
Pomset Interpretations
of Parallel Functional Programs*

P a u l H u d a k

S t eve A n d e r s o n

Yale U n i v e r s i t y

D e p a r t m e n t of C o m p u t e r S c i e nc e

N e w H a v e n , C T

Abstract

A new framework is presented, based on the notion of a partially ordered multiset (or
pomset), which is able to provide not only a precise operational semantics of parallel func-
tional program evaluation, but also a handle through which to control such behavior. As an
operational semantics, pomsets are able to distinguish between call-by-value, call-by-name,
call-by-need, and call-by-speculation evaluation strategies (even though all but the first of
these have the same standard semantics); and as a "handle" from which to control opera-
tional behavior, pomsets can express most of the behaviors achieved by previously proposed
annotations that control not only evaluation order but also the spatial mapping of program
to machine.

1 Introduction

The use of functional languages in writing parallel programs is hardly new, having its roots
in research on dataflow machines which begau almost 20 years ago. The claimed advantages
of using functional languages include the facts that "parallelism is implicit" (that is, derived
solely from data dependencies) and "results are determinate" (meaning one is free to choose
a variety of, including parallel, execution orders). Based on these advantages, reseachers have
concentrated on completely automatic techniques for parallel execution of functional programs

- their goal has been for the user to remain completely unaware of the underlying parallelism.
Dataflow and reduction machines [15], hybrid machines [3,6,11], and fancy compilation strategies
[7] have all contributed to the success of this line of research.

On the other hand, there are times when the programmer would like to understand, and
ultimately control, lower-level operational behavior. For example, if one wants to know what
kind of parallelism to expect from the expression](x), one needs to know a great deal about the
implementation, independent of the "standard" semantics (which we assume models normal-
order reduction), tn this example, one needs to know first of all whether or not the system is
able to infer that the function f is strict. If so, is the argument then evaluated in parallel with the
call? And if f is not strict~ is the argument evaluated "eagerly" anyway? As we shall soon see~

*This research was supported in part by grants from the National Science Foundation (DCR-8451415) and the
Department of Energy (FG02-88ER25012).

235

there are many variations on even these simple questions, and they are all reasonable ones to ask
when trying to reason about the efficiency of a program. In fact, such questions are not restricted
to parallel operational behavior - the subtle difference between lazy evaluation and "fully lazy
evaluation" is an example of sequential behavior tha t is implementation dependent, and that
can have a significant impact on performance. How can we provide this level of understanding
to the user?

Even if one understands a part icular implementation well, the resultant behavior is not
always what the programmer desires. Indeed, there are often specific operational details that a
programmer would like to control - details that one can never expect an automatic system to
infer - but for which conventional functional languages have no means to express. Controlling
evaluation order and mapping a program onto a part icular machine topology are our canonical
examples of such operational behaviors. How can we provide this level of expressiveness to the
user?

One solution to both of these problems, of course, is to give up on functional languages
altogether, and resort to a much lower-level language such as OCCAM, Concurrent Pascal,
Ada, or some other parallel imperative language. But this would mean giving up all of the
things that we like about functional languages, and would amount to throwing out the baby
with the bath water! It is our thesis that most of the time a programmer need not be concerned
with operational behavior, and thus functional languages are indeed an effective vehicle for
parallel computation. On the other hand, we feel that the situations, however few, in which one
needs to reason about and control such behavior cannot be ignored.

In this paper we present a new framework, based on the notion of a partially ordered mul-
tiset (or pomset), which is able to provide not only a precise operational semantics of paralIel
functional program evaluation, but also a handle through which to control such behavior. As an
operational semantics, pomsets are able to distinguish between call-by-value, call-by-name, call-
by-need, and call-by-speculation evaluation strategies (even though all but the first of these have
the same s tandard semantics), including the subtle distinction between "lazy evaluation" and
"fully lazy evaluation" (which are refiined versions of call-by-need). Furthermore, as a "handle"
from which to control operational behavior, pomsets allow us to express most of the behaviors
achieved by previously proposed annotations that control not only evaluation order [1,8,14], but
also the spatial mapping of program to machine [5,8,12]. In addition, we have used pomset-based
annotations to express several other non-trivial operational behaviors, including the routing of
da ta through a multiprocessor network (dually, the path taken in accessing a value), and the
synchronized, lock-step execution of two (unrelated) recursive function calls.

There are those who believe that the need for recta-linguistic devices to refine operational
behavior is a sign of weakness in functional languages. Thus there has been a tendency in
the functional programming community to ignore such techniques as being too "ad hoc" and
"impure." We do not feel this way, and one of our goals is to bring some respectability to this area
by not only providing a formal semantics for such mechanisms, but also to show that the resulting
programs can be very elegant, and are still a considerable improvement over their counterparts
written in parallel imperative languages. The overall approach suggests what we call a "para-
functional programming" methodology in which a programmer may refine operational behavior
without restructuring the whole program or completely rewriting it in some other language. The
separation of operationM and functional behavior, both semantically and in the language itself,
is what makes the methodoIogy attractive; and by concentrating on functional behavior first,
the methodology is consistent with the software engineering notions of "rapid prototyping" and
"get it right first."

236

1 . 1 W h y P o m s e t s ?

The utility of pomsets as a tool for modelling concurrency is well demonstrated by Pratt [13],
who is able to express a surprising diversity of concurrent behaviors clearly and concisely. Our
contribution here is to show how they can be used to reason about and control parallel functional
program evaluation. But why choose pon~sets? In our seaa'ch for a vehicle to not only express, but
control, operational behavior, we considered and ultimately rejected several other alternatives.
The most prominent, of these were dataflow graphs, temporal logic, and execution trees, each of
which we discuss briefly below.

Dataflow graphs actually share much of the appeal of pomsets, since they display naturally
the partial-order of expression evaluation. However, they are inadequate for our purposes for
several reasons: First, the most common versions of datafiow graphs are first-order and call-
by-value. The extensions necessary to make them work with higher-order functions and lazy
evaluation are cumbersome at best. Second, even if the appropriate extensions are made, they do
not capture all of the detail that we are after, such as the fact that multiple demands for the same
value do not cause recomputation. To capture such behavior requires a further interpretation of
the dataflow graphs themselves (perhaps using pomsets!). Finally, it is not clear how dataflow
graphs could be used as a basis from which to refine operational behavior.

Among other possible mechanisms for exressing control over evaluation order is temporal
logic. However, temporal logic is unable to express the spatial relationships that we also wish
control of, and seems to be inadequate, or at best cumbersome, in expressing the operational
semantics of a language. Furthermore, Pratt has shown that pomsets in some sense subsume
temporal logic in that they can be used as a model of temporal logic semantics (we do not know
ff the converse is true). For this reason we view temporal logic as a possible recta-language for
refining operational behavior, but with pomsets still forming the semantic foundation.

In earlier work on the formM semantics of para-functional programming languages we intro-
duced a notion of execution trees to capture the evaluation history of a program [4]. However,
execution trees, being trees, do not capture any notion of sharing, which is crucial to the se-
mantics of, for example, lazy evaluation. Extending the trees to graphs results in a form of
"unwound ~' dataflow graph, which has all of the at tendant problems mentioned above.

1 . 2 O v e r v i e w o f P a p e r

We begin our technical discussion in the next section with a definition of pomsets, processes, and
various operations on them. To demonstrate their use as a foundation for operational semantics,
we use them to describe four common parallel evaluation strategies in Section 3. Then in Section
4 we demonstrate their use as a handle from which to refine operational behavior. Taken
together, these results suggest the possibility of a formal semantical fi'amework with which to
reason about operational behavior, which we discuss in Section 5. Finally, we discuss problems
with our approach and point to future research in Section 6.

2 A n I n t r o d u c t i o n to P o m s e t s

A pomset is a natural generalization of a st'~ing, in which the string's total, or linear order is
replaced with a partial order. MuItisets are needed instead of sets, because there may be multiple
occurrences of the same entity - just as there may be multiple occurrences of the same character
in a string. In fact, a string may be thought of as a totally-ordered multiset (or tomset). The

following definitions are taken mostly from [13]:

237

D e f i n i t i o n : A partially ordered multiset, or pomset, is a 4-tuple (V, E,-<, p), where: 1

1. V is the vertex set, representing events.

2. E is the alphabet, representing actions.

3. -< is a partial order, representing an ordering between events, and represented as a b inary
relat ion in V x V.

4. p is a labelling function with functionali ty V --+ ~.

Recall tha t as a part ial order, -< is reflexive, transitive, and anti-symmetric. When the dist inction
is necessary, we use the symbol -< as the irreflexive version of ~ . Notationally, for a pomset p
we write Vs, Ep, -<p, and l~p to denote its four components, and e E p as shor thand for e E Vp.
We denote the "empty pomset" by e.

Pomsets should be thought of as modelling the concurrency (temporal or otherwise) of events,
the events being instances of part icular actions. In our context, actions and events will be tied
to the evaluat ion of expressions; the details of this are forthcoming.

D e f i n i t i o n : We say tha t p is an augment of q, iff Vp = Vq, ~p = ~q, #p = ~tq, and ___pD_~q. In
other words, p augments q by being as constrained or more constrained than q. The opposite
of augment is subsume.

D e f i n i t i o n : We say tha t p is a prefix of q, iff p is obtained from q by deleting some of the events
of q, under the constra int tha t if u is deleted and u % v, then v is also deleted. This corresponds
to the not ion of a s tr ing prefix. The opposite of prefix is suj~x.

2 . 1 O p e r a t i o n s o n P o m s e t s

Given the not ion of a pomset, one can imagine a variety of operations on them, operations tha t
collectively form an algebra of pomsets. The choice of operations depends primaxily on one's
application. A fairly general set of operations is described in [13], from which we derive the
following set sui table for our purposes:

D e f i n i t i o n : The concurrence of pomsets p and q, denoted (Pl[q), is defined as the pomset
(~ u Vq, Ep u Eq,-<_p U ~_q,#p U/tq). Concurrence corresponds to the not ion of two pomsets
happening concurrent ly - there is no ordering relatiollship between events chosen pairwise from
p and q.

D e f i n i t i o n : The concatenation of two pomsets p and q, denoted (p.q), is defined as the pomset
(Vp t_) Vq, Ep U Eq, ~_p U ~q U(Vp x Vq), ltp U #q). Concatenat ion corresponds to the not ion of two
pomsets happening sequentially - every event in p is forced to occur before every event in q.

D e f i n i t i o n : The orthocurrenee of two pomsets p and q, denoted (p® q), is defined as the pomset
{Vp x Vq, Ep x Eq, ~p x ~q, pp x #q). Lett ing < = (_-<p x _q), we thus have that (a, a') ~ (b, b I) just
when a ___p b and a I _-<q b I. Orthocurrence corrresponds to the conventional not ion of cartesian
product - the pair ing of unrela ted objects - bu t in addit ion preserves the internal s t ructure (i.e.
elemental ordering) of the objects.

Figure 1 shows a graphical representation of the concm'rence, concatenat ion, and orthocur-
rence of the pomsets p = 0.1 and q = a.b.

1In [13] this definition is actually for a labdled parHal order, or lpo, and a pomset is defined as the isomorphism
class of an lpo. However this technical distinction is unnecessary in our context.

238

a - * b

pllq

p°q

p ~ q =--

a-.+b

O ~ l ~ a ~ b

[(o, a) --~ O, a> "~

) <o,b> -~ (~,b>

Figure 1: Graphical Representations of Concurrence, Concatenation, and Orthocurrence

The observant reader will note that concurrence and concatentation are at opposite ends of
a spectrum - concurrence represents minimal order, concatentation maximal (i.e. total) order.
There are clearly a number of orders that fall between the two extremes. We can express such
orderings through the notion of restricted concatenation, in which concatenation is restricted to
those events satisfying a particulax predicate. Informally, P'pr¢dq is a pomset in which every event
in p occurs before every event in q that satisfies pred. Formally, p "pr~ q = (Vp U Vq, Ep U Eq, __p
U -<q U (Vp x {e E Vq [pred(e)}),#p u #q}. A similar definition applies for Ppr,d'q. The most
common use of restricted concatenation is where pred simply tests for a particular label, in
which case we replace the predicate with that label. For example, p "x q specifies that every
event in p must precede every event e in q such that/*(e) = x.

One should note that p . q is an augment of p "p~a q, which is in turn an augment of Pllq.
Indeed, Pllq is essentially the same as P'/,l,~q, where false is the empty predicate. Conceptually,
the easiest way to create an augment of an existing pomset is to somehow "add arrows" to the
pomset's partial order. We occasionally have a need to do this, in which case we do so explicitly.

Finally, we introduce the notion of pomset homomorphism. The technical definition of pomset
homomorphism follows exactly that of string homomorphism, and thus we omit the details.
Notationally we write p[x ~-~ q] for the result of applying to p the homomorphism that maps
events with label x to the pomset q; i.e., "substitute q for x in p." For example:

((a.b)lt(e.a.d))[a~--+(uHv)] = ((ullv).b)H(c.(uIlv).d)

2 . 2 P r o c e s s e s

Sometimes a single pomset is not sufficient to model a certain behavior, just as a single string
is not always sufficient to characterize an entire language.

De f in i t i on : A process is a set of pomsets.

Intuitively, a process models something that may exhibit any one of a set of possible concur-
rent behaviors. From a mathematical perspective, a process is to a pomset as a language is to
a string. The most general (i.e. least constrained) process over alphabet E is just the set of all
possible pomsets constructed over E, which we denote E~:, in analogy to E * being the set of all
strings over alphabet E.

We extend the previously defined operations oll pomsets to processes, in the obvious point-
wise manner. Furthermore, the following operations are useful:

Def in i t i on : The augment closure of a pomset p, written a(p), is the set of all augments of p.

Def in i t ion : The prefix closure of a pomset p, written ~r(p), is the set of all prefixes of p.

239

Def in i t i on : The set of l inearizat ions of a pomset p, written A(p), is the set of all linear (i.e. to-
tally ordered) augments of p.

3 P o m s e t I n t e r p r e t a t i o n s of F u n c t i o n a l P r o g r a m s

3 . 1 P r e l i m i n a r i e s

For purposes of exposition we use an extremely simple functional language which we will call
PFL, whose abstract syntax is given by:

c E Con , constants, including primitive functions.

x E Id , identifiers.
e E E x p , expressions, defined by:

e ::= e I x I b I ~x.e l el e~ 1 f i x x.e

PFL can be viewed as the unrestricted lambda calculus with constants. Constructs such as letrec
and whereree can be transformed easily into a f i x expression if need be. Co n normally embodies
all primitive functions, but for clarity we give specific examples involving the conditional and
strict ari thmetic operators, using the syntax el--~e2, ea and el op e2, respectively.

Without loss of generality, we make two simplifying assumptions about PFL programs: First,
all bound variables are unique. This is convenient when dealing with scoping rules. Second,
every expression has associated with it a unique label. Labels are needed to distinguish syntactic
expressions that otherwise would appear identical - for example, multiple occurrences of the
same bound variable. When necessary, we write te for an expression e whose label is 1.

We assume the existence of two semantic functions, £~ and £n, that compute the s tandard
applicative-order and normal-order denotational semantics, respectively, of PFL. More specifi-
cally, their functionality is given by:

£a: E x p ---* E n v -~ D

£n: E x p --~ E n v --+ D
d E D = B a s + (D ~ D)

env e E n v = I d --* D

The base domain B a s is left unspecified, but is presumed to contain the necessary objects to
capture the meaning of elements of Con.

Henceforth the phrase "standard semantics" shall mean the semantics computed by one of
these two semantic functions, depending on whether one wishes applicative-order or normal-
order semantics.

3.2 A c t i o n s and E v e n t s in E x p r e s s i o n E v a l u a t i o n

A good start ing point in making the connection between pomsets and expression evaluation is
to decide what, exactly, we wish our pomsets to model - in other words, what is the meaning
to be at tached to act ions and events? It should be clear tha t our concerns are rooted in very
operational issues, and the meaning that we seek is not something typically captured in a
language's s tandard denotational semantics.

Although there are many complicating details in any particular evaluation strategy, we have
found that it is sufficient to consider as our set of underlying actions simply the demand for and

240

re turn of each syntactic expression's value. Thus for every labelled expression le we associate
two events, D, e and R,e, corresponding to the demand and return, respectively, of e's value.
When the context is clear we often omit either the label or expression part, and simply write D,
or De. In addition, if used in a context requiring a pomset, we interpret D~, Rl, etc. as singleton
pomsets.

A syntactic expressioll, of course, may be evaluated in many different contexts (i.e. environ-
ments). Furthermore, depending on the semantics being captured, there can be more than one
demand for an expression in a particular context, and for each such demand there is typically
a corresponding return of value. Each of these occurrences of a particular action is, of course,
simply an even t in our model. The pomset interpretation of a PFL program is thus a pomset
(or possibly set of pomsets) that captures the demand/return behavior resulting from program
evaluation.

Now normally there are other events (actually, a pomset of events) that intervene between
the demand and return of an expression e, corresponding naturally to the evaluation of other
things needed to compute e's value. Of particular interest is the evaluation of an i den t i f i e r - if
the value was previously computed there may be no intervening events, otherwise there may be
an entire pomset of events, corresponding to the evaluation of the actual parameter to which
the identifier was bound.

To make these and other ideas more concrete, we shall take the reader on a tour of pom-
set interpretations of four common evaluation strategies, shown graphically in Figure 2, and
described intuitively below:

® In a cal l -by-value semantics there is never an intervening pomset, because the expression
corresponding to the actual parameter is completely evaluated before the call.

s Conversely, in a ca l l -by -name semantics there is always an intervening pomset.

® Alternatively, in a cal l -by-need (i.e. lazy) semantics there is either zero (if the argument is
never needed) or exac t l y one occurrence of a bound vaxiable with an intervening pomset.

® Finally, ca l l -by -specu la t ion is a blend between call-by-value and call-by-need, in which the
evaluation of the arguments is begun at the time of the call, but the evaluation of the
body proceeds as in call-by-need, blocking only if an argument is needed that hasn' t been
completely evaluated yet.

One of the complicating factors in all of these semantics is the proper treatment of higher-order

f u n c t i o n s . Such treatment becomes especially critical in call-by-need evaluation, where in fact
we shall discuss two versions of the semantics, one that we call lazy eva lua t ion and one that
we call f u l l y lazy e v a l u a t i o n - the difference lies in the way higher-order functions share free
variables.

Note, as mentioned earlier, that the standard semantics will differentiate call-by-value from
the other three, but will not differentiate call-by-need (where the result is "cached") from call-
by-name (where the value is recomputed on each demand) oi" call-by-speculation. Nor will it
differentiate lazy from fully lazy evaluation.

Also note that, although the standard semantics is deterministic, there are some aspects of
operational behavior that are non-deterministic. For example, we may allow two expressions
to be evaluated in parallel, but which actually begins (or ends) first is non-deterministic. The
Church-Rosser property, of course, normally allows us to completely ignore this issue, since a
deterministic result is guaranteed in either case. As we shall soon see, however, when shar ing
is manifest (such as in call-by-need evaluation) we must specify the non-deterministic behavior

241

o@
1~ / \5

X j ~,~@ exp

Do

D4

\ R2
T
Ro

(a) Call-by-value

Ro
(c) Call-by-need

4-

J~

R
(b) Call-by-name

;0

FJ
Ro

(d) Call-by-speculation

Figure 2: Four Common Evaluation Strategies

242

quite carefully, and we will find that a single pomset is inadequate - we must use a set of
pomsets, or process.

In the remainder of this section we assume that our universe of pomsets is given by:

E = I d U {n ,] l E Lab} U {D, I l E Lab} W {error}

p e Pore = E$
ps E Proc = fl (Pore)

Thus Pore is the domain of pomsets, and Proc the domain of processes.

3 . 3 P o m s e t I n t e r p r e t a t i o n o f P a r a l l e l C a l l - b y - V a l u e

It is perhaps not surprising that call-by-value has the simplest operational semantics to capture.
On the other hand, PFL has higher-order functions, and we must provide an adequate treatment
of them immediately, which is not always an easy task. The key observation to be made is that
the evaluat ion of an expression e can be described by a pomset, but the value of e may be a
higher-order function which has embedded in it the "delayed" evaluation of other expressions,
each also described by a pomset. We must provide a way to embody these delayed pomsets. Our
solution is to pair with the pomset of an expression a higher-order object that, when applied
later, may yield another pomset. 2 Of course~ each result may in turn be applied again, and thus
our embodiment must be a recm~ive object. We call this object a behavior, and its domain is

defined formally by:
b E B e h = Pore x (D --+ B e h --+ Beh)

Note that the second component, which we call a pomse t abstraction, is a function from a
standard value d and a behavior b to another behavior b ~. d and b represent the standard value
and behavior, respectively, of the argument to which the pomset abstraction will eventually be
applied. The result of that application is then the behavior b r.

We now define the domain of behavior env i ronments that map identifiers to pomset abstrac-
tions:

benv E B e n v = I d --~ (D --* B e h --* Beh)

and we define a special "error" pomset abstraction as follows:

err ---- Ad &(error, err)

Recall that error E E, and is interpreted here as a singleton pomset.

Finally, this leads us to the definition of two semantic functions, B t and B, that give pomset

interpretations of PFL programs:

~t: E x p --* E n v --+ B e n v --* B e h
~: E x p --* E n v ~ B e n v --* B e h

We should point out that the presence of D in B e h and E n v in B and B' reflects our
integration of the standard semantics with the pomset semantics. This is necessary because we
wish to provide an exact pomset interpretation, and thus we need to know the standard values
of expressions in order to give proper meaating to, for example, conditionM expressions.

2Th]~ solution is similar to that used in various other semantics, including strictness analysis t9], execution-tree
semantics [4], and sharing analysis [2].

243

B' simply wraps a "demand/re turn event pair" around an expression's pomset, which is in
turn derived using B:

B'~te~ env benv : let (p , f) = ~ e ~ env benv
in (DI'p'RI, f)

It should be clear, then, that the "meat" of the pomset semantics is captured in B, which is
defined piecemeal below.

There is no pomset associated with evaluating a constant:

where we assume that K[[e~ returns err for atoms, and a suitable pomset abstraction for primitive
functions. Recall that e is the empty pomset.

There is also no pomset associated with evaluating an identifier (recall that in call-by-value
arguments are evaluated before the call):

~lixll e,., ben v = (,,benvlIx D

Lambda abstraction and function application are (not surprisingly) the two most interesting
cases, and to properly understand them they should be considered together:

B[[Ax.e] env benv = <e,),d (p, f).B'~e] envId/x] benv[f /x])

B~el e2~ env benv = let (pi, fl) = B'~e,] env benv, i = 1,2
(P, f) = fl (~'al[e2]]e'o,v) (P2,12)

in ((p, llp~)'p, f>

There is no pomset associated with evaluating a function (i.e. lambda abstraction). However, the
function's pomset abstraction has embedded in it the behavior of the function's body, which is
computed in a s tandard environment and behavior environment that are updated accordingly.
Note that during application, the function and argument are evaluated in parallel followed
sequentially by the evaluation of the function body; all this is expressed by the pomset (Pl IIP2)'P.

Evaluating a conditional is straightforward:

~e , - -*e~ , e3~ env be,,v = let (p,, : ,) = B ' H env be,,v, i : 1, 2, 3
in if ~.~el]]env then (pl'p2, f2)

else (Pl"P3, fa)

Note that the predicate is completely evaluated before either the consequence or alternative, as
represented by the pomsets Pl'P~ and Pl"Pa.

Strict binary operators are also straightforward:

~e~ op e2] env I, env = let (p, , f ,) = ~'He,] e,,v benv, i = 1,2
in (Pl liP2, err)

Note that the two arguments are evaluated in parallel, as expressed by the concurrence Pl[[P2.

Finally, recursive functions require a recursive definition of the pomset abstraction:

B~fiz x.e] env benv = l e t x' = ~.~fix x.e]env
(p,,/,) : ~'~e~ env[x'/~] benv[f'/=]

in (p', : ')

244

A n E x a m p l e . As an example of call-by-vahm pomset semantics, consider the simple expres-
sion:

~et f = ~ x . ~ y . • = 0 -~ y, / (x - ~) (y + 1)
i n f a b

which ult imately just adds a to b. When put into proper PFL syntax, including labels on
everything but constants, this becomes:

The corresponding call-by-value pomset, ignoring the trivial parallelism in the arithmetic ex-
pressions, is:

((Do(D1 .D4 "Rd.Rt IID2"R2).Ds "Rs'Ro)]1 (D3 "R3)) •
[D6~ D7. D~. Rs. R7~ D11.((D12.(~14. R14~ D~s.D9~ R9. R~5)~ Ds. R5~ R12) ~ (~13. ~16.R16~ R18))] ~ "

D6. DT. Ds. Rs. R~" Dlo. RIo. R~'[R~ ~ . R6]"

where the notat ion [...]~ means a concatenatious of the pomset " . . ." Although tedious, the
reader should study this pomset carefully - it exposes very nicely the parallel evaluation of
function and argument, and demonstrates well the nature of recursive function calls. Later we
will contrast it with the corresponding pomset for call-by-name evaluation, and will find the
differences striking.

E a g e r E v a l u a t i o n . Before proceeding, there is an interesting variation of call-by-vMue op-
erational semantics tha t is worth mentioning. Instead of requiring tha t the evaluation of the
argument to a function complete before the body of the function begins execution, we could
simply require that it complete before the entire call returns. This results in more parallelism,
while retaining applicative-order s tandard semantics, and we refer to the resulting evaluation
strategy as eager evaluation.

The necessary changes to the existing semantics to achieve this new behavior are minor, and
essentially amount to replacing the pomset ((Pt tlP~)'P) in the semantics of function application
with (pz "R~ (P~ "P)), where x is the bound variable in the pomset abstraction associated with
the function. This pomset expresses the fact that evaluation of the argument must complete
only before the argument 's value is used in the body of the function. The details are left to the
reader.

3 . 4 P o m s e t I n t e r p r e t a t i o n o f C a l l - b y - N a m e

Recall that in call-by-name evaluation an argument is not evaluated until it is needed - however,
if it is needed more than once it is recomputed each time. Making this change to the call-by-
value semantics is not difficult. In fact, the functionality of all domains remain the same, and
other than subst i tut ing ~n for Ca only three equations for B change, those for (not surprisingly)
identifiers, lambda abstractions, and applications.

For an identifier, we leave a "marker" which will eventually be replaced by the pomset to
which tha t identifier is bound:

Note that we simply use the identifier itself as the marker; i.e., ~x~ (~s the first component of
the result) is to be interpreted as a singleton pomset whose single event is labelled with the

identifier x.

245

As before, we treat lambda abstraction and function application together:

B ~)~x.e] env benv = (e,)~d (p, f). let b = B'[[e]] env[d/x] benv[f/x]
F(p', f ') = {p~[x~--~p],)~d b.F(f ' d b))

in F b)

~[[ex e~D ~nv ben~ = let (p , , f ,) = ~'~e,~ env benv, i = ~,2
(P , f) = f l (~.~e~]env) (P~,f2)

in (Pl "P, f)

Note now that in function application the pomset of the argument (P2) is not incorporated
directly into the result. Rather, it is passed to the pomset abstraction for the function, which
in turn substi tutes it (via the homomorph~sm [x ~ p]) for the "markers" (if any) found in
the pomset of the function's body. The only complication is that the substitution must also be
"propagated" into the body's pomset abstraction, which is accomplished through the (recursive)
function F. Variations on this function will be the key to capturing other operational semantics,
as the next few sections will reveal.

3 . 5 P o m s e t I n t e r p r e t a t i o n o f C a l l - b y - N e e d

Call-by-need is an "optimization" of call-by-name, in which every expression is computed at
most once. Whereas in the previous two semantics a single pomset was sufficient to capture the
desired behavior, this is not so with call-by-need. A simple thought experiment should convince
the reader of this: Consider again Figure 2c, in which an expression e has two concurrent uses
of the bound variable x, represented by the pomsets DI.X.R1 and D2.x.R2. Suppose further that
the evaluation of the expression to which x is bound is represented by the pomset Do'p'Ro, and
that it has not been previously demanded. Clearly the resultant pomset should have R0 -< RI
and R0 _ R~, simply reflecting the fact that the value of x must be completely computed before
it can be used. On the other haald, in call-by-need evaluation Do cannot precede both D1 and
D2, nor is it required to follow both. In other words, the resulting pomset should either have
D1 -< Do or D2 _-< Do, but not both. This fact simply represents the non-deterministic "race"
for the evaluation of the expression bound to x, and there is no way in which to express the
result with a single pomset. Rather, a set of pomsets, or process, is needed, representing a choice
between (possibly many) evaluation orders.

In anticipation of our need to capture this non-deterministic behavior, we define a form of
restricted concatenation tailored specially for our use. Informally, Pl ®~ P2 returns a process
representing the call-by-need evaluation of P2 in which x is bound to Pl. Each pomset in the
result has the property that Pl is substituted for only one occurrence of x in p~, yet Pl is required
to precede every event R~ in p2 that represents the return of x's value. Figure 3 shows an example
of such an operation. Note in this example that Zx never initiates the evaluation of p, since it
always occurs after ix.

We can define ®x formally as follows:

Pl ®zP2 = let (V, E,__.,#) =Pl"~P2
in ((y , r,, _~ u{(v , w) I w ~ p~), ~) [x ~]

I v ~ p~ , . (v) = x, ~ (3(~ e p~): . (~) = ~ ,~ ~ v)}

As with the other binary pomset operations, we extend ®x to processes in the obvious way. We
also define an auxiliary function eval? by:

evat?(x , p~) = 3(p e ps, v ~ p): . (v) =

246

(D1 -+ ix --~ R1 ' ' ° D~ -~ 2x ---+ R2 ~t
P) \ Ds --+ ax -+ R3

Figure 3: Example of Call-by-Need Restricted Concatentation

Note that since we are defining an exact semantics, x is either evaluated in every pomset in ;0,%
or none of them.

We are now ready to define call-by-need pomset semantics, which we do by extending call-by-
name semantics by first lifting the underlying domain structure to operate on processes rather
than pomsets:

b E Beh = Proc x (D -* Beh -+ Beh)

This change induces the following changes on B and B'. First , a simple change to B' to return
a process instead of a pol~set:

S'~te~ env benv : let (ps, f} : B~e~ env benv
in ({D,}.ps.{R~}, f)

There are several similar simple changes to B:

S~c~ env benv = {{e},err)

s~z11 env benv = ({M}, be,~vM)

S ~ e ~ - ~ e ~ , e 4 ~n~ b e . ~ = let (p~ , , f ,) = S'~e,~ ~ . ben~, i = ~ 3

in if ~,~el~env then (psl.ps~, f2)
else (psl'psa, f3)

~ op ~4 ~ . . b ~ = let (p~,,f ,) = ~ ' H ~'*~ be,~., i = ~,2

~ e l ~ e~v bcn~ = let (psi, f;} = ~'~ei]] env benv, i = 1, 2
{ps, f } = fl (~.~e~env) tp82, f2)

in {P~I"P~, f l

Recall that we extended pomset operations pointwise to processes, and thus except for a change
in identifier names, the call-by-name semantics for the conditional, binary operator, and function
application are identical to those given earlier. Tile key change, of course, arises in the semantics
of lambda abstraction, where instead of "blindly" substi tuting the argument pomset into the
function body, we do so "selectively" using ®,:

B~)~x.e~ env benv - ({~},)~d(ps, f) . let b = B'~e~ env[d/x] benv[f /x]
F (ps', if) = if evaI?(x, ps') then (p8 ®x pa', f ' l

else (ps',)~d b.F(f' d b))
in F b)

247

Note in the definition of F that ff x appears in the pomset of the body (i.e., it "gets evaluated"),
then its substitution is no longer propagated through the pomset abstractions. Although this
is consistent with the notion of "evaluate at most once," we will see in the next section that it
alone is not sufficient to capture "fully lazy evaluation."

The definition for f i x remains the same.

A n E x a m p l e . To contrast this semaaltics with that of call-by-value, consider the same example
given earlier:

°(l (f ix L~(~x.~(~Y.6(~(~ = 0)-~°Y, "(~2('V '~(~x - 1)) 13(,0y + 1)))))) ~a) ~b

Its pomset, under call-by-need evaluation, is:

Do" Dl " D4" R4" Rl " Ds. Rs" Ro. D6. DT. Ds. D2. R2 . Rs. RT. Dn . D12 . D14" R14. Ds . Rs. R12 .
[D6"DT"Ds'Dl~'Dg'Rg-R15"Rs'R7"Dll'D12-D14"R14"Ds.Rs'R12] "-~"

D~" DT" Ds. DI~" D~" R~. R~s" Rs. RT. D,o[D~. D~]". Da. R~.[R~. R~a]". R,o. R~.[RH . R~]"

This result should be compared to that given earlier for call-by-value. There are several things
worth noting:

1.

2.

3.

There is no parallelism (except the trivial parallelism in the arithmetic expressions). This
is due to the fact that in function applications the argument is not evaluated in parallel
with the function; rather the argument's evaluation is delayed until it is needed.

Each delayed evaluation causes a "non-local transfex of control" to the context in which
the argument was bound. For example, the sequence DT.Ds.D2.R2.Rs.R~ represents the
evaluation of x in the first call to f , and DT'Ds.D15"D9.Rg.R15.Rs.R7 represents the
evaluation of x in each of the remaining (recuxsive) calls to f .

Whereas x's evaluation is only delayed one level upon each call to f , y's evaluation is de-
layed until the recursion reaches its deepest level, at which point it "unwinds" and "reaches
back" to every level above it, performing a additions of 1. This process is represented by
the pomset Dlo[Dls.D16]".D3.R3.[R16.R13]a.Rlo.

We feel that these important yet subtle differences between call-by-value and call-by-need eval-
uation are made acutely apparent through the use of pomset semantics.

Fully L a z y Eva lua t i on .

Adding labels, we have:

Consider the PFL expression g(f a), where f and g are defined by:

f = ;~xAy.x
g = ~y.(u 1) + (y 2)

f = l(Ax.2(Ay.ax))
g = ~(~y.~(0(sy 1) + 7(~y 2)))

where we consider the definitions of f and g to be substituted directly into the result expression
(g 10(f a)). The pomset for the result, as given by the call-by-need semantics just defined, is:

where we assume p, to be the pomset for a.

248

But there is something slightly wrong with this result: Note that, although the "competition"
for the evaluation of y is handled correctly (and thus y is evaluated only once), the evaluation of
a is done twice, once for each application of y! This curious behavior is what Hughes describes
as being not fully lazy [10], and it is a property actually exhibited by some existing functional
language implementations. The problem stems from our delaying the evaluation of an argument
to only one level of function application, rather than to the axbitrary number of levels possibly
exhibited by a higher-order function. The substitutions mnst somehow be delayed until all
"sources of contention" can be identified.

Unfortunately, whereas it was easy to implement one level of delay, we cannot delay substitu-
tions arbi trar i ly without some extra mechanism. That mechanism is what we call a substitution
list, or jus t substitution. Instead of propagating substitutions directly into pomset abstractions,
we delay them by pairing them with the pomset abstraction until later needed. The resulting
pair, pomset abstract ion plus substi tut ion list, is analogous to the "code plus environment"
representation of a conventional closure.

Now for the details. The domain of behaviors is redefined so as to have a substitution list
component:

b E Beh = Proc × Subst × (D ---, Beh --~ Beh)
u E Subst = (Id × Proc)*

We denote a part icular substi tution list as [xl ~-* psx, x2 ~-~ ps2,..., x , ~--~psn] (similar to a homo-
morphism); the empty substi tut ion list is thus [].

This change induces many small changes in ~ and 8':

S'g.'e~ e , ~ b e , ~ = let (r'~,~', f) = ~ e ~ en~ benv
in ({D,}.p.{R,}, u, f)

s i I ~ e ~ b e . ~ = ({e} , [], err)

let <ps,, ~,, f,) = ~'ie,] en~ be.~, i = 1, 2, 3
in if e,~e~]env then (psl.ps2, u2, f2)

else (psl'p~3, u3, f3)

e ~ e l op e21 e ~ ben~ = let (V s , , ~ , , y ,) = S ' H e ~ b e . v , i = 1 ,2
in (psl]lps2, [], err)

B ~ f i x x.e~ env benv = let x ' = ~a~fix x . 4 e n v
(p~, u', f ') = B ' I 4 env[x' /x] benv[f ' /x]

in (p', ~', f ')

The only difference between these equations and the corresponding ones for call-by-need is that
they contain substi tut ion lists, which are either "carried along" (such as for the conditional) or
set to nil (as for op).

To make the reading of lambda abstract ion easier, we lift out the definition of the function
F tha t propagates substitutions:

F(ps , u, ace) = if u = f] then (ps, ace)
else let [x~-~p, rest] = u

in if eval?(x, ps) then F(p ®~ ps, rest , aec)
else F(ps , rest, [x~-~p, acc])

249

Given the previous discussion, this definition should be fairly clear - if an application of a
pomset abstraction results in x being evaluated, then x's substitution is performed, otherwise it
is retained in the substitution list. As before, F is used in the semantics of lambda abstraction,
given below alongside function application:

B~Xx.e~ env benv = ({e}, [], Xd (ps, u, f}. let (pst, u ', f'} = B'~e~ cnv[d/x] benv[f /x]
(p: , ~") = F(p~', [=~p~, ~1, ~')

in (ps", u', f') }

B~el e2~ env benv = let (psi, ui, fil = alpha(B'[ei~ env benv), i = 1,2
(p~, ~, f) = £ (e.~Menv) (p~2, ~1 u ~ , f~)

in (psl'ps, u, f}

To understand these equations, realize that the shaxing that is responsible for the contention
for values is manifested solely through bound variables. This means that, if the bound variable
is indeed evaluated, then it is safe to do the substitution at the point at which the binding is
first made. On the other hand, i f it is not evaluated, then it must be "carried along" in the
substitution component of the pomset abstraction.

There is one subtle aspect of function application: note that ul is combined with u2 when
passed to the pomset abstraction fl. This reflects the fact that a pomset abstraction in function
application position cannot be further shaxed, and thus it is safe to perform its substitutions.
Unfortunately, this raises one other complication, an unfortunate consequence of our decision
to give pomset interpretations over an alphabet of syntactic objects: because expressions may
be evaluated in different contexts, there is the possibility of name conflict. Although such name
conflicts did not arise until now, it was an inevitable consequence of our need to delay substi-
tutions more and more. We solve this problem simply by renaming (i.e. "alpha-converting")
certain of the substitutions, which we do by the "pseudo-function" alpha, as shown.

Returning to the problematical example that began this section, we see that under our new
semantics the inner concurrence (corresponding to the body of g) becomes:

(DT" Dg.y. Rg. Da.x. Ra. RT)

which when combined into the whole result:

(Dlo.D1.R1.D2.R2.Rlo) O)y (D4"R,'((D,,'a'Ra) ®= (Ds"((D6"Ds'y'Rs'D3"x'R3"R6)II(DT.Dg.y.Rg.Da.x.R3.RT)) 'Rs)))

gives precisely the correct behavior for fully lazy evaluation.

3 . 6 P o m s e t I n t e r p r e t a t i o n o f C a l l - b y - S p e c u l a t i o n

Although Figure 2 given at the staxt of this section gives the basic intuition behind call-by-
speculation, it fails to capture an important subtlety in the behavior. This subtlety is best
described by an example: Suppose the call t (f a) is done via call-by-speculation, but a is never
needed in the body of f (unlike the case in Figure 2). The resulting pomset will then not have
a definitive "exit point." That is, when B ~ wraps DcRt axound the result, it must not require
that the speculative evaluation of the axgument complete before Rl (if it did, we would end up
doing "eager evaluation" as described in Section 3.3). The correct pomset is shown in Figure
4, where p/, p~ and p axe the pomsets for f , a, and the body of f , respectively. If a does not
terminate, of course, this results in the possibility of a "runaway process," or "irrelevant task,"

250

Pa
/

/9,
\

p f ~ p -~ Rl

Figure 4: Correct Pomset for Call-by-Speculation

but that is exactly the behavior that we want, and is necessary in order to retain normal-order
standard semantics.

It is possible to define a form of call-by-speculation in which the speculative demand, at
least, for the argument is guaranteed to occur before the function call is initiated. In fact, in
such a semantics a single pomset (i.e. singleton process) once again becomes sufficient, since
we know immediately what the first demand on each argument is. However, the most general
version (i.e., the one having the weakest ordering) does not have this constraint, and the pomset
abstractions become the complicating factor again, because a speculatively invoked argument
might be demanded later by a subsequently applied higher-order function.

The necessary changes to the formal pomset semantics axe stralghtforwaxd, but because of
space limitations we only outline the approach, starting with the pomset semantics of call-by-

need:

t.

2.

3.

In the semantics for lambda abstraction, instead of returning essentially the pomset of
the body, we return a concurrence of it and the pomset D.~ .R , where ~ represents the
speculative demand for the argument.

Once an identifier is eventually demanded, a standard ® operation is performed on the
composite result - i.e., on the result of the application as well as the context in which it
lies. This requires delaying subsitutions even further.

Because we have delayed the establishment of the "connections" between pomsets even
further, name clashes become more severe and we are forced once again to create unique
contexts via alpha-conversion.

4 U s i n g P o m s e t s to Contro l Operat iona l Behav ior

The general motivation for our work stems not just from the need for a formal mechanism
through which to reason about parallel functional program evaluation. If we accept the fact
that annotations or other meta-linguistic devices are needed to more precisely control operational
behavior, then we also need a formal semantics to reason about such annotations. Furthermore,
just as denotational semantics can be used as a tool for language design, pomset semantics
can be used as a tool for meta-language design. One of the guiding principles of functional
programming language research has been the insistence on formal methods - we are simply
extending that principle into an area that we feel has been ignored in the past.

Of course, now that we have completed our tour of "standard" evaluation strategies (in total
we actually explored six of them!), it should not be sm'prising that we can adequately describe the
operational semantics of various proposed annotations. Rather than do that directly, however,
we will describe informally the semantics of two simple annotations that can then be used to

251

achieve the effect of many of the proposed annotations. Our goal is not to propose a concrete
syntax or semantics for such annotations, since it is not yet entirely clear to us exactly what
the best combination of expressiveness, flexibility, and safety is. Our goal is only to set up
the framework in which such techniques can be used, and to demonstrate that pomset algebra,
possibly extended with logic, may be suitable as the meta-language.

We divide this section into parts, one to discuss the control of temporal order, the other the
control of spatial order.

4.1 Control l ing Evaluat ion Order

Our approach to controlling the evaluation order in a program will be to augment the pomset
associated with an expression with pomset-like annotations. Specifically, an augment expression
has the form "exp @ pore," where exp is any PFL expression and pore is a pomset of events over
labelled expressions in exp. Rather than propose concrete syntax for pomset expressions, we
will use the same mathematical notation that we have used throughout this paper. Similarly,
labelled expressions will continue to be denoted by re.

If this technique is to work, then we must s tar t with the most general of evaluation strategies
(otherwise we are faced with the problem of removing constraints from a pomset), which as we
will show in the next section is call-by-speculation. However, this is not normally considered to
be the "default" evaluation strategy, and thus we take a slightly different approach, summarized
in the following rules:

1. Fully lazy call-by-need is the default evaluation strategy (since this is the most common
semantics used in practice).

2. If a labelled subexpression, as in "(. . . l e . . .) ~9 p," is referenced in p, we consider that
subexpression as being evaluated speculatively. In other words, we consider the overall
expression to have been transformed into "(()~x x . . .) re) @ p," with the application
being done via call-by-speculation.

3. For a labelled expression Ze, we use l (i.e. the label itself) to refer to the entire pomset
associated with e, and Dl and RI to refer (as always) to the demand and return events,
respectively, of e. Finally, we let D and R refer to the demand and return events of the
entire expression being augmented.

The operational semantics of an augment expression e @ p is that e's pomset is modified to
reflect any additional events or constraillts in p. The formal definition is essentially identical to
concurrence, except that we no longer consider the event sets to be disjoint (otherwise we would
have no way of referring to existing events). If an event in p is not contained in e's pomset,
then it is added to the resulting pomset as a new event. Some example should help clarify this
interpretation.

Consider the application (f a). Under a call-by-need interpretation the expression a may or
may not be evaluated. We can turn this application into call-by-speculation by writing:

(f 'a) 0 l

To achieve eager evaluation we write:

(f 'a) ~ (l.R)

252

which requires that the evaluation of a complete before the entire call completes. Finally, to
achieve call-by-value we write:

(m f t a) q) (l 'Rm)

which requires that the evaiuation of a complete before the function is called.

As another example, suppose in the expression (f x) + (g y) we wish to inhibit parallelism
(perhaps out of concern for limited resources) by requiring that (f x) be evaluated completely
before (g y). This can be done quite simply by:

('(1 x) + m(f y)) • (l.m)

We are also experimenting with ways to use augment expressions in a recursive setting. For
example, it seems desirable to allow them to do such interesting things as ensuring that two
functions "recurse in lock-step," as in:

(sum tst)/(len lst) • (t.,,.)*
whererec sum Ist = (null? Ist) ~ O,

len Ist = (null? lst) --* O,
(head Ist) + '(sum (tail lst))

+ ~(len (t~it Ist))

The intent here is for the pomset expression (l.m)* to only allow zero or more evaluations of the
expression labelled l followed by the expression labelled m. Both sum and fen force successive
tails of 1st in synchrony, and thus both implicitly abandon their references to successive elements
of Ist in synchrony, thereby permit t ing evaluation in constant space. Normally to achieve this
kind of synchronization one would have to restructure the program by combining sum and
len into a single function that returned a composite result which was in turn decomposed for
use where needed. On the other hand, we point out that this use of augment expressions is
experimental, since we have not completely resolved the formal relationship between an arbitrary
pomset expression such as (l.m)* with the pomset that it is refining.

4.2 T h e O r t h o c u r r e n c e o f P r o c e s s and P r o c e s s o r

When writing functional programs for execution on a distr ibuted multiprocessor, there is often a
need to express the "process-to-processor mapping" explicitly. Many examples of such applica-
tions may be found in [5,8], where mapped exressions, having the simple form "exp on pid," are
used to declra'e tha t the expression exp is to be executed on the processor identified by pid, and
the variable sell is used to reference the "currently executing processor," thus allowing relative
rather than absolute mappings.

To capture this behavior it is obvious that the s tandard semantics must first be extended to
include the meaning of the (dynamic) variable s e l l - this is very straightforward, and in fact is
done in [4]. In addition, the pomset semantics must have some notion of processor names, and
a mechanism to at tach them to the pomsets representing expression evaluation. This is easily
done using the pomset operation orthoeurrence discussed in Section 2.1 to pair events in the
temporal ordering with events (i.e. "places") in the spatial ordering. We can then give a rough
semantics for mapped expressions as follows:

t3~e o11 pidn e . v b e n v = let d = S~pid~env
(p, f) = B'~e] env[d/sel f l benv

in (d ® p, f)

where "d" in "d ® p" is so be interpreted as a singleton pomset. For a program with no
annotations, all expression evaluations map to the same "root" processor.

253

Once this semantics is established, we can see that limiting the orthocurrence to singleton
pomsets is urmecessary. In fact, there are many situations, particularly in scientific computation,
where the programmer knows that the demands for some variable binding x = exp will appear
in a part icular order along a pa th through the network. Mapped expressions say where an
expression is evaluated, but say nothing about the path for da ta movement of the result. If the
demands appear on a sequence of processors in the spatial order io, i l , is , in, it is desirable
for the demand for x on i0 to cause evaluation of exp on i0, and for the demand on each other
processor i i to get the copy of the binding for x from its immediately preceding neighbor ii_1.

Generalizing this idea, paths can in fact be represented unambiguously by any tree-shaped
part ial order, or ambiguously (allowing the possibilty of alternate da ta paths) by an uncon-
strained part ia l order. In other words, letting k~ be the domain of processor names, we interpret
a pomset over a lphabet k~ as a spatial ordering on the designated processors. By generalizing
mapped expressions to take arbi trary pomsets of processor ids rather than singleton pomsets,
we arrive at the desired semantics.

Although quite general, this approach may not be the most convenient in practice. Con-
sequently, we have been experimenting with the notion of a path funct ion, which specifies a
tree-shaped part ia l order of processors - the root of the tree, which is a fixpoint of the path
function, is where expression evaluation actually takes place. A path function annotation allows
recursive definition of a da ta path, which is frequently required in scientific computation. A
future paper will outline our experience with this class of annotations.

5 T o w a r d a S t a n d a r d O p e r a t i o n a l S e m a n t i c s

In this section we discuss the viability of using pomsets and processes as a foundation on which
to base a formal operational semantics for functional programs and the machines on which they
axe executed.

5 . 1 T h e E x i s t e n c e o f a " S t a n d a r d " O p e r a t i o n a l S e m a n t i c s

The reader has likely observed that the operational semantics in Section 3 became increasingly
more complex as we matured in evaluation strategies, with call-by-need and call-by-speculation
semantics being the most complex, and call-by-value being the least. This is an interesting
observation, because in s tandard semantics call-by-need is usually considered the simplest, "most
elegant," and easiest to reason about. On the other hand, programs relying on lazy evaluation
are often recognized as being difficult to trace during debugging, because the delayed evaluation
of expressions creates very non-local effects. ~ We believe that the complexity of our operational
semantics is simply a reflection of that fact.

The question immediately arises as to whether there is one "standard" operational semantics
that is most general - that is, that contains the least number of constraints on evaluation order.
For a given s tandard semantics, we believe there is. Although we do not give direct evidence of
that here, we can at least make the following interesting observations about the semantics given
in Section 3.

Firs t recall the definition of augmentation, which we now point out is a part ia l order. We
write Pl E P2 iff P2 is an augment of Pi. Extending E to functions in the s tandard way, we
have that f E g iff f (a) E g(a) for all a. Let $~b~, Blazy, 8~ag~r, and Bobs be the pomset

SThis is not to say that lazy functional programs are difficult to debug, but rather that traditional tracing
techniques are perhaps inadequate for such debugging.

254

semantic functions for call-by-value, lazy evaluation, eager evaluation, and call-by-speculation,
respectively. Now note that the following relationships hold: Bob, E_ Blair, and Bob, E_ Beao,r E
B~b~. We can display this graphically as:

~ebo

~ager

where the weakest elements are at the bottom. Thus call-by-speculation is the most general of
our operational semantics in that it induces the weakest ordering on expression evaluation. Call-
by-need adds constraints that effectively delay the demand for expression evaluation, and call-by-
value and eager evaluation add constraints that effectively promote the return from expression
evaluation.

5 . 2 I m p l e m e n t a t i o n S e m a n t i c s

Regardless of whether or not we choose one operational semantics as "standard," we can at
least use pomset semantics as a tool to describe the semantics of a part icular implementation.
In tha t regard, we make the following observations.

First , machines are finite. The operational semantics that we have defined, however, is
potentially unbounded in its consumption of resources. Thus all that we should require of
an actual machine M when it executes a (possibly annotated) functional program P is that it
observe the constraints of the program's "standard" pomset; in other words, it is free to augment
that pomset due to resource limitations.

We can formalize this in the following way: Let p be program P ' s s tandard pomset, and
p/M be the pomset that represents P ' s execution on machine M. Then p/M must be in the
augment closure of p; i.e. p/M E a(p). If M is a sequential machine, we can say more: it must
be that p/M e A(p) (recall that A(p) is the set of linear augments of p). Finally, a notion of
local linearization, _A(p), was defined by Pra t t on pomsets whose events are pairs - it is the set of
augments in which the subsets of pairs with the same "location" are totally ordered. Thus if p
is a pomset interpretat ion with mapping semantics, and M is a multiprocessor, then we require

that p /M ~ A(p).

Using this approach, care must be taken in defining the semantics of speculative computation.
In particular, do we allow the implementation to "delete irrelevant tasks"? That is, to preempt
the execution of speculatively invoked computations whose results are later determined not to
be needed? Formally, if we are to give the implementation the liberty to do this, then instead of
using the speculative expression e's normal pomset p in the semantics, we should use i S prefix
closure 7r(p). This allows the implementation to choose an arbi t rary prefix of p as its realization

of the evaluation of e.

5 . 3 D e s i g n i n g a M e t a - L a n g u a g e

Recall that the s tandard normal-order semantics of PFL is given by En. Suppose now that we
extend P F L with a class of annotations 4, and that ~ , is the new normal-order semantics. A
natural goal in designing the extended language is to prove the following sort of consistency
theorem:

255

T h e o r e m : Let p be any annotated PFL program, and p' be the same as p but with all anno-
tations removed. Then A,,lp] = 8,lp'~.

In reality, some annotations may alter the standard semantics, although usually in minor
ways. In all uses of annotations that we have encountered, the change usually involves termi-
nation properties. More specifically, adding annotations may sometimes cause a terminating
program to diverge or "deadlock." In such cases it is desireable to at least state formally the
conditions under which such non-termination can be avoided.

6 Future Work

We have concentrated in this paper pa'imarily on the use of pomsets to define operational se-
mantics - more work is needed on their use in controlling operational behavior. This will require
experience with a variety of applications to determine the degree of expressiveness needed in
the source language (among the more interesting applications is control of non-determinism).
Although the generality of a single mechanism is attractive, there are certainly classes of be-
haviors that would be better expressed using special syntax designed for them. For example,
previously proposed syntaxes for controlling execution order and mapping program to machine
can be thought of as "macros" that expand into pomset expressions. A future task for us is
to identify those patterns of use that are most common, and design a practical language with
syntax that captures those patterns.

Conversely, despite our attempt at generality, there are at least two other operational be-
haviors that we can think of that we cannot handle in our current framework: the prioritization
of eagerly computed tasks, and the explicit preemption, or suspension, of an expression's eval-
uation. We feel that these can easily be described using pomsets once suitable "handles" to
the appropriate actions are provided. Note, for example, that a priority relation is in essence a
partial order.

Another concern for us, of course, is implementation issues. At Yale a virtual parallel graph
reducer called Alfalfa is currently being implemented on two commercial multiprocessors: an
Intel iPSC hypercube and an Encore shared-memory machine [3]. Our plan is for this system
to eventually support both implicit (dynamic) and explicit (annotated) task allocation and
scheduling.

Finally, our use of pomsets as a vehicle for expressing operational behavior was pragmatically
motivated, and there are still some troublesome technical issues that we have not resolved.
For example, a non-terminating program generates an infinite pomset - is this mathematically
sound? Also, in the semantics of f ix we defined a recursive pomset abstraction, yet did not
define an ordering on the domain of pomsets - does a unique fixpoint exist? Indeed, the need for
a domain of pomset abstractions is troublesome in itself, suggesting the possibility of "higher-
order pomsets." We have made some progress in this area, but more work remains.

7 A c k n o w l e d g e m e n t s

We wish to thank Los Alamos National Laboratory and MCC for their generous support of the
Santa Fe Graph Reduction Workshop held in October, 1986; a special thanks is extended to
Joe Fasel and Bob Keller for their organizational efforts. At the workshop it was pointed out
that no completely general method had been devised for controlling the evaluation order of a
functional program - subsequent "back-of-the-matchbook" discussions with John Hughes sowed
the seeds Of this research. Also thanks to Jonathan Young for commenting on an earlier draft of

256

this manuscript, and to the rest of the Wrestling Team at Yale for helping debug many of our
ideas.

R e f e r e n c e s

[1] F.W. Burton. Annotations to control parallelism and reduction order in the distributed
evaluation of functional programs. ACM Trans. on Prog. Lang. and Sys., 6(2), April 1984.

[2] B. Goldberg. Detecting sharing of partial applications in functional programs. In Proceed-
ings of 1987 Functional Programming Languages and Computer Architecture Conference,
page to appear, Springer Verlag LNCS ..., September 1987.

[3] B. Goldberg. Multiprocessor Execution of Functional Programs. PhD thesis, Yale Univer-
sity, Department of Computer Science, expected Spring 1987.

[4] P. Hudak. Denotational semantics of a para-functional programming language. Int't Jour-
nal of Parallel Programming, 15(2):103-125, 1986.

[5] P: Hudak. Para-functional programming. Computer, 19(8):60-71, August 1986.

[6] P. Hudak and B. Goldberg. Distributed execution of functional programs using serial
combinators. In Proceedings of 1985 Int'l Conf. on Parallel Proc., pages 831-839, August
1985. Also appeared in IEEE Trans. on Computers, Vol C-34, No. 10, October 1985, pages
881-891.

[7] P. Hudak and B. Goldberg. Serial combinators: "optimal" grains of parallelism. In Func-
tional Programming Languages and Computer Architecture, pages 382-388, Springer-Verlag
LNCS 201, September !985.

[8] P. Hudak and L. Smith. Para-functional programming: a paradigm for programming mul-
tiprocessor systems. In i2th ACM Sym. on Prin. of Prog. Lang., pages 243-254, January
1986.

[9] P. Hudak and J. Young. Higher-order strictness analysis for untyped lambda calculus. In
12th ACM Sym. on Prin. of Prog. Lang., pages 97-109, January 1986.

[10] R.J.M. Hughes. Super-combinators: a new implementation method for applicative lan-
guages. In Proc. 1982 ACM Conf. on LISP and Functional Prog., pages 1-10, ACM,
August 1982.

[11] R.M. Keller and F.C.H. Lin. Simulated performance of a reduction-based multiprocessor.
IEEE Computer, t7(7):70-82, July 1984.

[12] R.M. Keller and G. Lindstrom. Approaching distributed database implementations through
functional programming concepts. In Int'l Conf. on Distributed Systems, May 1985.

[13] V. Pratt. Modeling concurrency with partial orders. Int'l Journal of Parallel Programming,
15(1):33-72, February 1986.

[14] N.S. Sridharan. Semi-applicative programming: an example. Technical Report, BBN Lab-
oratories, November 1985.

[15] P.C. Treleaveu, D.R. Brownbridge, and R.P. Hopkins. Data-driven and demand-driven
computer architectures. Computing Surveys, 14(1):93-143, March 1982.

