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Abstract 

In an interactive functional programming environment with a Milner-style polymorphic type 
system (Milner 1978), a modification to one definition may imply changes in the types of other 
definitions. A polymorphic typechecker must carry out some re-typechecking to determine all of 
these changes. This paper presents a new typechecking algorithm which performs fine-grained 
re-typechecking based on analysis of individual type constraints. The new algorithm is compared 
with that of Nikhil (Nikhil 1985), which performs re-typechecking of entire definitions. 

1 Background and Motivation 

The first author has constructed a programming environment, called glide, to support exploratory 

programming in a purely functional lazily-evaluated language. The glide language is similar to Miranda 

(Turner 1985). A glide program is a collection of definitions and an expression using them. Programming in 

glide involves introducing new definitions, performing computations involving the current definitions, and 

modifying definitions. The novel features of the glide environment include its debugging tools and its 

polymorphic typecbecker. The debugging tools have been described elsewhere (Toyn 1986). The typechecker 

imposes a Milner-style polymorphic type system (Milner 1978) without introducing long delays that would 

disrupt exploratory programming. 

In Practical Polymorphism (Nikhil 1985), Nikhil presents an algorithm that addresses the re-typechecking 

problem. His algorithm is based on the observation that if a definition does not use a modified definition, 

either directly or indirectly, then its type cannot be affected by changes in the type of the modified definition. 

This algorithm identifies those definitions whose types might change from the dependency graph of the 

program. Only the identified definitions are re-typechecked. 

An early version of glide used Nikhil's re-typechecking algorithm. However, an automatic loading 

mechanism was subsequently designed for glide which interacted badly with Nikhil's algorithm. In each 

session, needed definitions have to be loaded from the file system into the programming environment before 

they can be used. As each definition is loaded, some previously loaded definitions may have to be re- 

typechecked. To minimize re-typechecking, it is best to load definitions at the leaves of the dependency 

graph before those higher up the graph. But glide's automatic loading mechanism causes definitions to be 

loaded only when they are first needed in a computation, that is from the root of the dependency graph down 

towards the leaves. So worst-case behaviour was always obtained from the re-typechecking algorithm. Rather 

than change the loading mechanism, the problem was solved by an improved re-typechecking algorithm as 

described here. 
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Summary  of  Contents  

A new typechecking algorithm is first developed for a grossly simplified language without recursive and 

local definitions. Having argued the correctness of  this algorithm, more efficient algorithms are developed, 

still for the simplified language. Only then is the most efficient algorithm extended to cope with recursive 

and local definitions. 

Terminology 

it is assumed that the reader is familiar with basic typechecking and unification terminology, for 

example type variable, substitution, and genericity (Cardelli 1985). The notation @a, @b, @c... is used to denote 

type variables. The following additional terminology is needed to discuss re-typechecking. 

An identifier is either free or bound. A free identifier is a use of  a definition. A bound identifier is a 

use of  a function's parameter. The parent definition of  an identifier is the closest definition enclosing that 

identifier. 

Each atomic expression (that is each identifier or literal), a, in an expression has a corresponding type 

constraint denoted (a) o f  the form 

E a = I~ (a) 

where Ea is the expected type and ra  is the inferred type. The expected type E a is determined from the 

context of  the atom within the entire expression. The inferred type I~ is determined from the atom itself. 

There is one type  constraint (a) for each static occurrence of  a. (The examples will avoid expressions 

containing more than one occurrence of the same atomic expression, and so this notation will suffice without 

ambiguity.) 

Unification of  a type constraint in the context o f  a set of substitutions extends that set of  substitutions 

so as to constrain the expected and inferred types to be equal. The operation of  determining the value of a 

type constrained by a set o f  substitutions is known as pruning. 

A free identifier's inferred type is (a copy of) the inferred type of the identifier's definition. 

Re-typechecking a free identifier ± havoNes re-unifying the (possibly revised) type constraint (5_). 

Note 

The algorithms are presented on the assumption that the name of  a definition is a single identifier. If  

the name is a pattern kqvolving several identifiers, some explanations would become clumsy: any reference to 

uses of  a definition may be read as uses of  the definition via any of  these identifiers, and the inferred type of 

a clef'tuition should be re-expressed as inferred types for each identifier in its name, These abbreviations allow 

patterns to be ignored throughout the remainder of this paper. 
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2 The Initial Idea 

The initial idea arose from the realization that re-typechecking entire definitions is excessive: most of 

the type constraints remain the same. All the algorithms to be presented confine re-typechecking to bindings 

between definitions rather than entire definitions. 

Example 

Consider the following definition. (This example will be returned to repeatedly as successive algorithms 

are developed.) 

Define def -> g (f 2) + h 

In preparation for enumerating all type constraints involved in typechecking this definition, introduce expected 

types for each component of the definition, based on its applicative structure. 

@a 

/ \ 
@b->@a 

/ \ 
@c->@b->@a 

+ 

/ 
@d->@c 

g 

@c 

\ 

@b 
h 

@d 

/ \ 
@e->@d @e 

f 2 

Now enumerate the type constraints. Each has the expected type on the left-hand side, and the inferred 

type on the fight-hand side. 

@C -> @b -> @a =num -> num -> num (+} 

@d -> @c = Ig (g) 

@e -> @d = If (f) 

@e = hum (2) 

@b = lh (h) 

Note that both Ef and Eg use the type variable @d. This expresses the requirement that the result type of If 

must unify with the parameter type of Ig. When one of the type constraints (f) and (g) is unified, any 

resulting substitution for @d will refine the expected type of the other. If the inferred type of the one 

changes, the refinement may change, in which case the unification of the other must be repeated. So re- 

typechecking only the free identifier whose definition has changed type is sometimes insufficient. 
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This example also illustrates the fact that it is unnecessary for the entire definition to be re-typechecked: 

or.ly I f ,  ig ,  and I h ~ change (barring redefinition of primitives such as +), so the other type constraints, 

(+) and (2), need be unified only once provided they are unified first. (The need for this proviso will be 

explained later.) 

One thing not illustrated by this example is that a change in the inferred type of a free identifier can 

cause a change in the type inferred for its parent definition. In this case, all uses of that defmition must be 

re-typechecked. This refinement check is performed by Nikhil's re-typechecking algorithm. 

3 Typechecking a Simple Language 

Suppose there are no recursive definitions and no local definitions. These restrictions have the effect of 

avoiding type variables whose genericity changes during re-typechecking. 

3.1 Outline of Algorithm A 

Algorithm A consists of two phases. The first phase ~ffers type constraints corresponding to literals, 

primitives, and bound identifiers. Only the type constraints corresponding to non-primitive free identifiers, 

whose definitions might change, are left to the second phase. The first phase is done immediately a definition 

is loaded. Although t ~ s  are known for those free identifiers whose definitions have already been loaded, it 

will be shown that ignoring them until the second phase reduces the cost of re-typechecking. 

The first phase may be thought of as typechecking a definition in isolation, unaware of the types of free 

identifiers' definitions. In all other respects it is exactly like Nikb_il's "improved type-checker' that gives 

useful diagnostics of type errors. The difference amounts to having an initial environment that contains types 

of primitives alone. At the end of the first phase, an approximate type has been inferred for the definition 

and approximate expected types have been inferred for each of its free identifiers. These approximate types 

may be fuzther refined by the second phase. 

The second phase infers one type constraint for each free identifier, unifying its expected type with the 

type inferred from the identifier's definition. The second phase may be interleaved with actual computation. 

It can be done either as definitions of the free identifiers become available (eagerly) or only as they are 

required during computations (lazily). The second phase, is required to backtrack should any of the free 

identifiers' definitions be changed. Figure 1 sketches a process for typechecking a definition, implementing 

the two-phase algorithm in which the second phase is done lazily. The auxiliary ±deheek has been extracted 

so that it can be shared by the re-typecbecking process. 

idcheck i def - >  

unify E i with li~ extending deft s substitution; 
flag (i) as having been unified. 
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typecheck def ->  
-- phase one 

Nikhil typecheck def in a type environment 
initially containing only the primitives; 

prune Idef; 
for each free identifier, i, in def, 

prune El ; 
forget all substitutions from phase one; 

-- phase two 
for each free identifier, j, in def, 

flag (j) as not unified; 
when the value of one of def's free identifiers, k, whose type 
constraint (k) has not been unified, is needed by a computation, 

idcheck k def; 
when the inferred type of one of def's free identifiers changes, 

forget all substitutions from phase two; 

start phase two afresh. 

Figure 1: Algorithm A 

The first when clause in Figure 1 may have the effect o f  refining the type of  d e f ,  in which case the 

second when clause fires in the processes typechecking the definitions that use d e f .  These instances of  the 

second when clause may unrefine the type of their d e f s  with similar effects. A pictorial view is useful in 

conceptualising the extent of  these effects. The graph of  typechecked uses between definitions is a directed 

acyclic graph (DAG), with a unique root at which is the user's expression to be evaluated. The first use of 

each free identifier in a computation corresponds to adding a new arc to the DAG, possibly to a new node. 

Changing a definition corresponds to removing a node and all arcs to or from it; any replacement definition 

will be linked into the DAG on its first use in a computation. If addition or removal of  an arc refines the type 

of  the definition at its source node, adjacent arcs on paths from that node back towards the root have to be 

re-typechecked. Algorithm A demands re-typechecking of  every arc whose source is on these paths. 

Re-typechecking 

The arcs to be re-typechecked initially form a connected DAG within the complete DAG. They are re- 

typechecked by a single re-typechecking process. Re-typechecking an are may reveal more information about 

the def'mition at the source of  that arc, thus requiring more re-typechecking to be done higher up the DAG. 

Determination of  obsolete ares and re-typechecking of  ares are therefore interleaved. Re-typechecking should 

be done from the leaves towards the root, so that type information about a definition is inferred before re- 

typechecking uses of  that definition. Otherwise some ares may be re-typechecked more than once. Only 

when all obsolete arcs have been successfully re-typechecked (that is when the re-typechecking process has 

terminated) is the computation permitted to proceed. One re-typechecking process is created whenever an arc 

is added to or removed from the DAG. A re-typechecking algorithm that is suitable for use with 

Algorithms A-D is given in Figure 2. Its correctness and performance are discussed in Section 3 .2 .  
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while there remain free identifiers to be re-typechecked, 
let def be a definition of a free identifier to be re-typechecked, 
chosen such that def is not the parent definition of any free identifiers 
yet to be re-typechecked; 
for each free identifier, i, waiting to be 
re-typechecked whose definition is def, 

let p be i's parent definition; 
idcheck i p. 

Figure 2: Re-typechecking (Algorithms A-D) 

Example (continued) 

For the example definition, 

Define def -> g (f 2) + h 

the first phase of the algorithm unifies both (+) and (2), and hence infers the following approximate 

expected types for the flee identifiers, 

Ef iS  n L l m  - >  @d 

Eg is @d -> num 

E h is num 

and an approximate type for the entire definition. 

Ide f is ntlm 

Suppose that in the second phase a definition for g is found such that Ig is num -> nurm This type is 

unified with Eg givhlg the singleton set of substitutions {num for @d}. Ef is refined to hum -> nur~ 

Suppose definitions are then found for f such that If is hum -> hum and for h such that I h is nun% All 

free identifies are typechecked without any type errors being found. Should If or Ig change, the other free 

identifier is re-typechecked, as required, by repeating all of the second phase. This is illustrated in the 

following DAO, in which broken lines indicate those free identifiers that are re-typechecked. 

user_e~pr 

I 
W 

de f  

/ I % 

g f h 

Figure 3: DAG of example for Algorithm A 

Suppose it was i f that changed. That explains why the arc from clef to f is broken. The arc from 

use r_exp r  tO clef iS not broken because nothing could have happened in the second phase to refine Ide f ;  

paths of dependence lead towards the root, but need not go all the way. The arcs from clef to g and h are 

broken because their source is the source of another broken arc. Note that the first phase, which unified both 

(+) and (2), is never repeated; this is a significant saving. 
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3.2 Correctness of Algorithm A 

That Algorithm A computes the correct type for a definition may be shown by proving that it computes 

the same type as would be computed by Nikhil's algorithm. 

Lemma 1. Algorithm A infers the same system of type constraints as Nikhil's algorithm. 

Proof. The expected types of all type constraints are the same in the two algorithms, since they are 

generated by the same construction. The inferred types of literals and primitives are clearly the same. The 

inferred types of free identifiers will be the same exactly if Algorithm A is correct. This can be shown by 

induction, starting from those definitions that use no other definitions (those at the leaves of the DAG). Since 

all expected types and inferred types are the same, the type constraints must be the same. [] 

Lemma 2. Changing the order in which a system of type constraints are unified may result in a 

different set of substitutions, but pruning a type variable according to any of these sets of substitutions will 

always give the same type (up to renaming of synonymous type variables). 

Proof. This follows from the associativity of unification (Robinson 1965). [] 

Theorem 1. Algorithm A infers the same type for a definition as Nikhil's algorithm. 

Proof. Lemma 1 shows that the algorithms infer the same system of type constraints. They will almost 

certainly unify the constraints in different orders, but Lemma 2 shows that they wiU nevertheless compute the 

same type. [] 

In dispensing with the set of substitutions resulting from the first phase, Algorithm A assumes that none 

of the work of the first phase need ever be repeated. The correctness of this may be argued as follows. 

Theorem 2. The first phase of typechecking need never be repeated. 

Proof. Whenever the type of a free identifier's definition changes, the corresponding type constraint 

and the set of substitutions resulting from that constraint's unification become obsolete. Later unifications of 

other type constraints in the context of these substitutions must be repeated. Earlier unifications of type 

constraints cannot depend on the now obsolete substitutions, and so need not be repeated. So, since the type 

constraints that can be made obsolete by changes in the inferred types of free identifiers are all unified in the 

second phase of typecbecking, the first phase of typechecking need never be repeated. [] 

Never having to repeat the first phase is a considerable saving. It also allows the inferred type of the 

definition and the expected types of the free identifiers to be pruned and the substitutions forgotten at the end 

of the first phase, thus reducing the cost of subsequent pruning operations. Furthermore, each definition can 

have its own separate set of substitutions, since it shares no type variables with other definitions; so that 

forgetting substitutions simplifies to emptying a set. 
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Some more terminology will assist discussion of re-typechecking. Let the depth of a node in the DAG 

be the length of the longest path from that node back to the root, so that a node with a smaller depth than 

another is higher in the DAG. Similarly, a node with a larger depth is lower in the bAG. 

Theorem 3. The re-typechecking process of Figure 2 terminates. 

Proof. The arcs to be re-typechecked form a DAG within the complete DAG. Each iteration of the outer 

loop eliminates a leaf from this smaller DAG. It may also require further re-typechecking higher up the 

complete DAG, but this clearly cannot always be the case as there are only a finite number of definitions 

higher up the graph. So the elimination of one leaf on every iteration guarantees eventual termination. [] 

Theorem 4. No arc need be re-typechecked more than once. 

Proof Suppose that the typechecking and re-typechecking processes are synchronized so that the re- 

typechecking process waits before re-typechecking any arc untit the typechecking processes can make no 

further progress. Suppose further that an arc is re-typechecked only when there are no lower arcs to be re- 

typechecked. So all additional arcs to be re-typecbecked must be higher up the DAG than all arcs previously 

re-typechecked, and consequently no arc will be re-typechecked more than once. [] 

This is an attractive result, but one that is not exploited by the re-typechecking algorithm of Figure 2. 

That algorithm determines an order in which to re-typecheck arcs from their connectivity rather than from 

their relative depths. As long as the DAG of arcs to be re-typechecked is connected (as it is initially), the 

same performance will be obtained. If it becomes disconnected in such a way that one component lies 

beneath another, then the algorithm of Figure 2 may re-typecheck arcs in the higher component before those 

in the lower component. So additional re-typechecking above the lower component may imply repeated re- 

typechecking of arcs in the higher component. In the worst case, this algorithm will have cost quadratic in 

the depth of the lowest arc in the initial DAG of arcs to be re-typechecked. Its performance in general is not 

so bad, and may compare favourably with the cost of computing depths. 

Theorem 5. The second phase of typechecking makes progress. 

Proof Any backtracking in the second phase, caused by a change in the inferred type of a free 

identifier, is immediately followed by re-unification of all the obsolete type constraints (nothing is lost). On 

the other hand, a new arc is added to the DAG (something is gained). [] 

3 . 3  R e m e m b e r i n g  all E a r l i e r  Un i f i ca t i ons  ( A l g o r i t h m  B) 

The proof of Theorem 2 (the first phase of typechecking need never be repeated) actually showed a 

stronger result: no unifications of type constraints done before the unification of the obsolete type constraint 

need be repeated. This applies equally well to earlier unifications in the second phase. If these are not 

repeated, fewer substitutions are made obsolete; it is less likely that the type of the parent definition will 

change; so the paths of re-typechecking through the DAG may be shorter. These improvements are taken into 

account in Algorithm B, which is like Algorithm A except that the final when clause is replaced by the 

following. 
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when the inferred type of one of def's free identifiers, m, changes, 

reduce the set of substitutions to that which 

was in effect before (m) was last unified; 

flag (m) and all constraints unified since 

the last unification of (m) as not unified. 

Figure 4: Algorithm B (differences from A) 

The action of reducing the set of substitutions is similar to that which occurs when Nikhil's typechecker 

recovers from a type error. In DAG terms, Algorithm B demands re-typechecking of fewer of the arcs leading 

from the paths towards the root than Algorithm A, and these paths may be shorter. 

Example (continued) 

Retuming to the example in which the second phase found definitions for g, f,  and h in that order, 

suppose I f  changes to num ->  bool.  Algorithm B retains the substitution {num f o r  @d} resulting from 

the unification of (g), and causes only the unifications of (f) and (h) to be repeated. 

user_expr 

1 
de f  

I ' ,  

g f h 

Figure 5: DAG of example for Algorithm B 

Ef is still num -> num, which does not unify with the new I f ,  n u m - >  bool ,  and so a type error is 

detected in the use of f. The type constraint (h) can still be unified. 

3 . 4  Remembering all U n a f f e c t e d  Uni f i ca t ions  ( A l g o r i t h m  C) 

When the type of a free identifier's definition changes, the obsolete type constraints of its parent 

definition must be determined and the substitutions resulting from their unification removed. All the 

typechecking algorithms discussed so far are extravagant in deciding which type constraints are obsolete: all 

of them (Nikhil's algorithm); all those corresponding to free identifiers (Algorithm A); and all those unified 

since that of the free identifier whose inferred type has changed (Algorithm B). None of these algorithms 

considers the composition of the constraints themselves. A finer discrimination between type constraints can 

be made by noting which type variables are involved in each. This is the basis of Algorithm C. Two more 

items of terminology will be useful. 
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Let Vi, where i denotes a free identifier, be the set of type variables appearing in Ei  after priming at 

the end of the first phase of typechecking. 

Let S i, where i denotes a free identifier, be the set of type variables for which substitutions were 

introduced by the most recent unification of type constraint ( i ) .  

Algorithm C is tike Algorithms A and B, but the final when clause is replaced by the following two 

w h e n  clauses. 

when the inferred type of one of def's free identifiers, m, changes, 
deem obsolete the type constraint (m); 

when a type constraint (n) is deemed obsolete, 
remove the substitutions for variables in Snr 
and flag (n) as not unified; 
fo= each unified type constraint, (P), 

if Sn ~Vp ~ {}, 
deem obsolete the type constraint (p). 

Figure 6: Algorithm C (some differences from A) 

Theorem 6. The process of determining obsolete type constraints terminates. 

Proof. Every call flags one fl'ee identifier as not typechecked, and recurses only on typechecked free 

identifiers. Since there are inkially only a finite number of typechecked free identifiers, termination of the 

process is guaranteed by induction. [3 

The type of a defmition may change when the type constraint of one of its free identifiers is deemed 

obsolete. This may be detected efficiently by having another vi-l ike value, v d ,  f, giving the type variables 

used in the definition's expected type, Ed~ f, after pruning at the end of the first phase. The second of the 

new , ,hen clauses is extended with the following step. 

if S n ~ Vae f ~ {}, 
deem obsolete all unified type constraints 
corresponding to uses of def. 

Figure 7: Algorithm C (more differences from A) 

The type of a definition may also change when the type constraint of one of its free identifiers is unified. 

This cannot be detected by such an efficient means. Such refinements must be detected by explicit 

comparison of before and after types. 

Given explicit checks for refinements of the type of the parent definition, the first of the new when 

clauses is redundant. 
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Example (continued) 

Returning to the example again, the dependence of expected types on type variables is as follows. 

Ef is hum-> @d SO V e = {@d} 

Eg is @d -> num SO Vg = {@d} 

E h is num so V h = {} 

After all free identifiers have been typechecked (in the order g, f, h) substitutions will have been computed 

only as a result of unifying (g). 

Sf ---- {} 

Sg = {@d} 

Sh= {} 

When I f  changes, there are no substitutions in Sf to be removed; (f) is simply flagged as not unified. A 

search is then made for dependent type constraints. 

Sf C~ Vg = {} C~ {@d} = {} 

sf nVh = {} n {} = {} 

Sf n vd~f = {} c~ (} = {} 

It is clear from S f being { } that no unifications of other type constraints depended on obsolete substitutions. 

The type constraint (h), which was deemed obsolete by both Algorithms A and B, is in fact independent of 

changes in I f. 

user_expr 

de f  

/ " ,  ! 
i 

g f h 

Figure 8: DAG of example for Algorithm 12 

3.5 Improving the Data Structures (Algorithm D) 

The Vi values depend only on the results of phase one, so they are constants when used in phase two. 

The efficiency of an implementation may be improved by memoing the v i  values. Better still, they can be 

evaluated eagerly and represented in an inverted form as a mapping from type variables to the type constraints 

whose expected types depend on them, as follows. 

{ v--) { (i) I v ~ V i } } 

In the case of the example, the collection of v i  values can be represented by the following mapping. 

{ @d--> { (f); (g) } } 

When the type constraint of a free identifier is deemed obsolete, the type variables in S j can now be mapped 

directly onto sets of type constraints. Those constraints that have been unified are deemed obsolete. The 
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Vde f value may be represented by a similar mapping. In fact, each definition can have its own separate 

mappings for both its v i  values and its Vde f value. 

Algorithm D, including explicit checks for refinements of 2de £, is given in ~ in Figure 9. 

idcheck i def -> 
unify E i with lit extending def's substitution; 
flag (i) as having been unified; 

if Ida f is refined, 
deem obsolete all unified type constraints 
corresponding to uses of def. 

typecheck def -> 
-- phase one 

Nikhiltypecheck def in a type environment 
initially containing only the primitives; 

prune Idef; 
for each free identifier, i, in def, 

prune El; 
flag (i) as not unified; 

compute the ma~ing from t~qpe vats to type constraints; 
eg~ty def's substitution; 

-- phase two 
when the value of one of def's free identifiers, j, whose type 
constraint (j) has not been unified, is needed by a computationr 

idcheck j def; 
when a type constraint (k} is deemed obsolete, 

r~ove the substitutions for variables in Sk, 
and flag (k) as not unified; 
deem obsolete all unified type constraints found 
in the results of mapping over variables in Sk; 

£f S k nVde f ~ {}, 
deem obsolete all unified type constraints 
corresponding to uses of def. 

Figure 9: Algorithm D 

4 Typechecking Recursive Definitions (Algorithm E) 

Mutually recursive definitions must be typechecked using a single set of substitutions, since the same 

type variables can be involved in typechecking more than one of them. Similarly, typechecking any free 

identifier may refine not only the inferred type of its parent definition but also the inferred type of any 

definition mutually recursive with its parent definition. In this section, Algorithm D will be modified 

accordingly. 

It is stiU usefut to view the definitions involved in a computation and the calls between them as a DAG, 

but now nodes correspond to sets of mutuatty recursive definitions rather than individual definitions. In other 

words, the condensation of the dependency graph is a DAG. Each node in such a DAG has a single set of 

substitutions and a single mapping from type variables to free identifiers whose expected types involve those 

type variables. 



337 

4.1 Detecting Cycles 

Under the automatic lazy loading mechanism, cycle detection has to be done on-the-fly. Definitions are 

treated as non-recursive until every free identifier in a cycle has been typechecked. Then all free identifiers in 

the cycle must be re-typechecked, now regarding some type variables as non-generic. In DAG terms, when a 

new arc is introduced that links a set of nodes into a new cycle, those nodes are collapsed into a single node. 

These operations are performed as follows, at the end of idcheck.  

i~ i completes a new cycle among nodes, 
deem obsolete all unified type constraints 
corresponding to arcs in that cycle; 
collapse the nodes in the cycle into a single 
node, combining substitutions and mappings. 

Figure 10: Algorithm E (some differences from D) 

The obsolete type constraints must be re-typechecked before permitting the computation to proceed. The 

check for a new cycle involves inspecting all paths through the graph starting from the destination of the 

proposed new arc to see if the source of the new arc is reachable. An efficient formulation of this search has 

been extracted from Dijkstra's strongly connected components algorithm (Dijkstra 1976), though it can still be 

the major cost in phase two. 

4.2 Re-typechecking 

As well as checking for refinements in the type of the parent definition when a type constraint is 

unified or deemed obsolete, similar checks must be applied to all definitions that are mutually recursive with 

the parent. So relative to Algorithm D, each such check is enclosed in a loop of the following form, with the 

check modified to apply to definition d. It is intended that the range of d will include def .  

• 0= each definition, d, which is mutually recursive with def, 
o,.d,., 

Figure 11: Algorithm E (more differences from D) 

The substitution-based method first introduced in Algorithm C is still applicable in the context of 

mutually recursive definitions. Consequently, the extent of re-typechecking need not encompass entire cycles; 

this is an improvement on Nikhil's algorithm, which re-typechecks all mutuaily recursive definitions when any 

one of them needs to be re-typechecked. However, in cases where it is necessary to re-typecheck all the way 

round a cycle, the re-typechecking process of Figure 2 would fail to terminate: each definition in a complete 

cycle is the parent of at least one free identifier, so re-typechecking of a complete cycle would fail to start. 

The re-typechecking process must be re-formulated in terms of nodes rather than definitions. 
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while there remain free identifiers to be re-typeehecked, 

let n be a node chosen such that n is not the source of any arcs 
to be re-t3~echecked and (n is either the destination of at least one 

such arc o= n contains a cycle of definitions with free identifiers 
to be re-typechecked); 

fo= each free identifier, j, in a cycle within n 

that remains to be re-typechecked, 
let p be j's parent definition; 
idcheck j p True; 

~o= each free identifier, k, that is an arc to n 

that remains to be re-typechecked, 

let p be krs parent definition; 

idcheck k p True. 

Figure 12: Re-typechecking (Algorithms E-F)  

The timing of  the m-typechecNng of flee identifie~ in cycles is a~anged to satisfy the requirement t h ~  all 

free identifie~ in a node am m-typechecked b e a m  arcs m t h ~  node. The extra ~ g u m e n t  in the calls to 

i d o h e c k  is a BoNean that indicates m-typechecking in progress. If ff is True ,  no additional m-typechecNng 

is imti~ed in the same cycle; this is necessary to ensure mrminafion. 

idcheck i def retypecheckingp -> 

unify E i with Ii, extending def's substitution; 

flag (i) as having been unified; 

for each definition, d, which is mutually recursive with def, 

£ f  I d is refined, 
for each unified type constraint j 

corresponding to a use of d, 

if not (retypecheckingp and j's parent definition 

is mutually recursive with i's definition), 

deem obsolete type constraint j; 

if i completes a new cycle among nodes, 

deem obsolete all unified type constraints 

corresponding to arcs in that cycle; 
collapse the nodes in the cycle into a single 

node, combining substitutions and mappings. 

Figure 13: Part of  Algorithm E 

4 . 3  Revising the DAG when Definitions are Removed 

Removing a definition breaks any cycles of  mutual recursion involving that definition. In DAG terms, 

when a definition in a collapsed node is removed, a new piece of DAG must  be built from the remaining 

contents of  the collapsed node. There may  be mutually recursive cycles within the remaining definitions. 

These remaining cycles must  be detected so that the sets of  substitutions and mappings can be partitioned 

appropriately. The arcs between the new nodes must  be re-typecbecked, due to non-generic type variables 

becoming generic. 
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4.4 Correctness 

All the theorems proved in Section 3 .2  still hold, though further discussion of/.,emma 1 and Theorem 3 

is appropriate. 

The proof of Lemma 1 (the type constraints are correct) holds only after the mutual recursion has been 

detected. Prior to this, some type variables were treated as generic when they should have been non-generic; 

some type errors may have been overlooked, but none will have been found where none exist. 

Theorem 3 (the re-typechecking process terminates) still holds if the further re-typechecking higher up 

the DAG really is strictly higher up the DAG and not further round a cycle. The extra argument to i d c h e c k  

avoids such further re-typechecking around a cycle. Omitting such re-typechecking does not jeopardise 

correctness, as  all mutually recursive definitions share the same set of substitutions and so any refinement to 

one of them implicitly propagates to the others. 

5 Typechecking Local Definitions (Algorithm F) 

Some languages do not have local definitions (Turner 1982), in which case the  typechecker described 

above would be satisfactory. However, the consensus of language designers - including Turner (Turner 1986) 

- is to provide local definitions. These require further modification of the typechecking algorithm. Some 

more temainology will be useful. 

A locally-bound identifier is a use of a local definition. Those identifiers previously known as bound 

identifiers are henceforth known as parameter-bound identifiers. These are further sub-divided into local 

parameter-bound identifiers and non-local parameter-bound identifiers according to whether the binding 

occurrence of the parameter is inside or outside the parent definition. 

There is no reason to delay unification of type constraints corresponding to  locaUy-bound identifiers 

until those identifiers are used in a computation. Unlike free identifiers, the definitions of locally-bound 

identifiers are already known. These type constraints are delayed until phase two only to reduce the cost of 

re-typecbecking. It is therefore appropriate for them to be the first to be unified in phase two, before those of 

any free identifiers. 

5.1 Non-Local Parameter-Bound Identifiers 

Treating local definitions like top-level definitions does not work if the local definition uses any non- 

local parameter-bound identifiers. The problems that arise in this context are illustrated by the following 

example. 

Define he x y -> 

( let res -> 

( let hx -> head x in hx = y ) 

in res ) 
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An immediate consequence of non-local parameter-bound identifiers is that a single set of substitutions 

must be shared by the definitions involved (since otherwise the parameters' types would not be constrained by 

all of their uses). Phase one infers the following types for the definitions in the example. 

lhe is @a -> @b ->  @c 

I r e  s is bool 

lhx is @d 

Those type constraints corresponding to free and locally-bound identifiers remain to be unified. 

@c = bool (res) 

@b = @e (hx) 

@a -> @d = [@f] -> @f (head) 

The final type that should be computed for he is [@f] -> @f ->  bool .  

Eager typechecking of locally-hound identifiers unities both (rea) and (hx). Unifying (res)  refines 

its parent's type Zhe tO @a ->  Ob ->  boo3_. Unifying (hx) reveals no new information. 

The problems arise when (head) is unified. Substitutions [@f] f o r  Oa and @f f o r  Od are 

introduced. So the non-genericity of @a is acquired by Od and @£. But Zhx originated as a fresh copy of @d. 

Now that @d is non-genetic, !hx is Od itself. Although Ih× has become no less polymorphic, the change in 

genericity necessitates re-typechecking of all uses of hx, otherwise the constraint between Oa and @b would be 

overlooked. The conclusion is that the present treatment of dependency, based on substitutions alone, is not 

adequate to propagate the refinement arising from the unification of (head) to the uses of hx. 

The substitutions introduced by unifying (head) have a second effect: they constrain the type of the 

non-local parameter x from @a to [@f]. So all uses of he must be re-typochecked. This dependence is 

direct from the definition of hx to that of he: it cannot propagate indirectly through r e s  because I r e ~ cannot 

be refined in any way from its phase one value of boo1. 

Changes in Genericity 

The genericity of a type variable in a type constraint depends on the context in which the atomic 

expression corresponding to the type constraint appears, that is whether the type variable corresponds to a 

parameter in scope. Fortunately, the scope rules of the language ensure that all uses of a local definition must 

lie within the scope of all those non-local parameters that are in the scope of the definition itself. So all 

changes in genericity can be detected by checking only for those in the context of the definition. The 

genericity change check need be done only if there is no refinement to a less polymorphic type. 

Non-Local Parameter Refinements 

Non-local parameter refinements can be detected by comparison of the before and after types of the 

function definitions that introduce those parameters, This is similar to the checks for refinements in the types 

of the parent definition and definitions mutually recursive with the parent. It is sufficient to check all those 

definitions that share the same set of substitutions. However, in the context of non-local parameter 

refinements it is necessary to check only those function definitions whose parameters are used by the local 
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definition. Note that the functions' types must be checked, not the individual parameters' types, as otherwise 

constraints between type variables may be overlooked. 

As a consequence of non-local parameter refinements, the initial DAG of arcs to be re-typechecked may 

no longer be connected. This is the case for the above example, as illustrated below. 

use ~ he .... > res ~ hx .... > head 

In such cases, arcs from the local definition should be re-typechecked before arcs to the function that 

introduced the non-local parameter, so that the parameter refinement takes place before uses of the function 

are re-typechecked. Otherwise, the re-typechecking of uses of the function (and any other re-typechecking 

higher up the DAG done before re-typechecking of arcs from the local definition) will be repeated when the 

non-local parameter refinement is detected during re-type.checking. This makes it even more attractive to 

determine the order in which to re-typecheck arcs from depths rather than from local connectivity. 

Algorithm F is given in fult in Figure 14. Note that it is necessary to check for genericity changes and 

non-local parameter refinements both on unifying a type constraint and on deeming a type constraint obsolete. 

-- deem obsolete uses 
deemobsuses def -> 

for each unified type constraint m 

corresponding to a use of def, 

deem obsolete type constraint m. 

-- deem obsolete non-recursive uses 

deemobsnruses i def retypecheckingp -> 
for each unified type constraint j 

corresponding to a use of def, 

if not (retypecheckingp and j's parent definition 

is mutually recursive with the definition of i), 

deem obsolete type constraint j. 

idcheck i def retypecheckingp -> 

unify E i with Ii, extending def's substitution; 

flag (i) as having been unified; 

for each definition, d, which is mutually recursive with def, 

if I a is refined or any type variables 

in I 4 have changed genericityr 

deemobsnruses i d retypecheckingp; 
for each definition, e, that introduces a 

non-local para]neter-bound identifier in d, 

if I e is refined, 

deemobsnruses i e retypecheckingp; 
if i completes a new cycle among nodes, 

deem obsolete all unified type constraints 
corresponding to arcs in that cycle; 
collapse the nodes in the cycle into a single 
node, combining substitutions and mappings. 
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typecheck def -> 
-- phase one 

Nikhil_typecheck def in a type environment initially containing only 
the primitives and extended only with parameter-bound identifiers; 

prune Idef; 
for each free or locally-bound identifier, i, in def, 

prune El; 
flag (i) as not unified; 

compute the mapping from type vats to type constraints; 
empty def's substitution; 

-- phase two 
for each locally-bound identifier, i, in def, 

idcheck i def False; 
when the value of one of def's identifiers, j, whose type 
constraint (j) has not been unified, is needed by a computation, 

idcheck j def False; 
when a type constraint (k) is deemed obsolete, 

remove the substitutions for variables in Sk, 
and flag (k) as not unified; 
deem obsolete all unified type constraints found 
in the results of mapping over variables in Sk; 
EOr each definition, d, which is mutually recursive with clef, 

if Sk ~V~ ~ {} or any type variables 
in I a have changed genericity, 

deemobsuses d; 
~or each definition, e, that introduces a 
non-local parameter-bound identifier in d, 

i~ I e is refinedr 
deemobsuses e. 

Figure 14: Algorithm F 

6 Type Declarations and Type Errors 

If a declared type D± is given for a free identifier ±, the type constraim Ei  = I i  is split into two type 

constraints: Ei  = Di and Di = t i .  Only I i  can change, and so  the type constraint E i  = Di may be 

unified in the first phase. The type constraint D i = I i is the one denoted by ( i )  in the second phase. To 

be more precise, ( i )  should be D~ -< I i  since a definition's type must be at least as polymorphic as its 

declared type. (Actually, I~ is not the only type expression that can change: explicitly-defined types can be 

redefined, say from an algebraic type to a synonym type, so requiring all type constraints involving Di to be 

re-unified. In tiffs circumstance, glide repeats the whole of  the first phase.) 

The new typecheckers can give similar diagnostics of  type errors as Nikhil 's algorithm. However, they 

are more likely to attribute a type error to a free identifier, since constraints due to free identifiers are unified 

last. Consider the case of  a .function application in which the function is a free identifier, for example 

t r a n s p o s e  42 where the type o f  t r a n s p o s e  is [[@a]] - >  [[@a] ]. The diagnostic generated is as 

follows. 
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Type error in: transpose 
Expected type: num -> @b 
Inferred type: [[@a]] -> [[@a]] 

Or to paraphrase, 

transpose cannot be applied to 42. 

Treating the function as the type erroneous component in this application can be justified by stating that the 

types of literals are clear, whereas the definitions of free identifiers are given elsewhere and so should be 

treated with greater suspicion. Nikhil takes a different viewpoint (Nikhil 1985). 

"Our algorithm favours the function part by typecbecking it first and allowing it to determine the 
expected type of the argument part. This is based on the observation that in most cases the 
function part is not a complicated expression and is less likely to be the cause of the type error in 
the programmer's judgement." 

Hence a diagnostic is given about the argument value being type erroneous. 

Type error in: 42 
Exqpected type: [[@a]] 
Inferred type: num 

Or to paraphrase, 

42 is an inappropriate argument for transpose. 

Of course, neither diagnostic is guaranteed to be appropriate. The point is that, for the given example, our 

typechecker has no choice but to give the former diagnostic, whereas Nikhil's could give either and he 

happens to recommend the latter. 

7 C o s t  

The table in Figure 15 compares the performance of Nikhil's algorithm with that of Algorithm F when 

loading two programs. For each case, the performance is given by a triple of measurements. The first is the 

number of unifications of type constraints performed. The second is the number of definitions re-typechecked 

(in the case of Nikhil's algorithm), or the number of free identifiers re-typecbecked (in the case of Algorithm 

F). The third is the effort expended in re-typechecldng as a proportion of the cost of typechecking the loaded 

definitions alone (measured as number of unifications). The measurements for Algorithm F are for complete 

typechecking of the programs, not just those bindings required by a particular computation. The programs are 

omitted here due to lack of space, but are reproduced in full elsewhere (Toyn 1987). 

The number of unifications done by Nikhil's algorithm under eager loading should equal the number of 

unifications excluding those in re-typechecking done by Algorithm F under lazy loading. This is true for the 

queens  program (199 - 19 = 180); the small discrepancy for the e d i t  program (384 - 47 > 334) is due 

to one of the auxiliary definitions needed for Algorithm F being primitive in the version of glide with 

Nikhil's algorithm. 
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Program ~ £ ~ a e s  Nikhil eager Nikhil lazy Alg. F lazy 

queens  n 10 180, 0, 0% 408, 16, 127% 199, 19, 10% 

edit 14/15 334, 0, 0% 749, 18, 124% 384, 47, 14% 

Figure 15: Comparison of costs for loading 

The figures show that Algorithm F is an order of magnitude more efficient than Niktfil's algorithm at 

re-typechecking in the context of definitions being loaded lazily; the total typechecking cost is halved. Also, 

for Algorithm F, the number of type constraints unified in phase one as a proportion of all type constraints 

was 90% for the queens  program and 86% for the e d i t  program. These figures verify the original 

hypothesis that most of the type constraints remain the same, indeed these type constraints can never change. 

The other context in which re-typechecking is required is when a definition is modified, Algorithrn F 

performs some re-typechecking when the old version of a modified definition is removed, and more re- 

typechecking when the new version is introduced. In contrast, Nikhil's algorithm performs re-typechecking 

based on the difference between the types of the old and new versions. Such an optimization remains to be 

incorporated into Algorithm F. An example arose with the e d i t  program: when the editor was changed m 

support an undo command, a parameter that previously represented the text became a list of past texts. This 

change involved modifications to severn definitions, the costs of which are tabulated in Figure 16. The pairs 

of measurements are total unification counts and either definition or unification counts during re-typechecking. 

I~£~,'~e Nikhil Alg. F 

display 

do 

decode 

edit 

46, 1 34, 8 

82, 1 77, 13 

58, 0 68, 23 

16, 0 18, 11 

Figure 16: Comparison of costs for modifying 

These figures suggest that Algorithm F and Nikhil's algorithm have similar performance. However, 

note that Algorithm F's re-typechecking algorithm is non-optimal and also the optimization mentioned above. 



345 

8 Discussion 

An alternative approach to our problem with glide would have been to adjust the loading sequence to 

avoid re-typechecking. But it is impossible to avoid all re-typechecking if there are mutually recursive 

definitions. Furthermore, lazy loading avoids the cost of typechecking unused definitions. 

Another consequence of the lazy loading strategy is that a type error may not be found until a 

computation has already made successful use of the identifier's def'mition. This may seem undesirable, but is 

a best compromise: the exploratory style which lazy loading supports is far more valuable than the detection 

of all type errors before execution. If a type error is discovered for such an identifier during re-typechecking, 

the computation is aborted. When the programmer can think of no more test computations and is stuck for 

which definition to modify next, an explicit request can be made to the system to search for type errors. 

Until that time, the programmer is free to develop the program without being inconvenienced. Certainly such 

a search should be requested before making any claim that the program works. 

9 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

In the context of an exploratory programming environment, it is a requirement that re-typechecking be 

performed efficiently. This requirement is difficult to satisfy in the context of lazy loading, such as results 

from use of a persistence mechanism. This paper has presented incremental polymorphic typechecking 

algorithms that are suitably efficient. The performance of the new algorithms is not seriously affected by the 

loading strategy used. Consequently they are significantly better in the context of lazy loading, and not 

significantly worse in the context of eager loading. 

A linear re-typechecking algorithm would be preferred, that is one that re-typechecks an arc only when 

there are no lower arcs waiting to be re-typecbecked. Computing explicit depth information could be 

expensive: whenever an arc is added to the DAG, the depths of all nodes accessible via the new arc may have 

to be revised. An alternative would be for each node to have a link to its deepest parent. This would 

decrease the cost of maintaining the depth information, but increase the cost of using it. Another-alternative 

is to thread all nodes of the complete graph in a sequence consistent with either the higher or lower partial 

orders, then the re-typechecking process could do a single sweep of the nodes in this sequence. Maintaining 

the sequence could be done as a side effect of mutual recursion detection. However, both maintaining and 

using the sequence would have a cost linear in the number of nodes in the complete DAG. This may not be 

significantly better than the simple re-typechecking algorithm's quadratic cost in the number of nodes in the 

DAG of arcs to be re-typechecked. 

The cost comparison of the two typecheckers assumed that the cost of a unification is the same in both 

typecheckers. This was true for the given implementations. However, more efficient unification algorithms 

exist that may not be applicable in the context of the new typechecker. Examination of Martelli and 

Montanari's An Efficient Unoqcation Algorithm (Martelli 1982) suggests that it would be applicable only to the 

first phase of Algorithm F. This is because Martelli and Momanari's algorithm assumes that it is free to 

determine in which order to unify the type constraints, whereas phase two of Algorithm F imposes the 
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sequence in which the type constraints are to be unified. On the other hand, the separation of the set of 

substitutions into localised subsets, each emptied between phases, means that the inefficient unification 

algorithm may not be so bad. A cost comparison of the two typecheckers in the context of an efficient 

unification algorithm would be interesting. 
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