3 . 3  P o m s e t  I n t e r p r e t a t i o n  o f  P a r a l l e l  C a l l - b y - V a l u e  

It is perhaps not surprising that call-by-value has the simplest operational semantics to capture. 
On the other hand, PFL has higher-order functions, and we must provide an adequate treatment 
of them immediately, which is not always an easy task. The key observation to  be made is that 
the evaluat ion of an expression e can be described by a pomset, but  the value of e may be a 
higher-order function which has embedded in it the "delayed" evaluation of other expressions, 
each also described by a pomset. We must provide a way to embody these delayed pomsets. Our 
solution is to pair with the pomset of an expression a higher-order object that, when applied 
later, may yield another pomset. 2 Of course~ each result may in turn  be applied again, and thus 
our embodiment must be a recm~ive object. We call this object a behavior, and its domain is 

defined formally by: 
b E B e h  = Pore  x (D --+ B e h  --+ Beh )  

Note that the second component, which we call a pomse t  abstraction, is a function from a 
standard value d and a behavior b to another behavior b ~. d and b represent the standard value 
and behavior, respectively, of the argument to which the pomset abstraction will eventually be 
applied. The result of that application is then the behavior b r. 

We now define the domain of behavior env i ronments  that map identifiers to pomset abstrac- 
tions: 

benv E B e n v  = I d  --~ (D --* B e h  --* Beh )  

and we define a special "error" pomset abstraction as follows: 

err ---- Ad &(error,  err) 

Recall that error E E, and is interpreted here as a singleton pomset. 

Finally, this leads us to the definition of two semantic functions, B t and B, that give pomset 

interpretations of PFL programs: 

~t: E x p  --* E n v  --+ B e n v  --* B e h  
~: E x p  --* E n v  ~ B e n v  --* B e h  

We should point out that the presence of D in B e h  and E n v  in B and B' reflects our 
integration of the standard semantics with the pomset semantics. This is necessary because we 
wish to provide an exact pomset interpretation, and thus we need to know the standard values 
of expressions in order to give proper meaating to, for example, conditionM expressions. 

2Th]~ solution is similar to that used in various other semantics, including strictness analysis t9], execution-tree 
semantics [4], and sharing analysis [2]. 



243 

B' simply wraps a "demand/re turn event pair" around an expression's pomset,  which is in 
turn derived using B: 

B'~te~ env benv : let (p , f )  = ~ e ~  env benv 
in (DI'p'RI, f )  

It should be clear, then, that  the "meat" of the pomset semantics is captured in B, which is 
defined piecemeal below. 

There is no pomset associated with evaluating a constant: 

where we assume that  K[[e~ returns err for atoms, and a suitable pomset abstraction for primitive 
functions. Recall that  e is the empty pomset. 

There is also no pomset associated with evaluating an identifier (recall that  in call-by-value 
arguments are evaluated before the call): 

~lixll e,., ben v = (,,benvlIx D 

Lambda abstraction and function application are (not surprisingly) the two most interesting 
cases, and to properly understand them they should be considered together: 

B[[Ax.e] env benv = <e, ),d (p, f).B'~e] envId/x] benv[f /x]) 

B~el e2~ env benv = let (pi, fl) = B'~e,] env benv, i = 1,2 
(P, f) = fl  (~'al[e2]]e'o,v) (P2,12) 

in ((p, llp~)'p, f> 

There is no pomset associated with evaluating a function (i.e. lambda abstraction). However, the 
function's pomset abstraction has embedded in it the behavior of the function's body, which is 
computed in a s tandard environment and behavior environment that  are updated accordingly. 
Note that  during application, the function and argument are evaluated in parallel followed 
sequentially by the evaluation of the function body; all this is expressed by the pomset (Pl IIP2)'P. 

Evaluating a conditional is straightforward: 

~e , - -*e~ ,  e3~ env be,,v = let  (p,, : ,)  = B ' H  env  be,,v,  i : 1, 2, 3 
in if ~.~el]]env then (pl'p2, f2) 

else (Pl"P3, fa) 

Note that  the predicate is completely evaluated before either the consequence or alternative, as 
represented by the pomsets Pl'P~ and Pl"Pa. 

Strict binary operators are also straightforward: 

~e~  op e2] env I, env = let (p, , f ,)  = ~'He,] e,,v benv, i = 1,2 
in (Pl liP2, err) 

Note that  the two arguments are evaluated in parallel, as expressed by the concurrence Pl[[P2. 

Finally, recursive functions require a recursive definition of the pomset abstraction: 

B~fiz  x.e] env benv = l e t  x' = ~.~fix x.e]env 
(p,,/,) : ~'~e~ env[x'/~] benv[f'/=] 

in (p', : ' )  



244 

A n  E x a m p l e .  As an example of call-by-vahm pomset semantics, consider the simple expres- 
sion: 

~et f = ~ x . ~ y .  • = 0 -~  y,  / (x  - ~) (y + 1) 
i n f a b  

which ult imately just  adds a to b. When put  into proper PFL syntax, including labels on 
everything but  constants, this becomes: 

The corresponding call-by-value pomset, ignoring the trivial parallelism in the arithmetic ex- 
pressions, is: 

((Do(D1 .D4 "Rd.Rt IID2"R2).Ds "Rs'Ro)]1 (D3 "R3)) • 
[ D6~ D7. D~. Rs. R7~ D11.( ( D12.( ~14. R14~ D~s.D9~ R9. R~5)~ Ds. R5~ R12) ~ ( ~13. ~16.R16~ R18) ) ] ~ " 

D6. DT. Ds. Rs. R~" Dlo. RIo. R~'[ R~ ~ . R6 ]" 

where the notat ion [...]~ means a concatenatious of the pomset " . . ."  Although tedious, the 
reader should study this pomset carefully - it exposes very nicely the parallel evaluation of 
function and argument,  and demonstrates well the nature of recursive function calls. Later we 
will contrast  it with the corresponding pomset for call-by-name evaluation, and will find the 
differences striking. 

E a g e r  E v a l u a t i o n .  Before proceeding, there is an interesting variation of call-by-vMue op- 
erational semantics tha t  is worth mentioning. Instead of requiring tha t  the evaluation of the 
argument to a function complete before the body of the function begins execution, we could 
simply require that  it complete before the entire call returns. This results in more parallelism, 
while retaining applicative-order s tandard semantics, and we refer to the resulting evaluation 
strategy as eager evaluation. 

The necessary changes to the existing semantics to achieve this new behavior are minor, and 
essentially amount to replacing the pomset ((Pt tlP~)'P) in the semantics of function application 
with (pz "R~ (P~ "P)), where x is the bound variable in the pomset abstraction associated with 
the function. This pomset expresses the fact that  evaluation of the argument must complete 
only before the argument 's  value is used in the body of the function. The details are left to the 
reader. 

3 . 4  P o m s e t  I n t e r p r e t a t i o n  o f  C a l l - b y - N a m e  

Recall that  in call-by-name evaluation an argument is not evaluated until it is needed - however, 
if it is needed more than once it is recomputed each time. Making this change to the call-by- 
value semantics is not difficult. In fact, the functionality of all domains remain the same, and 
other than subst i tut ing ~n for Ca only three equations for B change, those for (not surprisingly) 
identifiers, lambda abstractions, and applications. 

For an identifier, we leave a "marker" which will eventually be replaced by the pomset to 
which tha t  identifier is bound: 

Note that  we simply use the identifier itself as the marker; i.e., ~x~ (~s the first component of 
the result) is to be interpreted as a singleton pomset whose single event is labelled with the 

identifier x. 
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As before, we treat  lambda abstraction and function application together: 

B ~)~x.e] env benv = (e,)~d (p, f).  let b = B'[[e]] env[d/x] benv[f/x] 
F(p', f ')  = {p~[x~--~p], )~d b.F(f '  d b)) 

in F b) 

~[[ex e~D ~nv ben~ = let (p , , f , )  = ~'~e,~ env benv, i = ~,2 
(P , f )  = f l  (~.~e~]env) (P~,f2) 

in (Pl "P, f )  

Note now that  in function application the pomset of the argument (P2) is not incorporated 
directly into the result. Rather,  it is passed to the pomset abstraction for the function, which 
in turn substi tutes it (via the homomorph~sm [x ~ p]) for the "markers" (if any) found in 
the pomset of the function's body. The only complication is that  the substitution must also be 
"propagated" into the body's  pomset abstraction, which is accomplished through the (recursive) 
function F.  Variations on this function will be the key to capturing other operational semantics, 
as the next few sections will reveal. 

3 . 5  P o m s e t  I n t e r p r e t a t i o n  o f  C a l l - b y - N e e d  

Call-by-need is an "optimization" of call-by-name, in which every expression is computed at 
most once. Whereas in the previous two semantics a single pomset was sufficient to capture the 
desired behavior, this is not so with call-by-need. A simple thought experiment should convince 
the reader of this: Consider again Figure 2c, in which an expression e has two concurrent uses 
of the bound variable x, represented by the pomsets DI.X.R1 and D2.x.R2. Suppose further that  
the evaluation of the expression to which x is bound is represented by the pomset Do'p'Ro, and 
that  it has not been previously demanded. Clearly the resultant pomset should have R0 -< RI 
and R0 _ R~, simply reflecting the fact that  the value of x must be completely computed before 
it can be used. On the other haald, in call-by-need evaluation Do cannot precede both D1 and 
D2, nor is it required to follow both. In other words, the resulting pomset should either have 
D1 -< Do or D2 _-< Do, but  not both. This fact simply represents the non-deterministic "race" 
for the evaluation of the expression bound to x, and there is no way in which to express the 
result with a single pomset. Rather, a set of pomsets, or process, is needed, representing a choice 
between (possibly many) evaluation orders. 

In anticipation of our need to capture this non-deterministic behavior, we define a form of 
restricted concatenation tailored specially for our use. Informally, Pl ®~ P2 returns a process 
representing the call-by-need evaluation of P2 in which x is bound to Pl. Each pomset in the 
result has the property that  Pl is substituted for only one occurrence of x in p~, yet Pl is required 
to precede every event R~ in p2 that  represents the return of x's value. Figure 3 shows an example 
of such an operation. Note in this example that  Zx never initiates the evaluation of p, since it 
always occurs after ix. 

We can define ®x formally as follows: 

Pl ®zP2 = let (V, E,__.,#) =Pl"~P2 
in ( (y ,  r,, _~ u{(v ,  w) I w ~ p~), ~ ) [ x ~ ]  

I v ~ p~ , . (v )  = x, ~ (3(~  e p~): . ( ~ )  = ~ ,~  ~ v)} 

As with the other binary pomset operations, we extend ®x to processes in the obvious way. We 
also define an auxiliary function eval? by: 

evat?(x ,  p~) = 3(p e ps,  v ~ p): . ( v )  = 
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( D1 -+ ix  --~ R1 ' ' °  D~ -~ 2x ---+ R2 ~t 
P ) \ Ds --+ ax -+ R3 

Figure 3: Example of Call-by-Need Restricted Concatentation 

Note that  since we are defining an exact semantics, x is either evaluated in every pomset in ;0,% 
or none of them. 

We are now ready to define call-by-need pomset semantics, which we do by extending call-by- 
name semantics by first lifting the underlying domain structure to operate on processes rather 
than pomsets: 

b E Beh = Proc x (D -* Beh -+ Beh) 

This change induces the following changes on B and B'. First ,  a simple change to B' to return 
a process instead of a pol~set: 

S'~te~ env benv : let (ps, f} : B~e~ env benv 
in ({D,}.ps.{R~}, f )  

There are several similar simple changes to B: 

S~c~ env benv = {{e},err) 

s~z11 env benv = ({M},  be,~vM) 

S ~ e ~ - ~ e ~ , e 4  ~n~ b e . ~  = let  ( p~ , , f , )  = S'~e,~ ~ .  ben~, i =  ~ . . . . .  3 

in if ~,~el~env then (psl.ps~, f2) 
else (psl'psa, f3) 

~ op ~4  ~ . .  b ~  = let (p~,,f ,)  = ~ ' H  ~'*~ be,~., i = ~,2 

~ e l  ~ e~v bcn~ = let (psi, f;} = ~'~ei]] env benv, i = 1, 2 
{ps, f }  = fl  (~.~e~env) tp82, f2) 

in {P~I"P~, f l  

Recall that  we extended pomset operations pointwise to processes, and thus except for a change 
in identifier names, the call-by-name semantics for the conditional, binary operator,  and function 
application are identical to those given earlier. Tile key change, of course, arises in the semantics 
of lambda abstraction,  where instead of "blindly" substi tuting the argument pomset into the 
function body, we do so "selectively" using ®,: 

B~)~x.e~ env benv - ({~},)~d(ps, f ) .  let b = B'~e~ env[d/x] benv[f /x] 
F (ps', if) = if evaI?(x, ps') then (p8 ®x pa', f ' l  

else (ps',)~d b.F(f'  d b)) 
in F b) 
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Note in the definition of F that ff x appears in the pomset of the body (i.e., it "gets evaluated"), 
then its substitution is no longer propagated through the pomset abstractions. Although this 
is consistent with the notion of "evaluate at most once," we will see in the next section that it 
alone is not sufficient to capture "fully lazy evaluation." 

The definition for f i x  remains the same. 

A n  E x a m p l e .  To contrast this semaaltics with that of call-by-value, consider the same example 
given earlier: 

°( l ( f  ix L~(~x.~(~Y.6(~( ~ = 0)-~°Y, "(~2( 'V '~(~x - 1)) 13(,0y + 1)))))) ~a) ~b 

Its pomset, under call-by-need evaluation, is: 

Do" Dl " D4" R4" Rl " Ds. Rs" Ro. D6. DT. Ds. D2. R2 . Rs. RT. Dn . D12 . D14" R14. Ds . Rs. R12 . 
[D6"DT"Ds'Dl~'Dg'Rg-R15"Rs'R7"Dll'D12-D14"R14"Ds.Rs'R12] "-~" 

D~" DT" Ds. DI~" D~" R~. R~s" Rs. RT. D,o[ D~. D~]". Da. R~.[ R~.  R~a]". R,o. R~.[RH . R~]" 

This result should be compared to that given earlier for call-by-value. There are several things 
worth noting: 

1. 

2. 

3. 

There is no parallelism (except the trivial parallelism in the arithmetic expressions). This 
is due to the fact that in function applications the argument is not evaluated in parallel 
with the function; rather the argument's evaluation is delayed until it is needed. 

Each delayed evaluation causes a "non-local transfex of control" to the context in which 
the argument was bound. For example, the sequence DT.Ds.D2.R2.Rs.R~ represents the 
evaluation of x in the first call to f ,  and DT'Ds.D15"D9.Rg.R15.Rs.R7 represents the 
evaluation of x in each of the remaining (recuxsive) calls to f .  

Whereas x's evaluation is only delayed one level upon each call to f ,  y's evaluation is de- 
layed until the recursion reaches its deepest level, at which point it "unwinds" and "reaches 
back" to every level above it, performing a additions of 1. This process is represented by 
the pomset Dlo[Dls.D16]".D3.R3.[R16.R13]a.Rlo. 

We feel that  these important yet subtle differences between call-by-value and call-by-need eval- 
uation are made acutely apparent through the use of pomset semantics. 

Fully L a z y  Eva lua t i on .  

Adding labels, we have: 

Consider the PFL expression g(f  a), where f and g are defined by: 

f = ;~xAy.x 
g = ~y.(u 1) + (y 2) 

f = l(Ax.2(Ay.ax)) 
g = ~(~y.~(0(sy 1) + 7(~y 2))) 

where we consider the definitions of f and g to be substituted directly into the result expression 
(g 10(f a)). The pomset for the result, as given by the call-by-need semantics just defined, is: 

where we assume p, to be the pomset for a. 
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But there is something slightly wrong with this result: Note that,  although the "competition" 
for the evaluation of y is handled correctly (and thus y is evaluated only once), the evaluation of 
a is done twice, once for each application of y! This curious behavior is what  Hughes describes 
as being not fully lazy [10], and it is a property actually exhibited by some existing functional 
language implementations. The problem stems from our delaying the evaluation of an argument 
to only one level of function application, rather  than to the axbitrary number of levels possibly 
exhibited by a higher-order function. The substitutions mnst somehow be delayed until all 
"sources of contention" can be identified. 

Unfortunately, whereas it was easy to implement one level of delay, we cannot delay substitu- 
tions arbi trar i ly without  some extra  mechanism. That  mechanism is what we call a substitution 
list, or jus t  substitution. Instead of propagating substitutions directly into pomset abstractions, 
we delay them by pairing them with the pomset abstraction until later needed. The resulting 
pair, pomset abstract ion plus substi tut ion list, is analogous to the "code plus environment" 
representation of a conventional closure. 

Now for the details. The domain of behaviors is redefined so as to have a substitution list 
component: 

b E Beh  = Proc  × Subst  × (D ---, Beh  --~ Beh)  
u E Subst  = (Id  × Proc)* 

We denote a part icular  substi tution list as [xl ~-* psx, x2 ~-~ ps2,..., x ,  ~--~psn] (similar to a homo- 
morphism); the empty substi tut ion list is thus []. 

This change induces many small changes in ~ and 8': 

S'g.'e~ e , ~  b e , ~  = let  (r'~,~', f )  = ~ e ~  en~ benv 
in ({D,}.p.{R,}, u, f )  

s i I ~  e ~  b e . ~  = ( {e} ,  [], err) 

let <ps,, ~,, f,) = ~'ie,] en~ be.~, i = 1, 2, 3 
in if e,~e~]env then (psl.ps2, u2, f2) 

else (psl'p~3, u3, f3) 

e ~ e l  op e21 e ~  ben~ = let  ( V s , , ~ , , y , )  = S ' H  e ~  b e . v ,  i = 1 ,2  
in (psl]lps2, [], err) 

B ~ f i x  x.e~ env benv = let x ' =  ~a~fix x . 4 e n v  
(p~, u', f ' )  = B ' I 4  env[x' /x]  benv[f ' /x]  

in (p', ~', f ')  

The only difference between these equations and the corresponding ones for call-by-need is that  
they contain substi tut ion lists, which are either "carried along" (such as for the conditional) or 
set to nil (as for op). 

To make the reading of lambda abstract ion easier, we lift out the definition of the function 
F tha t  propagates substitutions: 

F(ps ,  u, ace) = if u = f] then (ps, ace) 
else let [x~-~p, rest] = u 

in if eval?(x, ps) then F(p  ®~ ps, rest ,  aec) 
else F(ps ,  rest,  [x~-~p, acc]) 
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Given the previous discussion, this definition should be fairly clear - if an application of a 
pomset abstraction results in x being evaluated, then x's substitution is performed, otherwise it 
is retained in the substitution list. As before, F is used in the semantics of lambda abstraction, 
given below alongside function application: 

B~Xx.e~ env benv = ({e}, [], Xd (ps, u, f}. let (pst, u ', f'} = B'~e~ cnv[d/x] benv[f /x] 
(p: ,  ~") = F(p~', [=~p~, ~1, ~') 

in (ps", u', f') } 

B~el e2~ env benv = let (psi, ui, fil = alpha(B'[ei~ env benv), i = 1,2 
(p~, ~, f )  = £ (e.~Menv) (p~2, ~1 u ~ ,  f~) 

in (psl'ps, u, f} 

To understand these equations, realize that the shaxing that is responsible for the contention 
for values is manifested solely through bound variables. This means that, if the bound variable 
is indeed evaluated, then it is safe to do the substitution at the point at which the binding is 
first made. On the other hand, i f  it is not evaluated, then it must be "carried along" in the 
substitution component of the pomset abstraction. 

There is one subtle aspect of function application: note that ul is combined with u2 when 
passed to the pomset abstraction fl. This reflects the fact that a pomset abstraction in function 
application position cannot be further shaxed, and thus it is safe to perform its substitutions. 
Unfortunately, this raises one other complication, an unfortunate consequence of our decision 
to give pomset interpretations over an alphabet of syntactic objects: because expressions may 
be evaluated in different contexts, there is the possibility of name conflict. Although such name 
conflicts did not arise until now, it was an inevitable consequence of our need to delay substi- 
tutions more and more. We solve this problem simply by renaming (i.e. "alpha-converting") 
certain of the substitutions, which we do by the "pseudo-function" alpha, as shown. 

Returning to the problematical example that began this section, we see that under our new 
semantics the inner concurrence (corresponding to the body of g) becomes: 

( DT" Dg.y. Rg. Da.x. Ra. RT) 

which when combined into the whole result: 

(Dlo.D1.R1.D2.R2.Rlo) O)y (D4"R,'((D,,'a'Ra) ®= (Ds"( (D6"Ds'y'Rs'D3"x'R3"R6)II(DT.Dg.y.Rg.Da.x.R3.RT) ) 'Rs)))  

gives precisely the correct behavior for fully lazy evaluation. 

3 . 6  P o m s e t  I n t e r p r e t a t i o n  o f  C a l l - b y - S p e c u l a t i o n  

Although Figure 2 given at the staxt of this section gives the basic intuition behind call-by- 
speculation, it fails to capture an important subtlety in the behavior. This subtlety is best 
described by an example: Suppose the call t ( f  a) is done via call-by-speculation, but a is never 
needed in the body of f (unlike the case in Figure 2). The resulting pomset will then not have 
a definitive "exit point." That is, when B ~ wraps DcRt axound the result, it must not require 
that the speculative evaluation of the axgument complete before Rl (if it did, we would end up 
doing "eager evaluation" as described in Section 3.3). The correct pomset is shown in Figure 
4, where p/, p~ and p axe the pomsets for f ,  a, and the body of f ,  respectively. If a does not 
terminate, of course, this results in the possibility of a "runaway process," or "irrelevant task," 
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Pa 
/ 

/9, 
\ 

p f ~ p -~  Rl 

Figure 4: Correct Pomset for Call-by-Speculation 

but  that is exactly the behavior that we want, and is necessary in order to retain normal-order 
standard semantics. 

It is possible to define a form of call-by-speculation in which the speculative demand, at 
least, for the argument is guaranteed to occur before the function call is initiated. In fact, in 
such a semantics a single pomset (i.e. singleton process) once again becomes sufficient, since 
we know immediately what the first demand on each argument is. However, the most general 
version (i.e., the one having the weakest ordering) does not have this constraint, and the pomset 
abstractions become the complicating factor again, because a speculatively invoked argument 
might be demanded later by a subsequently applied higher-order function. 

The necessary changes to the formal pomset semantics axe stralghtforwaxd, but  because of 
space limitations we only outline the approach, starting with the pomset semantics of call-by- 

need: 

t. 

2. 

3. 

In the semantics for lambda abstraction, instead of returning essentially the pomset of 
the body, we return a concurrence of it and the pomset D.~ .R ,  where ~ represents the 
speculative demand for the argument. 

Once an identifier is eventually demanded, a standard ® operation is performed on the 
composite result - i.e., on the result of the application as well as the context in which it 
lies. This requires delaying subsitutions even further. 

Because we have delayed the establishment of the "connections" between pomsets even 
further, name clashes become more severe and we are forced once again to create unique 
contexts via alpha-conversion. 

4 U s i n g  P o m s e t s  to  Contro l  Operat iona l  Behav ior  

The general motivation for our work stems not just  from the need for a formal mechanism 
through which to reason about parallel functional program evaluation. If we accept the fact 
that annotations or other meta-linguistic devices are needed to more precisely control operational 
behavior, then we also need a formal semantics to reason about such annotations. Furthermore, 
just  as denotational semantics can be used as a tool for language design, pomset semantics 
can be used as a tool for meta-language design. One of the guiding principles of functional 
programming language research has been the insistence on formal methods - we are simply 
extending that  principle into an area that we feel has been ignored in the past. 

Of course, now that we have completed our tour of "standard" evaluation strategies (in total 
we actually explored six of them!), it should not be sm'prising that  we can adequately describe the 
operational semantics of various proposed annotations. Rather than do that directly, however, 
we will describe informally the semantics of two simple annotations that can then be used to 
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achieve the effect of many of the proposed annotations. Our goal is not to propose a concrete 
syntax or semantics for such annotations, since it is not yet entirely clear to us exactly what 
the best  combination of expressiveness, flexibility, and safety is. Our goal is only to set up 
the framework in which such techniques can be used, and to demonstrate that  pomset  algebra, 
possibly extended with logic, may be suitable as the meta-language. 

We divide this section into parts,  one to discuss the control of temporal  order, the other the 
control of spatial  order. 

4.1 Control l ing Evaluat ion Order  

Our approach to controlling the evaluation order in a program will be to augment the pomset 
associated with an expression with pomset-like annotations. Specifically, an augment expression 
has the form "exp @ pore," where exp is any PFL expression and pore is a pomset of events over 
labelled expressions in exp. Rather than propose concrete syntax for pomset expressions, we 
will use the same mathematical  notation that  we have used throughout this paper. Similarly, 
labelled expressions will continue to be denoted by re. 

If this technique is to work, then we must s tar t  with the most general of evaluation strategies 
(otherwise we are faced with the problem of removing constraints from a pomset), which as we 
will show in the next section is call-by-speculation. However, this is not normally considered to 
be the "default" evaluation strategy, and thus we take a slightly different approach, summarized 
in the following rules: 

1. Fully lazy call-by-need is the default evaluation strategy (since this is the most common 
semantics used in practice). 

2. If a labelled subexpression, as in "( . . .  l e . . . )  ~9 p," is referenced in p, we consider that  
subexpression as being evaluated speculatively. In other words, we consider the overall 
expression to have been transformed into "(()~x . . . .  x . . . )  re) @ p," with the application 
being done via call-by-speculation. 

3. For a labelled expression Ze, we use l (i.e. the label itself) to refer to the entire pomset 
associated with e, and Dl and RI to refer (as always) to the demand and return events, 
respectively, of e. Finally, we let D and R refer to the demand and return events of the 
entire expression being augmented. 

The operational semantics of an augment expression e @ p is that  e's pomset is modified to 
reflect any additional events or constraillts in p. The formal definition is essentially identical to 
concurrence, except that  we no longer consider the event sets to be disjoint (otherwise we would 
have no way of referring to existing events). If an event in p is not contained in e's pomset, 
then it is added to the resulting pomset as a new event. Some example should help clarify this 
interpretation. 

Consider the application ( f  a). Under a call-by-need interpretation the expression a may or 
may not be evaluated. We can turn this application into call-by-speculation by writing: 

(f  'a) 0 l  

To achieve eager evaluation we write: 

(f  'a) ~ (l.R) 



252 

which requires that  the evaluation of a complete before the entire call completes. Finally, to 
achieve call-by-value we write: 

( m f t a )  q) (l 'Rm) 

which requires that  the evaiuation of a complete before the function is called. 

As another example, suppose in the expression ( f  x) + (g y) we wish to inhibit parallelism 
(perhaps out of concern for limited resources) by requiring that  ( f  x) be evaluated completely 
before (g y). This can be done quite simply by: 

('(1 x) + m(f y)) • (l.m) 

We are also experimenting with ways to use augment expressions in a recursive setting. For 
example, it seems desirable to allow them to do such interesting things as ensuring that  two 
functions "recurse in lock-step," as in: 

(sum tst)/(len lst) • (t.,,.)* 
whererec sum  Ist = (null? Ist) ~ O, 

len Ist = (null? lst) --* O, 
(head Ist) + '(sum (tail lst)) 

+ ~(len (t~it Ist)) 

The intent here is for the pomset expression (l.m)* to only allow zero or more evaluations of the 
expression labelled l followed by the expression labelled m. Both sum  and fen force successive 
tails of 1st in synchrony, and thus both implicitly abandon their references to successive elements 
of Ist in synchrony, thereby permit t ing evaluation in constant space. Normally to achieve this 
kind of synchronization one would have to restructure the program by combining sum  and 
len into a single function that  returned a composite result which was in turn decomposed for 
use where needed. On the other hand, we point out that  this use of augment expressions is 
experimental,  since we have not completely resolved the formal relationship between an arbitrary 
pomset expression such as (l.m)* with the pomset that  it is refining. 

4.2 T h e  O r t h o c u r r e n c e  o f  P r o c e s s  and  P r o c e s s o r  

When writing functional programs for execution on a distr ibuted multiprocessor, there is often a 
need to express the "process-to-processor mapping" explicitly. Many examples of such applica- 
tions may be found in [5,8], where mapped exressions, having the simple form "exp on pid," are 
used to declra'e tha t  the expression exp is to be executed on the processor identified by pid, and 
the variable sell is used to reference the "currently executing processor," thus allowing relative 
rather than absolute mappings. 

To capture this behavior it is obvious that  the s tandard semantics must first be extended to 
include the meaning of the (dynamic) variable s e l l -  this is very straightforward, and in fact is 
done in [4]. In addition, the pomset semantics must have some notion of processor names, and 
a mechanism to at tach them to the pomsets representing expression evaluation. This is easily 
done using the pomset operation orthoeurrence discussed in Section 2.1 to pair events in the 
temporal  ordering with events (i.e. "places") in the spatial  ordering. We can then give a rough 
semantics for mapped expressions as follows: 

t3~e o11 pidn e . v  b e n v =  let d = S~pid~env 
(p, f )  = B'~e] env[d/sel f l  benv 

in (d ® p, f) 

where "d" in "d ® p" is so be interpreted as a singleton pomset. For a program with no 
annotations,  all expression evaluations map to the same "root" processor. 
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Once this semantics is established, we can see that  limiting the orthocurrence to singleton 
pomsets is urmecessary. In fact, there are many situations, particularly in scientific computation, 
where the programmer knows that  the demands for some variable binding x = exp will appear 
in a part icular  order along a pa th  through the network. Mapped expressions say where an 
expression is evaluated, but  say nothing about the path for da ta  movement of the result. If the 
demands appear  on a sequence of processors in the spatial  order io, i l ,  is . . . .  , in, it is desirable 
for the demand for x on i0 to cause evaluation of exp on i0, and for the demand on each other 
processor i i to get the copy of the binding for x from its immediately preceding neighbor ii_1. 

Generalizing this idea, paths can in fact be represented unambiguously by any tree-shaped 
part ial  order, or ambiguously (allowing the possibilty of alternate da ta  paths) by an uncon- 
strained part ia l  order. In other words, letting k~ be the domain of processor names, we interpret 
a pomset over a lphabet  k~ as a spatial  ordering on the designated processors. By generalizing 
mapped expressions to take arbi trary pomsets of processor ids rather than  singleton pomsets, 
we arrive at  the desired semantics. 

Although quite general, this approach may not be the most convenient in practice. Con- 
sequently, we have been experimenting with the notion of a path funct ion,  which specifies a 
tree-shaped part ia l  order of processors - the root of the tree, which is a fixpoint of the path 
function, is where expression evaluation actually takes place. A path  function annotation allows 
recursive definition of a da ta  path,  which is frequently required in scientific computation. A 
future paper  will outline our experience with this class of annotations. 

5 T o w a r d  a S t a n d a r d  O p e r a t i o n a l  S e m a n t i c s  

In this section we discuss the viability of using pomsets and processes as a foundation on which 
to base a formal operational  semantics for functional programs and the machines on which they 
axe executed. 

5 . 1  T h e  E x i s t e n c e  o f  a " S t a n d a r d "  O p e r a t i o n a l  S e m a n t i c s  

The reader has likely observed that  the operational semantics in Section 3 became increasingly 
more complex as we matured in evaluation strategies, with call-by-need and call-by-speculation 
semantics being the most complex, and call-by-value being the least. This is an interesting 
observation, because in s tandard  semantics call-by-need is usually considered the simplest, "most 
elegant," and easiest to reason about. On the other hand, programs relying on lazy evaluation 
are often recognized as being difficult to trace during debugging, because the delayed evaluation 
of expressions creates very non-local effects. ~ We believe that  the complexity of our operational 
semantics is simply a reflection of that  fact. 

The question immediately arises as to whether there is one "standard" operational semantics 
that  is most general - that  is, that  contains the least number of constraints on evaluation order. 
For a given s tandard  semantics, we believe there is. Although we do not give direct evidence of 
that  here, we can at  least make the following interesting observations about  the semantics given 
in Section 3. 

Firs t  recall the definition of augmentation, which we now point out is a part ia l  order. We 
write Pl E P2 iff P2 is an augment of Pi. Extending E to functions in the s tandard  way, we 
have that  f E g iff f ( a )  E g(a) for all a. Let $~b~, Blazy, 8~ag~r, and Bobs be the pomset 

SThis is not to say that lazy functional programs are difficult to debug, but rather that traditional tracing 
techniques are perhaps inadequate for such debugging. 
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semantic functions for call-by-value, lazy evaluation, eager evaluation, and call-by-speculation, 
respectively. Now note that  the following relationships hold: Bob, E_ Blair, and Bob, E_ Beao,r E 
B~b~. We can display this graphically as: 

~ebo 

~ager 

where the weakest elements are at the bottom. Thus call-by-speculation is the most general of 
our operational  semantics in that  it induces the weakest ordering on expression evaluation. Call- 
by-need adds constraints that  effectively delay the demand for expression evaluation, and call-by- 
value and eager evaluation add constraints that  effectively promote the return from expression 
evaluation. 

5 . 2  I m p l e m e n t a t i o n  S e m a n t i c s  

Regardless of whether or not we choose one operational semantics as "standard," we can at 
least use pomset semantics as a tool to describe the semantics of a part icular  implementation. 
In tha t  regard, we make the following observations. 

First ,  machines are finite. The operational semantics that  we have defined, however, is 
potentially unbounded in its consumption of resources. Thus all that  we should require of 
an actual machine M when it executes a (possibly annotated) functional program P is that  it 
observe the constraints of the program's "standard" pomset; in other words, it is free to augment 
that  pomset due to resource limitations. 

We can formalize this in the following way: Let p be program P ' s  s tandard pomset, and 
p/M be the pomset  that  represents P ' s  execution on machine M. Then p/M must be in the 
augment closure of p; i.e. p/M E a(p). If M is a sequential machine, we can say more: it must 
be that  p/M e A(p) (recall that  A(p) is the set of linear augments of p). Finally, a notion of 
local linearization, _A(p), was defined by Pra t t  on pomsets whose events are pairs - it is the set of 
augments in which the subsets of pairs with the same "location" are totally ordered. Thus if p 
is a pomset  interpretat ion with mapping semantics, and M is a multiprocessor, then we require 

that p /M ~ A(p). 

Using this approach, care must be taken in defining the semantics of speculative computation. 
In particular,  do we allow the implementation to "delete irrelevant tasks"? That  is, to preempt 
the execution of speculatively invoked computations whose results are later determined not to 
be needed? Formally, if we are to give the implementation the liberty to do this, then instead of 
using the speculative expression e's normal pomset p in the semantics, we should use i S  prefix 
closure 7r(p). This allows the implementation to choose an arbi t rary prefix of p as its realization 

of the evaluation of e. 

5 . 3  D e s i g n i n g  a M e t a - L a n g u a g e  

Recall that  the s tandard  normal-order semantics of PFL is given by En. Suppose now that  we 
extend P F L  with a class of annotations 4, and that  ~ ,  is the new normal-order semantics. A 
natural  goal in designing the extended language is to prove the following sort of consistency 
theorem: 
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T h e o r e m :  Let p be any annotated PFL program, and p' be the same as p but with all anno- 
tations removed. Then A,,lp] = 8,lp'~. 

In reality, some annotations may alter the standard semantics, although usually in minor 
ways. In all uses of annotations that we have encountered, the change usually involves termi- 
nation properties. More specifically, adding annotations may sometimes cause a terminating 
program to diverge or "deadlock." In such cases it is desireable to at least state formally the 
conditions under which such non-termination can be avoided. 

6 Future  Work 

We have concentrated in this  paper pa'imarily on the use of pomsets to define operational se- 
mantics - more work is needed on their use in controlling operational behavior. This will require 
experience with a variety of applications to determine the degree of expressiveness needed in 
the source language (among the more interesting applications is control of non-determinism). 
Although the generality of a single mechanism is attractive, there are certainly classes of be- 
haviors that would be better expressed using special syntax designed for them. For example, 
previously proposed syntaxes for controlling execution order and mapping program to machine 
can be thought of as "macros" that expand into pomset expressions. A future task for us is 
to identify those patterns of use that are most common, and design a practical language with 
syntax that captures those patterns. 

Conversely, despite our attempt at generality, there are at least two other operational be- 
haviors that we can think of that we cannot handle in our current framework: the prioritization 
of eagerly computed tasks, and the explicit preemption, or suspension, of an expression's eval- 
uation. We feel that these can easily be described using pomsets once suitable "handles" to 
the appropriate actions are provided. Note, for example, that a priority relation is in essence a 
partial order. 

Another concern for us, of course, is implementation issues. At Yale a virtual parallel graph 
reducer called Alfalfa is currently being implemented on two commercial multiprocessors: an 
Intel iPSC hypercube and an Encore shared-memory machine [3]. Our plan is for this system 
to eventually support both implicit (dynamic) and explicit (annotated) task allocation and 
scheduling. 

Finally, our use of pomsets as a vehicle for expressing operational behavior was pragmatically 
motivated, and there are still some troublesome technical issues that we have not resolved. 
For example, a non-terminating program generates an infinite pomset - is this mathematically 
sound? Also, in the semantics of f ix  we defined a recursive pomset abstraction, yet did not 
define an ordering on the domain of pomsets - does a unique fixpoint exist? Indeed, the need for 
a domain of pomset abstractions is troublesome in itself, suggesting the possibility of "higher- 
order pomsets." We have made some progress in this area, but  more work remains. 
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