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A b s t r a c t  

A method is presented for detecting sharing of partial function applications in higher 
order functional programs. Such sharing occurs when there are several references to variables 
that are bound to a particular function application. In order to provide an interprocedural 
analysis, a non-standard semantics is defined for a lazy, higher-order functional language 
such that the meaning of a program is information about the sharing that occurred during 
its execution. An abstraction of this non-standard semantics is presented so that useful, 
although less complete, sharing information can be provided at compile-time. 

In the second part of this paper, we utilize sharing detection in order to provide an efficient 
method for ensuring full laziness during program execution. A refinement of the method 
used to generate Hughes' super-combinators is discussed. Super-combinators insure that no 
unnecessary computation is performed when sharing occurs in a program. Unfortunately, 
the Mgorithm used to generate super-combinators assumes that every function application is 
shared and some unnecessary overhead is incurred while executing super-combinators. The 
refined super-combinators, called super-duper combinators, presented in this paper incur no 
unnecessary overhead in the cases where no sharing occurs. 

1 Introduction 

One of the more  promising general approaches to the execution of funct ional  languages is graph 
reduction. In graph reduction,  the  program is represented,  along with  the data,  as a graph 
which gets t ransformed,  or reduced, according to tile reduct ion rules of the l ambda  calculus 
[5,11]. Execut ion  of the p rogram is finished when the graph has been reduced to a normal  form. 

The  mos t  significant aspect  of graph reduct ion is its ability to copy references to expressions 
(subgraphs) instead of the expressions themselves during be ta  subst i tut ion.  For example,  given 
the expression: 

(Ax. (5 + x) * x ) ( f  3) 
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and some function f ,  the lambda calculus specifies that  reduction proceeds via the substitution of 
( f  3) for every occurrence of x within the expression (x+5) ,x .  In a purely lexical implementation, 
the following transformation would take place: 

(Ax. ( 5 +  x)* x)(f 3) ~ ( 5 +  ( f  3))* ( f  3) 

and ( f  3) would be computed once for each reference to x. Graph reduction, however, performs 
the reduction by substi tuting a pointer to ( f  3) for each occurrence of x in the lambda body. 
This can be represented graphically in the following way: 

(lambda x. (5+x) $ X 

f 3 5 

f 3 

Therefore, the value of ( f  3) need only be computed once upon the first demand. Every subse- 
quent reference sees only the resulting value. 

In the case where there are several reference to an expression e we say that  e is shared. In this 
paper  the expressions tha t  are of interest are partial applications of functions. Given a function 
definition of the form, 

f ; T I  • . • X n  = . . .  

any application of f to k arguments, where k < n, is a part ial  application of f .  An application 
of f to n arguments is a complete application. 

This paper  presents a method in which we can determine at compile time if a part ial  appli- 
cation of a given function may be shared during evaluation of the program. While this analysis 
is interesting for its own sake, we will show how it can be used to increase the efficiency of 
functional language implementations. 

For each function f ,  as defined above, the analysis will determine the maximum number of 
times that  a part ial  application of f to k arguments is referenced, for each value of k < n. 

2 A Na ive  A p p r o a c h  

A naive approach to detecting sharing of part ia l  applications would be to examine how each 
part ia l  application is used. If a part icular application of f, say ( f  y l . - . yk ) ,  occurs only once 
and is not  passed as an argument to aaother function, then we can be sure that  it is not 
shared. However, if ( f  Yl . . .  Yk) is passed as an argument to another function, then we must 
conservatively assume tha t  it  is shared. A more sophisticated scheme, such as the one presented 
in section 3, would perform an "interprocedural" analysis to detect if ( f  Yl . . -  Yk) is shared even 
when passed as an argument to another flmction. 

I t  may appear that  when a part ial  application is passed as an argument to a function, we 
need only look at  the number of times the corresponding formal parameter  occurred lexieally in 
the body of the function to determine if the part ial  application is shared. If this were the case, 
a syntactic analysis in which bound variables are simply counted would suffice. However, this 
is not the case for (at least) two reasons: 
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1. The programs are (assumed to be) written ill a lazy functional language. Thus, even 
though a bound variable may occur several times in the body of a function, it may never 
actually be referenced. For example in the program, 

{ f x y == x ÷ y; 

hab==1; 

gc==hcc; 

result g (f 1); 
} 

the bound variable corresponding to (f 1) in the body of g occurs lexicMly several times 
although the partiM application is never actually referenced. 

2. Because programs are written in a higher-order functional language, a variable bound to 
a partial application may itself be passed as an argument to an "unknown" function (i.e. 
some other bound variable). For example, in the program, 

f x y == x÷y; 
h c d == c d * c 2; 
g a  b = = b a l ;  
g (~ ! )  h; 
} 

the variable a that is bound to (f 1) is passed as an argument to the function that b is 
bound to. A somewhat more sophisticated analysis is required to determine the behavior 
of the function that b is bound to. 

3 Semantic-based sharing analysis 

Our methodolog-y for detecting sharing is one that has given promising results in recent work 
on other aspects of functional languages [1,6]. This method involves defining a non-standard 
denotational semantics for a functional language such that the result of executing a program 
using these semantics will be information about the sharing that  occurred during the execution. 
However, since to obtain such complete information we need to actually run the program, this 
method is not a tool that  can be used at compile time. 

We therefore define an abstraction of the non-standard semantics that will provide us with 
useful, although less complete, sharing information. The compile-time "execution" of the pro- 
gram using an abstraction of an exact semantics is called abstract interpretation [4,9] and has 
been previously applied to analyzing the strictness properties of functions in a program [2,3]. 

Before proceeding~ an important point must be made. In graph reduction, as defined here, 
sharing can only occur when a variable that  has been bound to a partial application is referenced 
several times. Our analysis does not perform common subexpression elimination (cse). Cse must 
have occurred prior to sharing detection and have been performed by the abstraction of common 
subexpressions from the expressions in which they occur. For example, (f3) + (f3) must be 
translated into (Ax. x + x ) ( f  3) for sharing of (f3) to occur. Even though two expressions may 
be identical and occur within the same lexical scope, unless they are occurrences of the same 
bound variable no sharing will occur. 
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3 . 1  R e p r e s e n t i n g  S h a r i n g  I n f o r m a t i o n  

When "executing" a program using a non-standard semantics for determining sharing, the value 
of each expression must contain enough information to infer the sharing that occurred while the 
expression was being evaluated. The value that is returned by the program wiI1 therefore contain 
information about all the sharing that occurred while the program was executing. In this section 
we describe a domain S, called the sharing domain, of values that contain the necessary sharing 
information. 

Each value in S must contain information indicating whether or not that value represents a 
partial application. When a variable that is bound to such a value is referenced several times 
it can then be determined whether or not sharing has occurred. If a variable is not bound 
to a partial application then no sharing will occur no matter how many times the variable is 
referenced. In addition, different partial applications must be represented by different values, 
even if the partial applications are texically identical (omd have the same value in the standard 
semantics). For example, during the evaluation of the program, 

{ f x y == x÷y; 
g a b  == a 1 ÷ b 1; 

result g (f I) (f i); 
} 

the variables a and b in the body of g are bound to d i f f e r e n t  p a r t i a l  a p p l i c a t i o n s  and no 
sharing of (f  I )  occtu's. 

When a value is returned as the result of evaluating an expression, the value must also 
contain information about which partial applications were shared while the expression was being 
evaluated. For example, given the following function definitions, 

{ f x y == x+y; 

j z w == z+w; 

g a == h a ( j  1 ) ;  

h c d == (c 1 + c 
r e s u l t  g (f 1); 
) 

2) * (d 3 ÷ d 4);  

the value resulting from executing the program indicate that an application of f to a single 
argument and an application of j to a single argument were each referenced twice and therefore 
shared. 

Because the result of evaluating an expression in the standard semantics may be a function, 
a value in S must be able to capture the behavior of a function over elements of the sharing 
domain. In section 2 it was seen that a purely lexical sharing analysis fails because partial 
applications may be passed to "unknown" functions. 

Based on the above discussion, any value 8 E S resulting from the evaluation of an expression 
e is defined to be a triple of the form, 

< p ,  1, f >  

where: 

* The first element, p, indicates whether e represents a partial application and, if so, provides 
enough information to differentiate it from other partial applications. This information is 
called the p-value of e. 
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® The second element, t, is a list of part ial  applications that  were referenced during the 
evaluation of e and is called the / -va lue  of e. 

® The third element,, f ,  is a function over S that  captures the higher order behavior of e 
and is called the f-value of e. 

The three elements of a value in S are described in detail in the rest of this section. 

T h e  p -va lue  

The p-value of an expression e is a tuple of the form 

[id Vo . . . vn] 

where i d  is an identifier and v o . . o V n  are natural  numbers. This tuple can be interpreted as 
follows: "Expression e represents the application of the bound variable i d  to n arguments, 
where i d  was itself bound to a part ial  application. The result of this application, and thus the 
value of e, is also a part ia l  application." 

For example, in the program, 

~[ f x y z == x+y÷z; 
gb==b !; 
result g (f i); 
} 

the p-value of (b 1) inside the body of g is [b 1 1] since the variable b is bound to a paa-tiat 
application and was applied to one argument. Likewise, the p-value of ( f  1) in the expression 
g (f  1) would be If 1] since (f  1) represents an occurrence of a part ial  application (namely 
f)  applied to one argument.  

In p-value the value of each vi is 1 (however, the same representation will be used when 
describing other part ia l  applications in I and the value of each v; will vary). When an expression 
e gets applied to an argument and the result is a part ial  application, then the p-value for the 
result is the p-value for e with an addit ional 1 in the tuple. 

Since the p-value of (b 1) does not indicate which function is actually partially applied, 
how can it be determined that  the part ia l  application bound to b is really (f  i ) ?  When g was 
called, the p-value of its argument was [f 1]. However, the p-value of the corresponding formal 
parameter ,  b, was bound to [b 1]. After the body of g has been evaluated, [b 1] is replaced by 
[f 1] in the resulting p-value to show that  that  the occurrence of b was actually an occurrence of 
( f  1). After this substi tution,  the correct p-value for the program, namely [f 1 1] is returned. 

In the s tandard  semantics, when a function is applied the body of the function is evaluated 
with the values of the arguments subst i tuted for (or bound to) the formal parameters.  In the 
sharing semantics described in section 3.2, t w o  substitutions occur during the evaluation of a 
function application. The first substi tution occul~ on entry to the function when the p-value of 
each formal parameter  is bound to a "dummy value" (such as [b 1] above). The second substition 
occurs (as described above) after the body of the function has been evaluated and any "dummy 
value" occurring in the result is replaced by the original value of the corresponding argument. 

Why not simply bind the formal parameter  to the value of the corresponding argument in a 
function application (as is done in the s tandard semantics and most non-standard semantics of 
functional lmlguages)? A problem arises in the following program: 
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f X y Z • =  x+y÷z; 
g a b =ffi a 1 + b 2 ;  

result g (f i) (f I); 
} 

Although both arguments to g evaluate to the same value in the standard semantics, they 
represent different partial applications. Therefore, the corresponding formal parameters, a and 
b, must be recognized as being bound to different partial applications. If a and b were both 
bound to the value of (f  1) then it would incorrectly appear as though they rePresent the same 
partial application. If this were the case, it would seem that (f 1) was shared in the body of 
g, which is untrue. One solution to this would be to create a unique identifier for every partial 
application. However, as discussed in section 3.4 creating new identifiers creates a termination 
problem for the analysis. 

Instead of creating a unique identifier, we use the names of the formal parameters of g 
as "dummy" names to distinguish between the two partial applications of f. The process of 
binding the p-values of formal parameters to "dummy" values on entry to a function and back- 
substituting real values into the result is described in section 3.1.1. 

T h e / - v a l u e  

The/-value is the second element of a value in S for an expression e. It is a s e t  of tuples, 
{ t l , . . . ,  t ,}, where each tuple, t i  has the same form as a p-value, namely 

[ id  vo . . . v , ]  

The value of each vi is significant (unlike in a p-value) and represents the maximum number of 
times that an application of the variable i d  to i arguments occurred during the evaluation of e. 
The variable i d  must itself bound to a partial application. 

For example, the tuple [b 1 2 1] indicates that the variable b is was bound to a partial 
application and that there was: 

• one occurrence of b applied to no arguments, 

• two occurrences of a partial application of b to one argument (and thus was shared), and 

• one occurrence of a partial application of b to two arguments. 

Given the program, 

{ f x y == x+y; 

j Z W =ffi Z+W; 

g a ==  h a ( j  1 ) ;  

h c d == (c 1 + c 9.) • (d 3 + d 4);  
result g (f i); 
> 

the/-value of the result expression, g (f 1), would be: 

{ [g l l ] , [h l  i 1],[f 12 1],[j 12 1]} 
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From this / -value,  we can see tha t  the only sharing that  occurred was of a part ial  application of 
f and a part ia l  application of j ,  each applied to a single argument. 

In the body of h~ the / -va lue  of the expression (d 3 ÷ d 4) would be {[d 2 1]} since d is 
bound to the par t ia l  application ( j  1) and occurs twice. Although d is applied to a single 
argument twice, namely (d 3) and (d 4), there is no sharing either of those applications. 

Just  like a p-value, the /-value of the body of a function may contain "dummy" partial  
application names corresponding to the names of the formal parameters (such as d above). 
Before the value of the fnnction application returns, all such "dummy" names are replaced by 
inserting the p-values of the corresponding actual parameters into the appropriate  tuples. 

M e r g i n g / - v a l u e s  

During the evaluation of an expression e several applications of the same variable may have 
occurred. Since the / -va lue  for the e must contain the maximum sharing information for part ial  
applications of each bound variable, the sharing information for the same variables must be 
merged. 

The function tha t  merges two tuples representing applications of the same variable is called 
merge_tuple and is defined as follows: 

m e r g e _ t u p l e ( [ i d  Vo . . , vn], l id  Vto . . . V~m]) = 
l id  (,,o + v'~) m a x ( v , ,  ~ )  . . .  ma:~(,~,,, vl,) v ' ,+l .  • • ~',,] 

where both tuples have the same i d  and it was assumed (wlog) that  m _> n. Note that  the only 
addit ional sharing caused by merging the tuples is the sum of the number occurrences in each 
tuple of i d  applied to no arguments, namely v0 + v~. The number of occurrences of i d  applied to 
i arguments is the maximum such number in the two tuples, namely m a x ( v i ,  v~). If two tuples 
do not represent application of the same id ,  then merge_tuple cannot be applied to them. 

Since an / -va lue  is a set of tuples, the function merge takes two sets of tuples and merges 
them as follows: 

merge(/l,  i2) = 

{merge_tuple(ti, t~) I ti  E 1,, t~ e 12 and id(ti) = id(t~.)} 

U 

{t, t t, e It and Vt~, ~ 12, id(ti) # id(t))} 
U 

{6 I t )  E 12 and Vti E ll,  id(t~.) # id(ti} 

where each ti  a n d  t~ is a tuple and id ( t i )  is the bound variable associated with ti .  

Given the program, 

{ f x == x i 2 + x 2 3; 
g b c d == b + c + d; 
result f (g I ) ;  
} 

the/ -values  of both (x i 2) and (x 2 3) in the body of f will be {Ix 1 1 1]}. Since both these 
expressions occur in (x I 2 + x 2 3), the result ing/-value is: 

merge({[x 1 1 1]}, {[x I 1 1]}) => {[x 2 I 1]} 
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The f - v a l u e  

The f-value is the third element of the value in S for an expression e and reflects the 
higher-order behavior of e. If, in the s tandard semantics, e evaluates to a function (i.e. part ial  
application), then f-value for e is a function that  operates over the sharing domain. While the 
precise definition of the f-value of an expression is presented in section 3.2, in the next section 
we describe how the f-valne is used when the expression e is applied in the program. 

3.1.1 Funct ion  Appl icat ions  in the  Sharing D o m a i n  

If an application of the expression e to an argument x still represents a part ia l  application, then 
the f-value of e, when applied to the value of x, returns an element of S whose p-value is simply 
the p-value for e with an additional 1 in the tuple. For example, if the value of e is < [b I], {}, f > 
then the value in S of (ex)  would be < [bll], {}, f '  > where f '  is a function capturing the higher 
order behavior of (ex).  

However, if e represents a part ial  application of a function g and needs only one argument 
to become a complete application, then when e is applied, the body of g gets evaluated. The 
environment in which the body of g is evaluated binds the formal parameters of g to values in 
S that  have "dummy" p-values but  whose f-values are the same as the corresponding actual 
parameters.  For example, in the program 

h x y == x÷y; 

f a == a I + b 2; 

g b == b (h I); 

result g ~; 

) 

the variable b is actually bound to the function f .  When b is applied in the expression (b (h 
1) ) ,  the body o f f  is evaluated in an environment in which the variable a is bound to 

< [an],  {}, f '  > 

where f '  captures the higher order behavior of (h 1). 

If e represents a part ial  application of g then the f-value of e is function that  takes two 
arguments when an application of the form (e x) is encountered. The first argument is the value 
of x that  will be used when the body of g is executed. The second argument is the p-value for 
e itself which will be appended with a 1 and returned as the p-value of the result if (e x) still 
represents a part ial  application. 

Going back to the above program, when the body of f has been evaluated, the "dummy" 
narae for (h 1), namely a, in the p-value and/ -va lue  of the result have to be replaced by the 
p-values of the actual arguments to f ,  namely (h 1). 

The function backsub_p takes the p-value of the result of executing the body of a function and 
replaces the bound variable name with the p-value of the corresponding actual parameter.  The 
second argument to backsub_p is a list of the p-values of the original arguments corresponding 
to each bound variable. 

backsub_p(p, sub_list)  = let lid vo. . . v,] = p 
in if look_up(id, 8ubJ i s t )  = {} then p 

else let I] = look_up(id, 8ubJ i s t )  
in insert(p t, v0. . .  v,) 
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where 

¢ ! 
insert([id v 0' . . . . .  . v~],vo • vm)) = lid Vo.. .  v,~_~ (v~ x vo) vl .. vTn] 

The function backsub_i takes the t-value of the result of executing the body of a function and 
replaces the occurrence of a bound variable (i.e. "dummy") name in a tuple by the p-value of 
the actual  argument. The second argument to backsub_l is a list of the / -values  and p-values of 
the original arguments corresponding to each bound variable. 

backsubJ(t ,  sub_list) = 
let{[ ido v00 . . . v0 .o ]  . . . . .  [idm ~.~o..~.~]} = l 
in (Jsi,  0 < i < m  

where if look_up(idl, sub_lint) = {} then 
~; = { lid, ~ , ~ . .  v,, , ,]} 

else (p~, l~) = look_up(idi, sub_liat) 
ai = {insert(p~, vi, . . .  vi,,)} U l~ 

If the bound variable name corresponding to an actual argument occurs in the / -va lue  of the 
result, then two things have to happen during the back-substitution. 

1. Any bound variable name, id, is replaced by the p-value of the corresponding argument. 

2. If the bound variable name occurs in the / -va lue  of the result, it means that  the value of 
corresponding argument was needed in the body of the function. Therefore, all the sharing 
tha t  occurred during the evaluation of the argument, namely the / -va lue  of the argument, 
should be included in the / -va lue  of the result. 

After the back-substi tutions have occured, the / -va lue  of the result may now contain several 
tuples tha t  contain the same variable name. This happens when different formal parameters 
are bound to the same part ia l  application. Theretbre, after the back-substi tutions occur the 
function combine is applied to the l-value of the result in order to merge all tuples with the 
same variable name. 

combine({tl~ t~ . . . .  Sn} = merge({tl}, combine( t~, . . . ,  tn)) 

3.2 A n  E x a c t  S h a r i n g  S e m a n t i c s  

Before proceeding to the semantic definitions, we define the syntax of our lazy, higher-order 
functional language: 

c E Con constants 
x E V vaxiables 
e E E x p  where 

pr E Prog where 
pr ::= { fl  x n . . . z l ~  = ~1; 

~ x2~ ...X2k: = e2;  

o . .  

f n  X n l  - . .  X n ~ .  = er~; 
result e; } 
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Note that in this language we a~sume that all nested lambda abstractions have been "lifted" 
to the top level. These top-level functions are precisely the ones whose sharing properties will 
be determined. We also assume that common subexpression elimination, if desired, has already 
been performed in the standard way (i.e., by lambda abstraction). 

The semantics which we are about to give specifies the exact sharing that  occurs during a 
program's execution. The semantic domains and functions are: 

P = (v  x X ÷) 
L = P(P)  
F = (SxP)-+S 
S = (P X L X F)) + {error} 

Env  = V --+ S 
E : E x p - - + E n v ~ S  

Ep : Prog-+ S 

the domain of tuples 

the sharing domain 

the semantic function for expressions 
the semantic function for programs 

where ~{ is the set of natural numbers and and P (P) denotes the power set of P. The semantic 
functions E and Ep are defined below. 

Since a constant is not a partial application and does not contribute to the sharing of any 
other partial application, 

E[c~env = <  [], {}, err > 

where e is a constant and err is a function that returns an error if ever applied. 

The meaning of a variable is whatever it is bound to in the environment in which it occurs. 

The result of a binary operation is never a partial application, although sharing of partial 
applications may have occurred during the evaluation of the operands. 

E~el + ez~env = let < P l , l l , f l  > =  E[el~env 
< p~, 12, f2 > =  E[e2~env 

in < [], merge(/x,/2), err > 

hi a well-typed program, no partial application can serve as an operand in a binary operation. 
Therefore, Pl and P2 above will both be []. 

The conditional is haaldled as follows: 

E[el ---+ eu, es~env = let < Pl , l l , f l  > =  E~el]env 
in if (Oracle{eli = True) then 

let < p2,12, f2 > =  E[e~]env 
in < P2, merge(/1,/2), f2 > 

else let < Ps, 13, f3 > =  E~ea]env 
in < P3,merge(/1,/a), f3 > 

In order to provide an exact semantics, conditionals must be resolved correctly (i.e. correspond- 
ing to the way the conditional would be resolved in the standard semantics during program 
execution). To do so, we defer to art oracle to determine the correct meaning of each condi- 
tional. In the next section we provide an abstract sharing semantics that does not rely upon 
such an oracle, but  provides less precise sharing information. 

Function application is defined as follows: 
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El[el e2]]eT~v--~ let < p l , l l ,A  > =  E~el~env 
< Ps, ls, fz > =  f l (E[e2]env,pJ 

in < pa, merge(Is, l J , f3  > 

Since fl  is the function that  captures the higher order behavior of el, f l  is applied to the 
value of e2. The sharing information gained from evaluating el is then merged with the sharing 
information gained from performing the application. Notice the extra argument Pl to f l  which 
indicates to ft which part ial  application it represents. 

The meaning of a program is the value of the result expression in an environment in which 
all function names are bound to values in S. 

Ep[ {F1 x r . . . ,  x tk ,  = ~1; 

F n  X n l  . . .  X n k n  = en~  

result e; 

whererec 

eric = [ ~ l / & . . . ,  ~,,/F,] 
8, = < [F, 1], {}, 

A < pxl , lx l ,  f x l  > Pu 
< app(pl ,1) ,  {}, 

A < px2, lx2, fx2 > P2. 
< app(p2,1), {} ,A. . .  

A. < pxk~,lxk~,fx~ > Pk,. 
let px~ = if (px i = [])titan [] 

else[xii 1] for1 < j <_ ki 
< p~, I r, f '  > =  

E[e,~en~,'[ < px~,  { } ,  fx ,  > / z , ,  . . . . .  
, . .  J , < pxk,, { } ,  fxk, >/~,~,] 

p" = backsub_p(p', [pxl/xil . . . . .  pxk,/ xik,]) 
l" = {Pk~ } U backsub_l(l', [ (pxl, l x J / x l ,  

• . .  (pxk, ,  l~,)/~k,])) 
in < p", combine(l"), f '  > > . . .  > 

The utility functions backsub_p, backsub_l, and combine were defined in section 3.1.1. The 
function app(p, 1) simply takes a p-value and appends a 1 to the end of the tuple. 

3.3 A b s t r a c t  In terpre ta t ion  o f  t h e  S h a r i n g  S e m a n t i c s  

Since we are unable to resolve conditionals at compile time, we define an abstract  sharing 
semantics for our functional language such that  the meaning of a program is information about 
the maximum sharing that  could possibly occur when the program is executed. 

This is accomplished by defining an abstract  sharing domain S'  whose elements are sets 
representing alternate possibilities for the sharing occuring in an expression. The abstract 
semantic domains and functions are: 
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P = ( v  × ~+)  
L = ~ ( e )  

~' = (s'  x P) --+ s'  
S '  = ? ( P  x L x F ' )  + {error}  

E n v  ~ = V -+ S ~ 
E ~ : E x p ~ E n v ~ S  ~ 

the domain of tuples 

the abstract sharing domain 

the abstract semantic function 
for expressions 
the abstract semantic function 
for programs 

and E ~ and E~ are de~ned below. 

let {< Po,/0, fo > . . . .  , <  p n , l . , f .  >} = E l ~ e ~ e n v  
{< p~, l~, f~ > . . . .  , < P',n, I'm,/~m >} = E'~%~env  
l~ = merge(/./~) for all i ___ n, j < m 

11 l" in ( <  [t,Zao, ~ -  > . . . . .  < ~,, ..,, ~ -  >} 

z ' ~ ,  - ,  ~, ~ , ~  = let {<  po,10,ro > . . .  < p , , z~ , f ,  >}  = E ' i [ ~ , ~  
{< p~,lg, S; > . . .  < p ' , e , r  >} = E ' ~ d ~  

~,~ =< v~,mer~(t,,t~.),f~ > for an i < ~, j <_ ,~ 
,~$ I I  $! z~j = <  pi, merge(/i, I~), f~. > for all i < n, j < q 

in {~ul for an i < . ,  j < q } u {zb. / for an ~ < n, j < q } 

let {< v0,10, f0 > . . .  < v , , t , , f ,  >}  = E ' ~ , ~ ¢ ~  

k({< v'~,l~,f1~ >},pd, for each i < , ,  j <_ m 
R , l/ # in (J(< Pi~, me~ge(/i/t, li),  f;ik >} for all i,3",k 

E;[{ 2~1 X l l  . ' - ~ l k l  ~" g l ;  

. , ,  

~a  Xnl . . .  Xnk,, ~ e.n; 
r e s u l t  e; 

whererec 
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~, = {< [F, ~l, {}, 
A{< pxl,lxl, fx l  >} Pl. 
{< ~pp(p~, 1), {}, 

),{< px2, lx~,fx~ >} p2. 
{< ~pp(p~, i), {}, ~. . .  

;~{< pxk,, Ilk,, f xk, >} pk,. 
tel px) = if (pxj = [])then [] 

else[x// 1], for 1 _< j < k; 

{< p~,l~, g > , . . . , <  p'~,t ' ,  f "  >} : 
E'[[ei~en,/[{ < pz i, {}, f z l  > } / x l , . . . ,  

. . .  ,{< X t p k,, {}, :~k, >} I~ ,1  
p~ = backsub_p(p~-, [px,/x, . . . .  ,pxjxt:,]), 

for all j < m 
I; = {Pk~} U backsubJ(/~.,[ (pxl,lx~)/xb.. .  

. . .  (p~, ,  l~ , )  / ~,])  ), 
for all j < m 

in { < pg, combine(/g), f~ > , . . ,  < p~,  combine( l~) ,  f~  > } 
}} . . . }  

3.4 Terminat ion  

In order to guarantee  tha t  the in terpre ta t ion of a program using the above abstract  sharing 
semantics will t e rmina te  we have to show tha t  eve15, function in the subdomain  

F ~ = (S' x P )  -* S ~ 

reaches a fixpoint in a finite number  of iterations. We can accomplish if we do all of the following: 

1. Ensure  tha t  the subdoma in  P of p-values is finite. This  is clearly the case since a p-value 
is a tuple consist ing of a variable name (from the finite set V) and a collection of ls.  Since 
a p-value tuple represents a part ial  application,  the size of the tuple (i.e. the number  of 
l ' s )  is l imited by the largest number  of formal parameters  tha t  can occur in a function 
definit ion (clearly a finite number) .  

hx section 3.1 it was ment ioned  that  it is undesirable  to create a new identifier for each 
par t ia l  applicat ion created dur ing  execution of the program. If new identifiel~ were created 
in such a fashion it would be very difficult (if no t  impossible) to insure tha t  tile elements 
of a shar ing domain  ( including all those new identifiers) were finite in number .  

2. Ensure  tha t  the the subdomain  L of / -values  is finite. Each / -va lue  is a set of tuples tha t  
describe the  m a x i m u m  number  of occurrences of par t ia l  applications of variables. We 
can make the set of possible tuples finite by set t ing a limit on the max imum number  of 
occurrences of a par t ia l  application tha t  the analysis can detect. In  most  cases, we simply 
want  to know if a part ial  applicat ion of some funct ion occurred more t han  once. If the 
n u m b e r  of occurrences reaches the m a x i m u m  value the any further occurrences will not  
be counted. 

3. Ensure  tha t  the domain  F s -= (S' x P)  -+ S ' contains a finite number  of functions. Since 
the number  of functions of a given ar iV (i.e. the number  of arguments  tha t  a funct ion can 
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be applied to before the result is no longer a function) over a finite domain is finite, we 
can ensure tha t  F '  is finite by requiring that  the aa'ity of all each function in F '  is finite. 
This is a reasonable restriction and is often enforced by a type inferencing system. 

In addition, we can define an ordering of the elements of S '  and prove monotonicity properties 
about the functions in F J although such a discussion is beyond the scope of this paper. 

4 A n  Appl icat ion:  Efficient Full Laziness  

As discussed in the introduction, graph reduction is one way of implementing the lambda- 
calculus. Another approach, which also utilizes sharing of expressions, is combinator reduction 
I12], in turn based on the reduction rules of combinatory calculus [5,10]. Both of these ap- 
proaches handle higher-order functions and lazy evaluation fairly naturally. However, graph 
reduction has the disadvantage of having to explicitly implement lambda catculus's implicit no- 
tion of "substitution," which is typically manifested as an environment for bound variables. In 
combinator reduction, the environment is eliminated in favor of a more fine-grained computation, 
in which operands and operators are paired up through the behavior of a fixed set of primitive 
combinators. This simplifies the approach considerably, but at the expense of potentially more 
reductions and a greater consumption of space. 

As an improvement to combinator reduction, Hughes observed that  instead of relying on a 
fixed set of combinators, one could derive a different set of combinators for each program [7]. He 
called these derived combinators super-combinators. Not only do super-combinators preserve 
the property of not needing an environment structure for evaluation (having no free variables or 
embedded lambda abstractions), but  they also preserve the property of being fully lazy. Loosely 
speaking, we say that  a function is fully lazy if shared uses of any of its paa'tial applications do 
not result in the evaluation of the same subexpression more than once. (Examples of this will 
be given shortly.) 

Unfortunately, the algorithm for generating super-combinators turns out to be excessively 
conservative in preserving the property of full laziness. As a result, the super-combinators 
are very often mudl  more fine-grained than they need to be, resulting (as with a fixed set of 
combinators) in more reductions and greater consumption of space. 

In this section we discuss a refinement of super-combinators that  overcomes this conservatism, 
resulting in larger and more efficient combinators called refined super-cornbinators. We present 
an effective algorithm for translating a set of lambda expression definitions into refined super- 
combinators. The algorithm utilizes the sharing analysis of the previous section. 

4.1  S u p e r - c o m b i n a t o r s  

Consider the function f defined by: 

f = )ta.Ab.)~c. * (+ a ~ b) e 

from which we define the combinator a: 

a a b c =  * (+a2b)  c. 

Now suppose the following expression is evaluated: 
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(),9-(* (95) (96))) ( f 3 4 )  

Since g occurs twice, ( f  34) is shared. Yet because of this part icular choice of combinator, both 
( a 3 4 5 )  and ( a 3 4 6 )  will be evaluated independently. As a result, (+ 324) will be computed 
twice. Hence the combinator a does not have the property of being fully lazy, and results in 
more computat ion than necessaryJ 

To improve this situation, one might generate super-combinators from f ,  in which full laziness 
is (eonsercatively) guea'anteed by generating one combinator for ever), bound variable. To see 
how this works, we first define a free expression with respect to a part icular  bound variable v 
as an expression in which there are no free occurrences of v. A maximally free expression (mfe) 
with respect to v is a free expression which is not contained within any larger free expression 
(with respect to v), When the context is clear, we omit naming the bound variable with respect 
to which an expression is maximally fl'ee. 

The algori thm for generating super-eombinators begins with the innermost lambda expres- 
sion and works out, abstract ing at  each level all mfe's with respect to the bound variable at  that  
level. For example, for the definition of f above, we see that  the mfe of the innermost lambda 
expression is (+ a 2 b). This expression is abstracted to form the super-combinator: 

o : z e  ~-~ $ x c  

and thus f = Aa.)~b. a (÷ a s b). Next we note that  a 2 is the mfe of the new innermost lambda 
expression, so it is abstracted,  forming the combinator: 

[3yb=- c~(y + b) 

and thus f = ),a. fl (a2). Since there is no (non-triviM) expression in f that  is free with respect 
to a, the next (and final) super-combinator is: 

-~a = Z ( ~ )  

and all occurrences of f in the program are replaced by % 

Note that  the shared expression mentioned earlier, ( f  34), will reduce as follows: 

( f 3 4 )  ::~ (^134) 

(a 13) 

and therefore (+ 324) is only computed once - - -  thus achieving fully lazy evaluation. 

Even if a function definition contains no explicit nesting of lambda expressions it can still be 
transformed into a set of super-combinators. This is possible because a definition of the form, 

f × l  x2- . .  x n - ~ e  

can be transformed into 

f ~--- )tXl. ,,~X 2 . . . .  x n . e  

1This combina~or definition is essentially wha t  would result  from lambda lifting [8 t. 
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and the super-combinator algorithm can then be applied. 

A formal algorithm for generating super-combinators from a program P is: 

1. F ind  the leftmost, innermost lambda expression L, of the form ,kv.exp. 

2. Find the maximally free expressions, e~. . .  e,,  of exp with respect to v. 

3. Create a new combinator (say a) defined by: 

c ,  i ,  . . . i n  = e:cp[i / e ,  . . . . .  

where formal parameters i i . . .  ix do not occur free in exp. 

4. Subst i tute (a  e l . . .  e,,) for L in P. 

5. Repeat steps t-4 until step 1 fails. 

There are a few obvious optimizations to this algorithm, such as eliminating redundent 
combinators, as in: a a b = fl a b, 

4 . 2  R e f i n e d  s u p e r - c o m b i n a t o r s  

Although preserving full laziness is a worthy goal, the super-combinator approach is too conser- 
vative. To see this, note in the previous example that  the original single-combinator definition 
for f would be perfectly satisfactory if no partial  application of f were ever shared, for then 
there would be no part ial  result that  might be computed more than once. And because one 
combinator is used instead of three, the single-combinator solution would be more efficient with 
respect to both time and space, as argued earlier. If one could infer from a given program 
whether or not a part ia l  application of f was shared, then one could choose either a one-, two-, 
or three-combinator implementation for it, whichever is appropriate.  

Not surprisingly, this is the key improvement that  refined super-combinatol~ make over 
ordinary super-combinators. The optimization turns out to be applicable for a great majori ty  of 
all .user-defined functions, since, despite the elegance of higher-order functions created through 
part ial  application, they are in reality used only a small percentage of the time, and an even 
smaller percentage are shared. Thus a large improvement in performance can generally be 
expected on most programs. 

Assuming that  the sharing information is given, we write "g (w, x) (y, z) . . . .  " to indicate, 
for example, that  g applied to two arguments is shared, but  not to one or three arguments. 
We then generalize, in the obvious way, the notion of a maximally free expression with respect 
to a single variable, to a maximally free expression with respect to a set of variables. Let 
MFE(exp, S) be the set of mfe's of exp with respect to the set of identifiers S. 

When generating refined super-combinators for a lambda expression such as 

g (w, =) (y, z) . . . .  

we treat  each "group" of formal parameters as a single unit  by abstract ing mfe's with respect 
to each group, working innermost out as before. Given the previous discussion, the rationale for 
doing this should be obvious - we cannot make the groups any larger, for tha t  might violate full 
laziness, nor is there any reason to make them any smaller, since no finer part ia l  application is 
shared. 
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As an optimization we can treat each application of a function separately, by generating a 
different set of combinators for each application, with each set being tailored to the sharing 
properties at that point. Although this creates a potential for code explosion, it is probably 
a reasonable thing to do, for two reasons. First, the sharing properties typically do not vary 
much, and thus code explosion is not a problem. Second, in some sense it is unreasonable to 
penalize a programmer's use of a function in one place because of a use of the same function 
somewhere else. 

These ideas form the basis for the following algorithm for generating refined super-combinators: 

1. Let f l . . .  f n  be the names of the defined functions in the program. 

2. Let f/1.., f f  be the k occurrences of the function variable f i  in the program. For each f~, 
replicate the function definition: 

f l  x i l  . • . X i m  " ~  v x P i  

k times, yielding: 

f il Xi l  . . . Xim ": t x p i l  

f i l e  Z i l  . o . X i m  ~ c x p i k  

where initially e x p i l  . . . . .  e x p i k .  

3. Partit ion the formal parameters of each definition fii so as to reflect the sharing of partial 
applications at occurrence f~. 

4. For each definition fij, repeat this step until there is just  one partition of bound variables 
remaining. Let (xi l . . .  xin) be the right-most partition; i.e., 

f,j ( x , l . . . ) . . .  ( . . .  ~,(~-1)) (x ,~. . .  x, .)  = ~i~ 

Define a new combinator (say a) by: 

where vl •.. vp are new variable names not occurring free in e x p i i ,  and: 

Then replace the previous definition of f i j  by: 

5. Replace the occurrence f~ by the variable fii. 

5 C o n c l u s i o n  

In this paper we have defined a non-standard denotational semantics for a functional language 
that provides information about a very "operational" properW of programs, namely which ob- 
jects get shared during execution. The abstraction of these sema~ltics provides a valuable com- 
piler tool increasing the efficiency of functional language implementations. 
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