
SIGNAL • A DECLAF:~TIVE LANGUAGE FOR SYNCHRONOUS
PROGRAMMING OF REAL-TIME SYSTEMS

Thierry GAUTIER, Paul LE GUERNIC

IRISA / INRIA

Loi'c BESNARD

ClCB / CNRS

Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

Telephone : 99 36 20 00, Telex : UNIRISA 950 473 F

A ~ T ~ C T

We present an applicative language, SIGNAL, designed to program real-time systems. The

language is based on a synchronous notion of time. We assume the execution of operations to

have a zero logical time duration ; then, the sequence of communication events determines

entirely a temporal reference. The ordering of the runable operations is limited only by the

dependencies between the calculi : this is the point of view of data flow languages. SIGNAL is a

data flow language (where the potential parallelism is implicit), which permits a structural

description of interconnected processes. SIGNAL handles possibly infinite sequences of values

(called signals) characterized oy an implicit clock which specifies the relative instants (with respect

to other signals) at which these values are available. Specific operators, such as delay,

undersampling, deterministic merge, are designed to express temporal relations between different

signals : in this way, a SIGNAL program expresses both functional and temporal relationships

between all the involved signals. The language is semantically sound, and its declarative style

allows to derive, by a simple projection on the commutative field Z/3Z, a complete static calculus

of the timing of any SIGNAL process, called its clock calculus. Hence, the language SIGNAL is

also a formal system to reason about timing and concurrency. The clock calculus is completed

together with the dependency analysis of a given program. This leads to a conditional dependence

graph in which the edges may be labelled by the involved clocks. From this graph, we generate

code for a sequential machine, but it appears to be the suitable level to study the implementation

on a multiprocessor architecture.

258

1 Introduction

Real-time programming has almost been traditionally monopolized by imperative asynchronous

languages such as ADA [1], LTR [2], OCCAM [3], etc. These languages involve high level

concepts - for example, the rendez-vous mechanism, well studied in the CSP formalism [4] - to

deal with parallelism and communication, and they generally possess some specific primitives -

for example, a delay statement - to handle the time. Unfortunately, the problem is that these

languages are known to be essentially nondeterministic, that is, one is in fact completely unable

to specify the effective duration of any statement and, by the way, to know exactly the time at

which a given process executes a given action. Due to the asynchronous character of the high

level communication features, it is impossible to fully abstract implementation considerations.

However, for some years, a new programming methodology has emerged, specially devoted to

real-time systems. The main idea supporting this new style is to properly delimit the inherent

asynchronous points in a given application and to program the whole remaining part of the

application - which is in fact the heart of the problem in a high level point of view - in a purely

synchronous way. Several programming languages, known as synchronous languages, have been

designed for this purpose. The two pioneering languages are the imperative language ESTEREL

[5] and the applicative data flow oriented language SIGNAL [6,7]. Here we present and justify the

declarative style of SIGNAL which permits a programmation very close to the specification (either

mathematical or graphical) of a problem and leads to an elegant synchronization formal calculus.

LUSTRE [8] is an other synchronous language, coming from Lucid [9]. A more precise

classification of these languages is suggested in [10].

Now, what are the basic principles of synchronous systems ? For us, the essential characteristic

of a real-time system is that one can always bound the response times of the system [11]. As a

consequence of this definition, it must be possible to statically (i.e., independent of any input

value) bound the number of operations between two external events on one hand, and the

memory size necessary to the execution on the other hand. Under these conditions, let us project

the time along two dimensions : the first one, that we name logical time dimension, will permit to

have a first formal timing calculus ; the second one is the physical time dimension. Then we can

assume the following hypothesis : the execution of any operation has a zero logical time duration.

Consequently, a temporal reference is entirely determined by the sequence of all communication

events (and not only by the input events as this is the case in ESTEREL or LUSTRE : we shall

see that one can define in SIGNAL output data which are "more frequent" than input ones).

Consider, as a simple example, a real-time system which has two input ports : one, named x,

carries successive values x 1, x 2, etc. and other, an interrupt port, named s. Then, according to

259

the synchronous point of view, the specification of an history [12] of the system has the following

form :

xl, (x2, s2), x3, s4

where both the values and their global ordering are specified. The integer index t = 1, 2, 3, 4

defining successive "instants" is then considered as the proper notion of time for the synchronous

system. Moreover, contrary to classical real-time languages which include only one notion of

universal absolute time (this is clearly not sufficient when we consider a time unit as being just a

repetitive event), we have a multiform notion of relative time. For a given task, the time is just the

global ordering of all the data of the task. This is a local timing preserving the modularity of a

system since the cooperation between several sub-tasks defines a new temporal reference for the

global system, Note that the essentially nondeterministic character of the asynchronous

communications with external world is concentrated in the mechanism which decides the global

ordering and is not propagated inside the body of the synchronous system. Reactive systems [13],

which have been defined to describe complex systems interacting with their environment are

privileged candidates for synchronous programming.

As a consequence of the logical instantaneity of actions, as soon as its data are available, a given

operation is instantaneously performed. The availability of these data, and so the ordering of the

tunable actions in a task, is determined by the dependencies between the data and operations in

the task. This is exactly the point of view of data flow languages in which the potential parallelism

is just limited by the data dependencies. Although usual data flow languages are asynchronous, it

is easy to see that data flow concepts are totally compatible with the synchronous principles [14].

In data flow languages, the potential concurrency is expressed through the use of a functional

programming style.

SIGNAL is a synchronous data flow oriented language. Its new notion of time allows to implement

SIGNAL programs without any overhead, even on classical architectures.

The rest of this paper is organized as follows : in the second section, we define the operators

dealing with time in SIGNAL ; in the third section, we present the notion of modularity in the

language and detail some examples ; then the fourth section gives the basis of the formal

synchronization calculus and briefly introduces a few implementation considerations.

2 T h e t i m e

The basic objects of the language are named signals. A signal v is characterized by the ordered

sequence (vt) of its (typed) values, and by its clock. The clock specifies the relative instants at

which the values of the signal are available (contrary to variables in classical languages, these

260

values are not persistent : they are available only at these logical instants). These instants are not

absolute ones : clocks are just the good way to express temporal relationships between different

signals. In the SIGNAL language, these temporal relations are in fact a byproduct of the operators

which are used to handle signats and thus the clock of a given signal can be implicit.

2.1 E l e m e n t a r y p rocesses

A SIGNAL process describes both functional and temporal relationships between signals. For

example, the signal v given by

Vt v t = zv t + 1 (2- t)

is obtained in SIGNAL by the equation

v : = zv + I (2-2)

(where the t index has been dropped). This elementary process defines the (output) signal v from

the (input) signal zv (fig. 1). Like the other classical operators, the addition is considered as an

instantaneous function. So, v and zv are available at the same instants, and, at each one of these

instants, the equation (2-1) is valid. More generally, all the signals implied in an expression

containing only instantaneous functions must have the same clock (they are also said to be

synchronous). Constant values, such as I, are available at any clock : here, t is available at the

clock of both v and zv.

Figure 1.

2.2 T h e de lay

Now if we want to give access not to the current value of a signal, but to its past value, we write

V t zv t = vt_ ~ .

This is immediately translated into SIGNAL using the c/e/ay operator : the process

zv : = v $ I (2-3)

261

defines the output signal zv which is "one-step delayed" over the input signal v (fig. 2). An initial

value

zv 0 = v0

(where vO denotes a constant) is specified by the declaration

zv init vO .

Here again, zv and v have the same clock : they are available at the same instants, but at each

one of these instants, zv possesses the value taken by v at the previous one.

Figure 2.

2 . 3 Compos i t ion of p rocesses

Given several processes such as (2-2) and (2-3), we can compose them together, thus defining a

new process :

(I v : = zv + 1 I zv : = v $1 l) . (2-4)

This is a general method when we have equations defining synchronous signals. For example, by

introducing the right delays, the equation

vt = vt_l + 1

is transformed into the following system of equations

{ v t = zvt + 1,

zv t = vt_ 1 }

which is immediately translated into the SIGNAL process (2-4), using the composition of

processes. Obviously we can compose in the same way not just elementary processes but also

processes already defined by a system of equations.

The composition identifies signals having the same names in different processes, thus connecting

262

corresponding output and input ports (or signals). We do not detail here the formal definition of

the composition, but note that these connections are established only from the outputs of any

process to the inputs having the same name in the other processes : in a given process, an input

and an output port possessing the same name are not connected by the composition (they still

denote distinct signals). The process (2-4) has two output signals v and zv, but has no input

(fig. 3) : to avoid connecting one input port with several output ports (which would imply some

nondeterministic merge), any connected input port becomes invisible for the outside. Moreover, a

process cannot have several output ports with the same name, and the composition is defined if

and only if there are no outputs with the same names in the composed processes - i.e. there are

not several definitions for one signal. The composition is then associative and commutative (the

order of the equations has no importance).

V ~ D

Figure 3.

] V
,,,, , , , , , ,

ZV
. . . . JI I

If zv is initialized with 0, the process (2-4) clearly defines a counter of its own clock instants. Its

successive values (at the output v) are 1, 2, 3, 4, 5, etc., but this process does not determine any

clock for the signal v : this clock is defined by the context where the process is used.

2.4 The undersampl ing

Now, suppose that we want to count the occurrences of a given event, for example, the true

occurrences of a booiean signal c. Then, if we define the signal a carrying only these true

occurrences, a will be extracted from c and obviously less frequent than c. For this we have in

SIGNAL the undersampling operator : the process

a : = b when c

(where c is a boolean signal) delivers the input signal b at the output a when both b and c are

available and when c is true. The input signals b and c may have different clocks ; in an obvious

order relation on clocks, we can just say that the clock of a is smaller than both clock of b and

263

clock of c. We shall see later the right formalism to reason about clocks.

Note that the SIGNAL process

c : = event x

delivers always true boolean signal c which is available exactly when the signal x is available : it

may be considered as the proper clock of the signal x. By this way, the process

a : = b when event x

delivers b at the output a when both b and x inputs are available.

Let us come back to our previous problem : the signal a carrying only the true occurrences of a

boolean signal c is specified by the process

2.5 Explicit synchronization

a := true when c . ~ - ~

In order to count the occurrences of the signal a specified in the process (2-5), it is sufficient to

deliver the signal v defined in the process (2-4) at the proper clock of a : this is realized through

the use of an explicit synchronization. Given the input signals a and v, the process

synchro a, v

(which has no outputs) asserts that a and v must have the same clock.

Thus, the signal v counting the true occurrences of a boolean signal c is defined by the process

2.6 The merge

(I a : = true when c I

synchro a, v I

v : = zv + 1 I

zv : - - V$1 I)"

Now, let us try to define a counter modulo n (where n is any integer value) : it will be necessary

to realize a (deterministic) merge of two signals (typically, one of them will be a reset signal and

the other one an accumulator). This is made possible in SIGNAL through the use of the merge

operator. The process

v : = a default b

264

delivers at the output v the deterministic merge (obtained by giving a priority to a) of the input

signals a and b : when a is available, its value is delivered on v ; when it is not, the value of b

(when b has one) is delivered on v. Input signals a and b may have distinct clocks, but here, the

signal v is more frequent than a and b and its clock is greater than those of a and b. This operator

is very important since it permits to define signals which are more frequent than the inputs of a

system. For example, we can generate instants "between" the instants of an input signal ("time

multiplexing" :see [10] for details).

Then, the signal v defining a counter modulo n is reset each time its previous value is equal to

(n-1). Supposing this counter is supplied at the clock of some signal a, it is defined by the

following process :

(I zv:= v Sl I
v := (0 whenzv = n-1) default(zv + 1) 1

synchro a, v b"

We have presented the main operators available in SIGNAL : these are instantaneous functions,

delay, undersampling, and merge ; the event operator gives access to the clock of a signal and

the synchro process allows explicit synchronization. Another useful operator is derived from the

previous ones : since the values of the signals are not persistent in the language, it may be

necessary to memorize a value during several instants of a given clock. In this way, the process

a := b cellc

(where c is a boolean signal) delivers at the output a the last available value of b when either b or

c is available and c is true (remember that c may be any clock if we use the expression event x).

3 The modulari ty ; some examples

To illustrate the potential modularity in the language, we would like to define a model of process.

3.1 Mode l o f p rocess

Let us come back to our example of counter modulo and imagine two different cases : the first

one is the classical counter which is reset whenever it exceeds some value ; in the second one,

we have an additional external signal which constrains extra resets.

First, to obtain a counter modulo of any integer value, we use a formal parameter, say vO.

Parameters represent constant values and are not characterized by a given clock : their value are

available at the clock determined by the context in which they are used. Then, we define the

265

following process, named topmod, that we shall be able to use as well in the two different cases

we have distinguished :

topmod { integer vO

? logical hreset, iev

! integer v ; logical oev }

= (I synchro iev, zv I

z v : = v$1 I

v := (0 when event hreset) default (zv + 1) I

oev : = true when zv > = vO

I)/zv
where integer zv init v0

end

This process defines two output signals : the counter itself (v) and a signal oev which clearly

represents the reset instants of a simple counter modulo. It takes two input signals : hreset is

supposed to specify all the reset instants and iev is a synchronization signal which assigns a

given clock to the counter.

Notice that the operation

P / a 1 , a n

denotes the masking of the output signals a 1 a n in the process P : the masked signals may

be considered as local signals for the resulting process, which, from the outside, can be seen as

a "black-box", Here, the signal zv is local for the process topmod,

A SIGNAL process is fundamentally "polychronous" : generally it deals with several signals which

do not have the same clock. Let us analyse the synchronizations in the process topmod. We call

here vz the local signal (0 when event hreset) and vp the signal (zv + 1). From the definitions of

the operators, we obtain the following considerations immediately : on one hand, v, zv, vp and iev

are synchronous and on the other hand, vz and hreset are synchronous as well ; moreover, v is

more frequent than vz. So, the output v is more frequent than the input hreset, and we derive the

constraint that the input iev is necessarily more frequent than the input hreset. The process is

runable in a context where this constraint is respected (in particular, there is no implicit clock

associated to a given process). Notice that without the synchro specification, the counter would be

nondeterministic, in the sense that its clock would not be constrained (but a constraint can be

fixed by the context of the process). Obviously, we would like to have a formalism to express

these considerations : this is the subject of section 4.

266

3.2 Process i ns tanc ia t i on

We are ready to instanciate a process model in a given context by reproducing this model. For

example, a simple counter modulo n is defined by the process

topmod(n-1) ! oev : hreset @ hreset

depicted on figure 4.

l hreset,~, oev

ev Iv
hrese, I

I

and

P ! a 1 : b 1 a n : b n

respectively denote the processes obtained by renaming every input port (respectively, output port)

a i into b i ;

P @ a 1 a n

denotes the process where every output a i of P is connected to the input port having the same

name (remember that the composition does not realize this connection in a given process). Of

course, do not confuse composition, masking, relabelling and connection which are just

Figure 4.

The effective parameter (n- I) corresponds to the formal parameter vO. In this instanciation of the

process topmod, its output oev is renamed hreset and is looped on the input hreset : the reset

instants are just those specified by the output oev. Note that this new process requires no more

synchronization constraints.

Here we have introduced two other operations : re/abe/ring and connection. Given any process P,

P ? a 1 : b 1 a n : b n

267

interconnection operations acting on processes ("P-operators"), with the operators defining signals

('S-operators") f The mechanism of establishing connections by handling explicitly the names of

inputs and outputs is very close to the classical graphical description used in automatic (block

diagrams). By the way, we intend to develop a graphical programming interface for the language

SIGNAL. On the other hand, it is also possible to program without worrying too much about

identical names : we have defined a more classical positional notation (not detailed here) where

relabellings are made implicit.

Now, the counter with an external reset is specified by the process

(I hreset := hreset default oev I
topmod(n - 1) I) / hreset

depicted on figure 5.

hreset ~ hreset
oev ~'

iev •ltopmod
"1

I o e v

v

Rgure 5.

The input signal hreset specifies the additional reset instants : it is merged with the output oev of

topmod in order to obtain all the reset instants. Here again, iev has to be more frequent than

hreset.

3.3 An other example

Now we give an example of utilization of the process topmod where the constraint is satisfied.

This example is a simple chronometer which counts the seconds and the minutes, with an explicit

reset : it can be clearly specified with two different instanciations of topmod, one to count the

seconds and the other to count the minutes. The signal iev gives the clock of the outputs (i.e. the

instants where the values of the chronometer are present). The program is :

268

chronometer ~ ? togicaf iev, reset

! integer seconds, minutes }

(j (j sreset := (event reset) default (event oev) I

topmod(59) ? hreset : sreset E v : seconds J) / sreset j

ievint := (event oev) default (event reset) 1

(j mreset := (event reset) default (event oev) I

topmod(59) ? iev : ievint, hreset : mreset J

minutes := v cell event iev j) 1 oev, v, mreset

l) i oev, ievint

where

logical ievint, sreset, mreset

process

topmod { ... }

end

end

The seconds' counter is reinitialized when there is an external reset event or when the maximal

value has been reached : this is realized through the signal sreset. The same remark is valid for

the minutes' counter (signal mreset). The signal ievint gives the clock of the latter counter : the

minutes' counter is activated when either the seconds' counter reaches its maximum or an

external reset event occurs. The cell operator synchronizes the signal minutes with the signal

seconds : this is required to display the values. Note that topmod is a local process for the

chronometer.

4 Formal synchronization calculus

We have pointed out the crucial necessity to formally reason about time in SIGNAL programs :

this permits to statically (i.e., at compile time) assign a clock to every signal (with respect to the

other signals) and to bring out synchronization constraints. In particular, nondeterministic programs

have to be detected, as well as incorrectly synchronized ones. Moreover, since it has to define the

timing of any program, the formal synchronization calculus is a basic tool for the implementation.

Thanks to the declarative style of the language, we shall see that the equations of this calculus

are a direct projection of the SIGNAL program.

269

4.1 T h e c lock ca l cu lus

One can observe that the only relevant informations to reason about clocks are concentrated in

three values. These are : presence of a signal, absence of a signal, and values of boolean signals

(we have seen that boolean conditions can introduce new clocks - in an undersampling for

example : this explains why a simple boolean calculus is not sufficient). So we distinguish two

types of signals : boolean ones and other signals. Values of boolean signals may be represented

by the set { O, 1, 2 } : 0 is the absence of value, 1 is the true value and 2 is the false value ;

values of other signals are represented by the set { O, 1 } : 0 is the absence of value and 1 the

presence of a value. Then, we endow the set { O, 1, 2 } with the structure of the commutative

field Z / 3 Z a n d we can project every SIGNAL process on Z/3Z In this field, since the map

2
x - - , x

maps respectively 0 onto 0, 1 onto 1, and 2 (which is also written as -1) onto 1, any expression

of non boolean signals may be represented by a function in 2 . Moreover, since

3
X = X ~

any function on Z / 3 Z is polynomial of degree 2 at most. For each one of the S-operators we have

presented, and for boolean (not, or, and) and non boolean functions, the following table gives the

equations associated to the given process.

expressions boolean result non boolean result

(values) (clocks)

y : = no tx y = - x y2 = x 2

y : = a o r b y = ab(1 - (a + b + ab)) y2 = a 2 = b 2

2 b 2 a --

y : = a a n d b y = at>(ab - (a + b + 1)) y2 = a 2 = b 2

2 b 2 a =

y .= f(al , an) y2 al 2 an 2 2 2 2
= = . , , = y = a 1 = . . . = a n

y : = x$1 y2 = x 2 y2 = x 2

synchro a 1, a n al 2 2 2 2
..., = ... = a n a 1 = ... = a n

2 c : = event a c = a

y : = a w h e n c y = a (- c - c 2) y2 = a 2 (_ c - c 2)

y : = a default b y = a + b - a2b y2 = a 2 + b 2 _ a2b 2

270

The equations of this table are easy to verify : for example, the map x --, - x maps respectively O,

1 and -1 onto O, -1 and 1, which represents the boolean function not. The other boolean

functions (or, and) may be verified in the same way. One can have an intuitive justification of the

equations. For instance, non boolean functions result only here in synchronization of all signals :

their clocks are equal and this is exactly expressed by the equality of the square values in Z l 3 Z

For the delay too, we only express the fact that both the output and the input have the same

clock : y2 = 2 The event operator delivers the clock of a given input signal a, so c = a 2. The

undersampling operator delivers a when c is available (expressed by c 2) and when c is not false

(expressed by - t - c, which is O when c - - - 1) : y = ac 2 (- I - c) = a (- c - 2) ; i f we

square this equation, we obtain the clock of the output : y2 = a 2 (_ c - c2), For the merge

y : = adefau/tb, the equation y = a + b - a2b = a + b (I - a 2) (for boolean values)

expresses that y takes the values of a when a is available (this is expressed by a) and the values

of b when a is not available (this is expressed by b (1 - a2)).

Every SIGNAL process is thus represented by a system of equations of degree 2 at most in Z / 3 Z

Then, the temporal analysis of a SIGNAL program is exactly the analysis of this system, what we

call the clock calculus [7]. We do not detail here the principles of this analysis. Let us simply

examine on some examples the clock synthesis we are able to do.

The following process is cJearty incorrect since we add two signals whose clocks are mutually

exclusive :

(i x : = awhen(a > O) j

y := a when (not (a > 0)) j

z : = x + Y b -

Its clock calculus is expressed through the following equations (where c represents the condition

a > O) :

2 C 2 a ----
2 a2 C 2) x = (- C -

2 a 2 y = (c - c 2)
2 2 2

z = x = y .

Note that expressions such as a > 0 are considered as primitive boolean expressions.

Elementary substitutions yield the constraint

c = O

which means that the process is blocked (since 0 is the absence of event).

271

More generally, if the system associated to a given process has a solution such that for every

input or output, the associated variable in Z / 3 Z is not necessarily null, then the process is not

blocked, on any of its ports.

The following process is again incorrect :

Its clock calculus is :

(I x : = a when (a < b) I z : = x , b I) .

2 2 2
a = b = c

2 8 2 c 2) X -- (- - C --

2 2 2
z = x = b

(c denotes here the condition a < b). We obtain the equality

c (c - 1) = 0

which expresses in fact the following constraint on the values of the inputs :

"(a and b are not defined) or a < b".

More generally, if the system has a solution such that the values of the input signals are free,

then the process can be synchronized.

Now, we have the following clock calculus for the process topmod of section 3 (recall that vz and

vp respectively denote the signals (0 when event hreset) and (zv + 1) ; c denotes the condition

zv >= vO) :

i 'ev 2 2 2 2 = z v = v = vp
2 --

vz = - (hreset 2) - h rese t 2 hrese t 2
2 2 2 2 2

v = vz + vp - vz vp
2 2

oev : oev : - c - zv

which implies

272

v 2 = Jev 2

o e v = v 2 (- c - 1)

hreset 2 = iev 2 hreset 2

This Jast equation illustrates again the fact that a SIGNAL process can exhibit synchronization

constraints at its input ports. This is a fundamental remark, since the environment of this process

must be in accordance with such constraints. Note that this process is fully time.correct. The

equation hreset 2 = iev 2 hreset 2 means that the signal hreset must be tess frequent than the

signal iev. For the process topmod, the different clocks are :

where h i =

h I = { hreset, vz }

h 2 = { iev, v, vp, zv }

h 3 = { oev }

{ s t s i } denotes that the signals s 1 s i have the same clock h i.

4 .2 T h e cond i t i ona l d e p e n d e n c e graph

The clock equations express the timing of a given process. In order to produce the code of the

process, it is also necessary to analyse the dependencies between the calculi of the process. For

each instant, we must be able to generate control independently of the instants and also to detect

cycles in the dependencies. As a matter of fact, the right way to do this is to construct, during the

analysis of the process, its instantaneous conditional dependence graph. The nodes of the graph

are the different signals and clocks involved in the process. Of course, the edges express the

dependencies, but they are labeUed here by clock expressions : this allows to accept cycles which

are not real short circuits.

For the process topmod the conditional dependence graph is depicted on figure 6.

273

Ih,
Ih2

h
2

h 2

- h 2 h i 3

Figure 6.

On this example, one can note that two nodes, zv- and zv +, are associated to the signal zv

defined by the delay operator : since the delay can be seen as a memory, two nodes are clearly

required to have an instantaneous graph. In fact the graph is made from elementary conditional

dependence graphs associated to the operators. For example, the values of v (obtained by a

default operator) result from two calculi, one when hreset is present (clock hi), and the other one

when vp is present but hreset is not. Note that the values of the signal vp are defined at the clock

h 2 and are available at the clock h 2 - h l h 2.

The conditional dependence graph allows us to accept some cycles, which are not short circuits.

Consider the following program :

(I y : = x w~en event b I u := y + z I z : = u =11 x : = a default u l)

The clock calculus gives :

2 2 b 2 y = x

Simple substitutions yield :

Both

and

274

u 2 y2 2

2 a 2 2 a 2 u 2
X = + U - - .

x 2 (1 - b 2 + b 2 a 2) - a 2 = 0

(i) x 2 = a 2 + b 2 - a 2 b 2

2 2
(ii) x = a

express solutions for this equation.

The conditional dependence graph of this example is depicted on figure 7.

, hb

~ ' hxhb , u
h

)
- h a hu

Figure 7.

There are several correct timings for this program. The more frequent timing for x is the

supremum of the clocks of a and b (i), whereas the less frequent one is the clock of a (ii). If the

clock of a is chosen, this means that the value of u is never chosen to compute x, so that there

275

is no short circuit in this case. But, if the most frequent one is chosen, then u will be sometimes

used to compute x, which causes a short circuit.

The general method to detect short circuits is the following :

When a cycle is detected, the product of the clocks expressions which label the edges of the

cycle is done. If this product is not null then the cycle is a short circuit, otherwise the graph is

said circuit.free and the process is computable. The demonstration of this theorem is in [7].

Intuitively, a null product means that the signals involved in the cycle will never be simultaneously

available.

When the process is fully time-correct and without any short circuit, the conditional dependence

graph together with the solved clock calculus are the basic tools to generate code. The clock

calculus allows us to produce a control automaton which governs a calculi automaton obtained

from the dependence graph. At the present time, the compiler generates in this way sequential

code in order to have a functional simulation of the algorithms.

5 Conclusion

We have presented the synchronous data flow oriented language SIGNAL. This language has

already been used in different domains. For example, we have programmed in SIGNAL a

complete digital watch with chronometer, alarm, etc. An other privileged domain for the language

is the field of signal processing algorithms : as particular applications, we have written and

simulated a modem, an algorithm for the detection of abrupt changes in spectral characteristics of

digital signals, etc. Let us mention as well an attempt to describe in SIGNAL the internal

architecture of a microprocessor.

The clock calculus allows us to statically (i.e. at compile-time) verify the temporal correctness of

the processes. In fact, it can be seen as a formal system to reason about timing. The first version

of SIGNAL implements a restricted boolean clock calculus. The implementation of the calculus we

have explained here is in preparation, it uses elementary elimination techniques to simplify the

equations. Moreover, it will be extended into some dynamical clock calculus in order to fully

handle the delays. The conditional dependence graph, together with this clock calculus, is a key

tool to study concurrency and appear to be the suitable level to achieve a parallel implementation.

A fundamental problem is to allocate the various calculi to different processors. For this, a first

target is to reduce the number of nodes of the graph we have to distribute. We currently study

different criterions to obtain a partition of this graph : a natural one is to partition according to the

clock of the signals. Then, other partitions, such that every input in any sub-graph must precede

every output, result in what is called the "granules" [15], which may be considered as non

276

interruptable units, in this way, we are going towards a possibly aided implementation of SIGNAL

programs onto a multiprocessor architecture.

REFERENCES

[11

[2]

[3]

[4]

[5]

[8]

[71

[8]

[9]

[lOl

[11]

[12]

Reference Manual for the ADA Programming Language ; U.S.

Department of Defense, 1983.

Manuel officiel de rdfdrence L TR 3 (indice 2) ; CELAR, Bruz, July 1985.

OCCAM Programming Manual ; INMOS Limited, 1983.

C.A.R. HOARE : Communicating Sequential Processes ; Comm. of the

ACM 21 (8), August 1978, 866-677.

G. BERRY, L. COSSERAT : The ESTEREL Synchronous Programming

Language and its Mathematical Semantics ; Seminar on Concurrency,

July 1984, S.D. Brookes, A.W. Roscoe and G. Winskel, editors, Lect.

Notes in Computer Science, 197, Springer Verlag, 1985, 389-448.

P. LE GUERNIC, A. BENVENISTE, P. BOURNAI, T. GAUTIER : SIGNAL :

a data flow oriented language for signal processing ; INRIA, Rennes,

Research Report n ° 378, March 1985.

P. LE GUERNIC, A. BENVENISTE : Real-Time, Synchronous, Data-Flow

Programming : the Language SIGNAL and its Mathematical Semantics ;

INRIA, Rennes, Research Report n ° 533, June 1986.

P. CASPI, N. HALBWACHS, D. PILAUD, J.A. PLAICE : LUSTRE: A

declarative language for programming synchronous systems ; 14th ACM

Symp. on Principles of Programming Languages, Munich, January 1987.

W.W. WADGE, E.A. ASHCROFT : Lucid, the Dataflow Programming

Language ; Academic Press U.K., 1985.

A. BENVENISTE, P. LE GUERNIC : A denotational theory of synchronous

communicating systems ; IRISA, Rennes, Research Report n ° 360, May

I987.

S,J, YOUNG : Real time languages : design and development ; Ells

Horwood publ., 1982.

G. KAHN : The semantics of a simple language for parallel

programming; information Processing 74, J.L. Rosenfeld, editor,

North-Holland, 1974, 471-475.

277

[13]

[14]

[15]

D. HAREL, A. PNUELI : On the Development of Reactive Systems ;

Logics and Models of Concurrent Systems, NATO ASI Series, Vol. F13,

Springer-Verlag, 1985, 477- 498.

T. GAUTIER, P. LE GUERNIC, A. BENVENISTE, P. BOURNAI :

Programming real-time with events and data flow ; Information Processing

86, Proceedings of the IFIP 10th World Computer Congress, September

1986, H.-J. Kugler, editor, North-Holland, 1986, 469-498.

B. LE GOFF, P. LE GUERNIC : Granules' help to sharing out a data flow

graph over multiprocessor hardware ; forthcoming paper.

