
Detecting Sharing of Partial Applications in
Functional Programs *

Benjamin Goldberg *
Department of Computer Science

Yale University
Box 2158 Yale Station
New Haven, CT 06520

A b s t r a c t

A method is presented for detecting sharing of partial function applications in higher
order functional programs. Such sharing occurs when there are several references to variables
that are bound to a particular function application. In order to provide an interprocedural
analysis, a non-standard semantics is defined for a lazy, higher-order functional language
such that the meaning of a program is information about the sharing that occurred during
its execution. An abstraction of this non-standard semantics is presented so that useful,
although less complete, sharing information can be provided at compile-time.

In the second part of this paper, we utilize sharing detection in order to provide an efficient
method for ensuring full laziness during program execution. A refinement of the method
used to generate Hughes' super-combinators is discussed. Super-combinators insure that no
unnecessary computation is performed when sharing occurs in a program. Unfortunately,
the Mgorithm used to generate super-combinators assumes that every function application is
shared and some unnecessary overhead is incurred while executing super-combinators. The
refined super-combinators, called super-duper combinators, presented in this paper incur no
unnecessary overhead in the cases where no sharing occurs.

1 Introduction

One of the more promising general approaches to the execution of funct ional languages is graph
reduction. In graph reduction, the program is represented, along with the data, as a graph
which gets t ransformed, or reduced, according to tile reduct ion rules of the l ambda calculus
[5,11]. Execut ion of the p rogram is finished when the graph has been reduced to a normal form.

The mos t significant aspect of graph reduct ion is its ability to copy references to expressions
(subgraphs) instead of the expressions themselves during be ta subst i tut ion. For example, given
the expression:

(Ax. (5 + x) * x) (f 3)

• This research was supported in part by the Department of Energy under grant FG02-g6ER25012 and a grant
from the Unisys Paoli Research Center

~Author's current address: Department of Computer Sclenee~ Courant Institute of Mathematical Sciences, New
York University, 251 Mercer Street, New York, NY 10012

409

and some function f , the lambda calculus specifies that reduction proceeds via the substitution of
(f 3) for every occurrence of x within the expression (x+5) ,x . In a purely lexical implementation,
the following transformation would take place:

(Ax. (5 + x)* x)(f 3) ~ (5 + (f 3))* (f 3)

and (f 3) would be computed once for each reference to x. Graph reduction, however, performs
the reduction by substi tuting a pointer to (f 3) for each occurrence of x in the lambda body.
This can be represented graphically in the following way:

(lambda x. (5+x) $ X

f 3 5

f 3

Therefore, the value of (f 3) need only be computed once upon the first demand. Every subse-
quent reference sees only the resulting value.

In the case where there are several reference to an expression e we say that e is shared. In this
paper the expressions tha t are of interest are partial applications of functions. Given a function
definition of the form,

f ; T I • . • X n = . . .

any application of f to k arguments, where k < n, is a part ial application of f . An application
of f to n arguments is a complete application.

This paper presents a method in which we can determine at compile time if a part ial appli-
cation of a given function may be shared during evaluation of the program. While this analysis
is interesting for its own sake, we will show how it can be used to increase the efficiency of
functional language implementations.

For each function f , as defined above, the analysis will determine the maximum number of
times that a part ial application of f to k arguments is referenced, for each value of k < n.

2 A Na ive A p p r o a c h

A naive approach to detecting sharing of part ia l applications would be to examine how each
part ia l application is used. If a part icular application of f, say (f y l . - . yk) , occurs only once
and is not passed as an argument to aaother function, then we can be sure that it is not
shared. However, if (f Yl . . . Yk) is passed as an argument to another function, then we must
conservatively assume tha t it is shared. A more sophisticated scheme, such as the one presented
in section 3, would perform an "interprocedural" analysis to detect if (f Yl . . - Yk) is shared even
when passed as an argument to another flmction.

I t may appear that when a part ial application is passed as an argument to a function, we
need only look at the number of times the corresponding formal parameter occurred lexieally in
the body of the function to determine if the part ial application is shared. If this were the case,
a syntactic analysis in which bound variables are simply counted would suffice. However, this
is not the case for (at least) two reasons:

410

1. The programs are (assumed to be) written ill a lazy functional language. Thus, even
though a bound variable may occur several times in the body of a function, it may never
actually be referenced. For example in the program,

{ f x y == x ÷ y;

hab==1;

gc==hcc;

result g (f 1);
}

the bound variable corresponding to (f 1) in the body of g occurs lexicMly several times
although the partiM application is never actually referenced.

2. Because programs are written in a higher-order functional language, a variable bound to
a partial application may itself be passed as an argument to an "unknown" function (i.e.
some other bound variable). For example, in the program,

f x y == x÷y;
h c d == c d * c 2;
g a b = = b a l ;
g (~ !) h;
}

the variable a that is bound to (f 1) is passed as an argument to the function that b is
bound to. A somewhat more sophisticated analysis is required to determine the behavior
of the function that b is bound to.

3 Semantic-based sharing analysis

Our methodolog-y for detecting sharing is one that has given promising results in recent work
on other aspects of functional languages [1,6]. This method involves defining a non-standard
denotational semantics for a functional language such that the result of executing a program
using these semantics will be information about the sharing that occurred during the execution.
However, since to obtain such complete information we need to actually run the program, this
method is not a tool that can be used at compile time.

We therefore define an abstraction of the non-standard semantics that will provide us with
useful, although less complete, sharing information. The compile-time "execution" of the pro-
gram using an abstraction of an exact semantics is called abstract interpretation [4,9] and has
been previously applied to analyzing the strictness properties of functions in a program [2,3].

Before proceeding~ an important point must be made. In graph reduction, as defined here,
sharing can only occur when a variable that has been bound to a partial application is referenced
several times. Our analysis does not perform common subexpression elimination (cse). Cse must
have occurred prior to sharing detection and have been performed by the abstraction of common
subexpressions from the expressions in which they occur. For example, (f3) + (f3) must be
translated into (Ax. x + x) (f 3) for sharing of (f3) to occur. Even though two expressions may
be identical and occur within the same lexical scope, unless they are occurrences of the same
bound variable no sharing will occur.

411

3 . 1 R e p r e s e n t i n g S h a r i n g I n f o r m a t i o n

When "executing" a program using a non-standard semantics for determining sharing, the value
of each expression must contain enough information to infer the sharing that occurred while the
expression was being evaluated. The value that is returned by the program wiI1 therefore contain
information about all the sharing that occurred while the program was executing. In this section
we describe a domain S, called the sharing domain, of values that contain the necessary sharing
information.

Each value in S must contain information indicating whether or not that value represents a
partial application. When a variable that is bound to such a value is referenced several times
it can then be determined whether or not sharing has occurred. If a variable is not bound
to a partial application then no sharing will occur no matter how many times the variable is
referenced. In addition, different partial applications must be represented by different values,
even if the partial applications are texically identical (omd have the same value in the standard
semantics). For example, during the evaluation of the program,

{ f x y == x÷y;
g a b == a 1 ÷ b 1;

result g (f I) (f i);
}

the variables a and b in the body of g are bound to d i f f e r e n t p a r t i a l a p p l i c a t i o n s and no
sharing of (f I) occtu's.

When a value is returned as the result of evaluating an expression, the value must also
contain information about which partial applications were shared while the expression was being
evaluated. For example, given the following function definitions,

{ f x y == x+y;

j z w == z+w;

g a == h a (j 1) ;

h c d == (c 1 + c
r e s u l t g (f 1);
)

2) * (d 3 ÷ d 4);

the value resulting from executing the program indicate that an application of f to a single
argument and an application of j to a single argument were each referenced twice and therefore
shared.

Because the result of evaluating an expression in the standard semantics may be a function,
a value in S must be able to capture the behavior of a function over elements of the sharing
domain. In section 2 it was seen that a purely lexical sharing analysis fails because partial
applications may be passed to "unknown" functions.

Based on the above discussion, any value 8 E S resulting from the evaluation of an expression
e is defined to be a triple of the form,

< p , 1, f >

where:

* The first element, p, indicates whether e represents a partial application and, if so, provides
enough information to differentiate it from other partial applications. This information is
called the p-value of e.

412

® The second element, t, is a list of part ial applications that were referenced during the
evaluation of e and is called the / -va lue of e.

® The third element,, f , is a function over S that captures the higher order behavior of e
and is called the f-value of e.

The three elements of a value in S are described in detail in the rest of this section.

T h e p -va lue

The p-value of an expression e is a tuple of the form

[id Vo . . . vn]

where i d is an identifier and v o . . o V n are natural numbers. This tuple can be interpreted as
follows: "Expression e represents the application of the bound variable i d to n arguments,
where i d was itself bound to a part ial application. The result of this application, and thus the
value of e, is also a part ia l application."

For example, in the program,

~[f x y z == x+y÷z;
gb==b !;
result g (f i);
}

the p-value of (b 1) inside the body of g is [b 1 1] since the variable b is bound to a paa-tiat
application and was applied to one argument. Likewise, the p-value of (f 1) in the expression
g (f 1) would be If 1] since (f 1) represents an occurrence of a part ial application (namely
f) applied to one argument.

In p-value the value of each vi is 1 (however, the same representation will be used when
describing other part ia l applications in I and the value of each v; will vary). When an expression
e gets applied to an argument and the result is a part ial application, then the p-value for the
result is the p-value for e with an addit ional 1 in the tuple.

Since the p-value of (b 1) does not indicate which function is actually partially applied,
how can it be determined that the part ia l application bound to b is really (f i) ? When g was
called, the p-value of its argument was [f 1]. However, the p-value of the corresponding formal
parameter , b, was bound to [b 1]. After the body of g has been evaluated, [b 1] is replaced by
[f 1] in the resulting p-value to show that that the occurrence of b was actually an occurrence of
(f 1). After this substi tution, the correct p-value for the program, namely [f 1 1] is returned.

In the s tandard semantics, when a function is applied the body of the function is evaluated
with the values of the arguments subst i tuted for (or bound to) the formal parameters. In the
sharing semantics described in section 3.2, t w o substitutions occur during the evaluation of a
function application. The first substi tution occul~ on entry to the function when the p-value of
each formal parameter is bound to a "dummy value" (such as [b 1] above). The second substition
occurs (as described above) after the body of the function has been evaluated and any "dummy
value" occurring in the result is replaced by the original value of the corresponding argument.

Why not simply bind the formal parameter to the value of the corresponding argument in a
function application (as is done in the s tandard semantics and most non-standard semantics of
functional lmlguages)? A problem arises in the following program:

413

f X y Z • = x+y÷z;
g a b =ffi a 1 + b 2 ;

result g (f i) (f I);
}

Although both arguments to g evaluate to the same value in the standard semantics, they
represent different partial applications. Therefore, the corresponding formal parameters, a and
b, must be recognized as being bound to different partial applications. If a and b were both
bound to the value of (f 1) then it would incorrectly appear as though they rePresent the same
partial application. If this were the case, it would seem that (f 1) was shared in the body of
g, which is untrue. One solution to this would be to create a unique identifier for every partial
application. However, as discussed in section 3.4 creating new identifiers creates a termination
problem for the analysis.

Instead of creating a unique identifier, we use the names of the formal parameters of g
as "dummy" names to distinguish between the two partial applications of f. The process of
binding the p-values of formal parameters to "dummy" values on entry to a function and back-
substituting real values into the result is described in section 3.1.1.

T h e / - v a l u e

The/-value is the second element of a value in S for an expression e. It is a s e t of tuples,
{ t l , . . . , t ,}, where each tuple, t i has the same form as a p-value, namely

[id vo . . . v ,]

The value of each vi is significant (unlike in a p-value) and represents the maximum number of
times that an application of the variable i d to i arguments occurred during the evaluation of e.
The variable i d must itself bound to a partial application.

For example, the tuple [b 1 2 1] indicates that the variable b is was bound to a partial
application and that there was:

• one occurrence of b applied to no arguments,

• two occurrences of a partial application of b to one argument (and thus was shared), and

• one occurrence of a partial application of b to two arguments.

Given the program,

{ f x y == x+y;

j Z W =ffi Z+W;

g a == h a (j 1) ;

h c d == (c 1 + c 9.) • (d 3 + d 4);
result g (f i);
>

the/-value of the result expression, g (f 1), would be:

{ [g l l] , [h l i 1],[f 12 1],[j 12 1]}

414

From this / -value, we can see tha t the only sharing that occurred was of a part ial application of
f and a part ia l application of j , each applied to a single argument.

In the body of h~ the / -va lue of the expression (d 3 ÷ d 4) would be {[d 2 1]} since d is
bound to the par t ia l application (j 1) and occurs twice. Although d is applied to a single
argument twice, namely (d 3) and (d 4), there is no sharing either of those applications.

Just like a p-value, the /-value of the body of a function may contain "dummy" partial
application names corresponding to the names of the formal parameters (such as d above).
Before the value of the fnnction application returns, all such "dummy" names are replaced by
inserting the p-values of the corresponding actual parameters into the appropriate tuples.

M e r g i n g / - v a l u e s

During the evaluation of an expression e several applications of the same variable may have
occurred. Since the / -va lue for the e must contain the maximum sharing information for part ial
applications of each bound variable, the sharing information for the same variables must be
merged.

The function tha t merges two tuples representing applications of the same variable is called
merge_tuple and is defined as follows:

m e r g e _ t u p l e ([i d Vo . . , vn], l id Vto . . . V~m]) =
l id (,,o + v'~) m a x (v , , ~) . . . ma:~(,~,,, vl,) v ' ,+l . • • ~',,]

where both tuples have the same i d and it was assumed (wlog) that m _> n. Note that the only
addit ional sharing caused by merging the tuples is the sum of the number occurrences in each
tuple of i d applied to no arguments, namely v0 + v~. The number of occurrences of i d applied to
i arguments is the maximum such number in the two tuples, namely m a x (v i , v~). If two tuples
do not represent application of the same id , then merge_tuple cannot be applied to them.

Since an / -va lue is a set of tuples, the function merge takes two sets of tuples and merges
them as follows:

merge(/l, i2) =

{merge_tuple(ti, t~) I ti E 1,, t~ e 12 and id(ti) = id(t~.)}

U

{t, t t, e It and Vt~, ~ 12, id(ti) # id(t))}
U

{6 I t) E 12 and Vti E ll, id(t~.) # id(ti}

where each ti a n d t~ is a tuple and id (t i) is the bound variable associated with ti .

Given the program,

{ f x == x i 2 + x 2 3;
g b c d == b + c + d;
result f (g I) ;
}

the/ -values of both (x i 2) and (x 2 3) in the body of f will be {Ix 1 1 1]}. Since both these
expressions occur in (x I 2 + x 2 3), the result ing/-value is:

merge({[x 1 1 1]}, {[x I 1 1]}) => {[x 2 I 1]}

415

The f - v a l u e

The f-value is the third element of the value in S for an expression e and reflects the
higher-order behavior of e. If, in the s tandard semantics, e evaluates to a function (i.e. part ial
application), then f-value for e is a function that operates over the sharing domain. While the
precise definition of the f-value of an expression is presented in section 3.2, in the next section
we describe how the f-valne is used when the expression e is applied in the program.

3.1.1 Funct ion Appl icat ions in the Sharing D o m a i n

If an application of the expression e to an argument x still represents a part ia l application, then
the f-value of e, when applied to the value of x, returns an element of S whose p-value is simply
the p-value for e with an additional 1 in the tuple. For example, if the value of e is < [b I], {}, f >
then the value in S of (ex) would be < [bll], {}, f ' > where f ' is a function capturing the higher
order behavior of (ex).

However, if e represents a part ial application of a function g and needs only one argument
to become a complete application, then when e is applied, the body of g gets evaluated. The
environment in which the body of g is evaluated binds the formal parameters of g to values in
S that have "dummy" p-values but whose f-values are the same as the corresponding actual
parameters. For example, in the program

h x y == x÷y;

f a == a I + b 2;

g b == b (h I);

result g ~;

)

the variable b is actually bound to the function f . When b is applied in the expression (b (h
1)) , the body o f f is evaluated in an environment in which the variable a is bound to

< [an], {}, f ' >

where f ' captures the higher order behavior of (h 1).

If e represents a part ial application of g then the f-value of e is function that takes two
arguments when an application of the form (e x) is encountered. The first argument is the value
of x that will be used when the body of g is executed. The second argument is the p-value for
e itself which will be appended with a 1 and returned as the p-value of the result if (e x) still
represents a part ial application.

Going back to the above program, when the body of f has been evaluated, the "dummy"
narae for (h 1), namely a, in the p-value and/ -va lue of the result have to be replaced by the
p-values of the actual arguments to f , namely (h 1).

The function backsub_p takes the p-value of the result of executing the body of a function and
replaces the bound variable name with the p-value of the corresponding actual parameter. The
second argument to backsub_p is a list of the p-values of the original arguments corresponding
to each bound variable.

backsub_p(p, sub_list) = let lid vo. . . v,] = p
in if look_up(id, 8ubJ i s t) = {} then p

else let I] = look_up(id, 8ubJ i s t)
in insert(p t, v0. . . v,)

4 1 6

where

¢ !
insert([id v 0' v~],vo • vm)) = lid Vo.. . v,~_~ (v~ x vo) vl .. vTn]

The function backsub_i takes the t-value of the result of executing the body of a function and
replaces the occurrence of a bound variable (i.e. "dummy") name in a tuple by the p-value of
the actual argument. The second argument to backsub_l is a list of the / -values and p-values of
the original arguments corresponding to each bound variable.

backsubJ(t , sub_list) =
let{[ido v00 . . . v0 .o] [idm ~.~o..~.~]} = l
in (Jsi, 0 < i < m

where if look_up(idl, sub_lint) = {} then
~; = { lid, ~ , ~ . . v,, , ,]}

else (p~, l~) = look_up(idi, sub_liat)
ai = {insert(p~, vi, . . . vi,,)} U l~

If the bound variable name corresponding to an actual argument occurs in the / -va lue of the
result, then two things have to happen during the back-substitution.

1. Any bound variable name, id, is replaced by the p-value of the corresponding argument.

2. If the bound variable name occurs in the / -va lue of the result, it means that the value of
corresponding argument was needed in the body of the function. Therefore, all the sharing
tha t occurred during the evaluation of the argument, namely the / -va lue of the argument,
should be included in the / -va lue of the result.

After the back-substi tutions have occured, the / -va lue of the result may now contain several
tuples tha t contain the same variable name. This happens when different formal parameters
are bound to the same part ia l application. Theretbre, after the back-substi tutions occur the
function combine is applied to the l-value of the result in order to merge all tuples with the
same variable name.

combine({tl~ t~ Sn} = merge({tl}, combine(t~, . . . , tn))

3.2 A n E x a c t S h a r i n g S e m a n t i c s

Before proceeding to the semantic definitions, we define the syntax of our lazy, higher-order
functional language:

c E Con constants
x E V vaxiables
e E E x p where

pr E Prog where
pr ::= { fl x n . . . z l ~ = ~1;

~ x2~ ...X2k: = e2;

o . .

f n X n l - . . X n ~ . = er~;
result e; }

417

Note that in this language we a~sume that all nested lambda abstractions have been "lifted"
to the top level. These top-level functions are precisely the ones whose sharing properties will
be determined. We also assume that common subexpression elimination, if desired, has already
been performed in the standard way (i.e., by lambda abstraction).

The semantics which we are about to give specifies the exact sharing that occurs during a
program's execution. The semantic domains and functions are:

P = (v x X ÷)
L = P(P)
F = (SxP)-+S
S = (P X L X F)) + {error}

Env = V --+ S
E : E x p - - + E n v ~ S

Ep : Prog-+ S

the domain of tuples

the sharing domain

the semantic function for expressions
the semantic function for programs

where ~{ is the set of natural numbers and and P (P) denotes the power set of P. The semantic
functions E and Ep are defined below.

Since a constant is not a partial application and does not contribute to the sharing of any
other partial application,

E[c~env = < [], {}, err >

where e is a constant and err is a function that returns an error if ever applied.

The meaning of a variable is whatever it is bound to in the environment in which it occurs.

The result of a binary operation is never a partial application, although sharing of partial
applications may have occurred during the evaluation of the operands.

E~el + ez~env = let < P l , l l , f l > = E[el~env
< p~, 12, f2 > = E[e2~env

in < [], merge(/x,/2), err >

hi a well-typed program, no partial application can serve as an operand in a binary operation.
Therefore, Pl and P2 above will both be [].

The conditional is haaldled as follows:

E[el ---+ eu, es~env = let < Pl , l l , f l > = E~el]env
in if (Oracle{eli = True) then

let < p2,12, f2 > = E[e~]env
in < P2, merge(/1,/2), f2 >

else let < Ps, 13, f3 > = E~ea]env
in < P3,merge(/1,/a), f3 >

In order to provide an exact semantics, conditionals must be resolved correctly (i.e. correspond-
ing to the way the conditional would be resolved in the standard semantics during program
execution). To do so, we defer to art oracle to determine the correct meaning of each condi-
tional. In the next section we provide an abstract sharing semantics that does not rely upon
such an oracle, but provides less precise sharing information.

Function application is defined as follows:

418

El[el e2]]eT~v--~ let < p l , l l ,A > = E~el~env
< Ps, ls, fz > = f l (E[e2]env,pJ

in < pa, merge(Is, l J , f3 >

Since fl is the function that captures the higher order behavior of el, f l is applied to the
value of e2. The sharing information gained from evaluating el is then merged with the sharing
information gained from performing the application. Notice the extra argument Pl to f l which
indicates to ft which part ial application it represents.

The meaning of a program is the value of the result expression in an environment in which
all function names are bound to values in S.

Ep[{F1 x r . . . , x tk , = ~1;

F n X n l . . . X n k n = en~

result e;

whererec

eric = [~ l / & . . . , ~,,/F,]
8, = < [F, 1], {},

A < pxl , lx l , f x l > Pu
< app(pl ,1) , {},

A < px2, lx2, fx2 > P2.
< app(p2,1), {} ,A. . .

A. < pxk~,lxk~,fx~ > Pk,.
let px~ = if (px i = [])titan []

else[xii 1] for1 < j <_ ki
< p~, I r, f ' > =

E[e,~en~,'[< px~, { } , fx , > / z , ,
, . . J , < pxk,, { } , fxk, >/~,~,]

p" = backsub_p(p', [pxl/xil pxk,/ xik,])
l" = {Pk~ } U backsub_l(l', [(pxl, l x J / x l ,

• . . (pxk, , l~,)/~k,]))
in < p", combine(l"), f ' > > . . . >

The utility functions backsub_p, backsub_l, and combine were defined in section 3.1.1. The
function app(p, 1) simply takes a p-value and appends a 1 to the end of the tuple.

3.3 A b s t r a c t In terpre ta t ion o f t h e S h a r i n g S e m a n t i c s

Since we are unable to resolve conditionals at compile time, we define an abstract sharing
semantics for our functional language such that the meaning of a program is information about
the maximum sharing that could possibly occur when the program is executed.

This is accomplished by defining an abstract sharing domain S' whose elements are sets
representing alternate possibilities for the sharing occuring in an expression. The abstract
semantic domains and functions are:

419

P = (v × ~+)
L = ~ (e)

~' = (s' x P) --+ s'
S ' = ? (P x L x F ') + {error}

E n v ~ = V -+ S ~
E ~ : E x p ~ E n v ~ S ~

the domain of tuples

the abstract sharing domain

the abstract semantic function
for expressions
the abstract semantic function
for programs

and E ~ and E~ are de~ned below.

let {< Po,/0, fo > , < p n , l . , f . >} = E l ~ e ~ e n v
{< p~, l~, f~ > , < P',n, I'm,/~m >} = E'~%~env
l~ = merge(/./~) for all i ___ n, j < m

11 l" in (< [t,Zao, ~ - > < ~,, ..,, ~ - >}

z ' ~ , - , ~, ~ , ~ = let {< po,10,ro > . . . < p , , z~ , f , >} = E ' i [~ , ~
{< p~,lg, S; > . . . < p ' , e , r >} = E ' ~ d ~

~,~ =< v~,mer~(t,,t~.),f~ > for an i < ~, j <_ ,~
,~$ I I $! z~j = < pi, merge(/i, I~), f~. > for all i < n, j < q

in {~ul for an i < . , j < q } u {zb. / for an ~ < n, j < q }

let {< v0,10, f0 > . . . < v , , t , , f , >} = E ' ~ , ~ ¢ ~

k({< v'~,l~,f1~ >},pd, for each i < , , j <_ m
R , l/ # in (J(< Pi~, me~ge(/i/t, li), f;ik >} for all i,3",k

E;[{ 2~1 X l l . ' - ~ l k l ~" g l ;

. , ,

~a Xnl . . . Xnk,, ~ e.n;
r e s u l t e;

whererec

420

~, = {< [F, ~l, {},
A{< pxl,lxl, fx l >} Pl.
{< ~pp(p~, 1), {},

),{< px2, lx~,fx~ >} p2.
{< ~pp(p~, i), {}, ~. . .

;~{< pxk,, Ilk,, f xk, >} pk,.
tel px) = if (pxj = [])then []

else[x// 1], for 1 _< j < k;

{< p~,l~, g > , . . . , < p'~,t ' , f " >} :
E'[[ei~en,/[{ < pz i, {}, f z l > } / x l , . . . ,

. . . ,{< X t p k,, {}, :~k, >} I~ ,1
p~ = backsub_p(p~-, [px,/x, ,pxjxt:,]),

for all j < m
I; = {Pk~} U backsubJ(/~.,[(pxl,lx~)/xb.. .

. . . (p~, , l~ ,) / ~,])),
for all j < m

in { < pg, combine(/g), f~ > , . . , < p~, combine(l~) , f~ > }
}} . . . }

3.4 Terminat ion

In order to guarantee tha t the in terpre ta t ion of a program using the above abstract sharing
semantics will t e rmina te we have to show tha t eve15, function in the subdomain

F ~ = (S' x P) -* S ~

reaches a fixpoint in a finite number of iterations. We can accomplish if we do all of the following:

1. Ensure tha t the subdoma in P of p-values is finite. This is clearly the case since a p-value
is a tuple consist ing of a variable name (from the finite set V) and a collection of ls. Since
a p-value tuple represents a part ial application, the size of the tuple (i.e. the number of
l ' s) is l imited by the largest number of formal parameters tha t can occur in a function
definit ion (clearly a finite number) .

hx section 3.1 it was ment ioned that it is undesirable to create a new identifier for each
par t ia l applicat ion created dur ing execution of the program. If new identifiel~ were created
in such a fashion it would be very difficult (if no t impossible) to insure tha t tile elements
of a shar ing domain (including all those new identifiers) were finite in number .

2. Ensure tha t the the subdomain L of / -values is finite. Each / -va lue is a set of tuples tha t
describe the m a x i m u m number of occurrences of par t ia l applications of variables. We
can make the set of possible tuples finite by set t ing a limit on the max imum number of
occurrences of a par t ia l application tha t the analysis can detect. In most cases, we simply
want to know if a part ial applicat ion of some funct ion occurred more t han once. If the
n u m b e r of occurrences reaches the m a x i m u m value the any further occurrences will not
be counted.

3. Ensure tha t the domain F s -= (S' x P) -+ S ' contains a finite number of functions. Since
the number of functions of a given ar iV (i.e. the number of arguments tha t a funct ion can

421

be applied to before the result is no longer a function) over a finite domain is finite, we
can ensure tha t F ' is finite by requiring that the aa'ity of all each function in F ' is finite.
This is a reasonable restriction and is often enforced by a type inferencing system.

In addition, we can define an ordering of the elements of S ' and prove monotonicity properties
about the functions in F J although such a discussion is beyond the scope of this paper.

4 A n Appl icat ion: Efficient Full Laziness

As discussed in the introduction, graph reduction is one way of implementing the lambda-
calculus. Another approach, which also utilizes sharing of expressions, is combinator reduction
I12], in turn based on the reduction rules of combinatory calculus [5,10]. Both of these ap-
proaches handle higher-order functions and lazy evaluation fairly naturally. However, graph
reduction has the disadvantage of having to explicitly implement lambda catculus's implicit no-
tion of "substitution," which is typically manifested as an environment for bound variables. In
combinator reduction, the environment is eliminated in favor of a more fine-grained computation,
in which operands and operators are paired up through the behavior of a fixed set of primitive
combinators. This simplifies the approach considerably, but at the expense of potentially more
reductions and a greater consumption of space.

As an improvement to combinator reduction, Hughes observed that instead of relying on a
fixed set of combinators, one could derive a different set of combinators for each program [7]. He
called these derived combinators super-combinators. Not only do super-combinators preserve
the property of not needing an environment structure for evaluation (having no free variables or
embedded lambda abstractions), but they also preserve the property of being fully lazy. Loosely
speaking, we say that a function is fully lazy if shared uses of any of its paa'tial applications do
not result in the evaluation of the same subexpression more than once. (Examples of this will
be given shortly.)

Unfortunately, the algorithm for generating super-combinators turns out to be excessively
conservative in preserving the property of full laziness. As a result, the super-combinators
are very often mudl more fine-grained than they need to be, resulting (as with a fixed set of
combinators) in more reductions and greater consumption of space.

In this section we discuss a refinement of super-combinators that overcomes this conservatism,
resulting in larger and more efficient combinators called refined super-cornbinators. We present
an effective algorithm for translating a set of lambda expression definitions into refined super-
combinators. The algorithm utilizes the sharing analysis of the previous section.

4.1 S u p e r - c o m b i n a t o r s

Consider the function f defined by:

f =)ta.Ab.)~c. * (+ a ~ b) e

from which we define the combinator a:

a a b c = * (+a2b) c.

Now suppose the following expression is evaluated:

422

(),9-(* (95) (96))) (f 3 4)

Since g occurs twice, (f 34) is shared. Yet because of this part icular choice of combinator, both
(a 3 4 5) and (a 3 4 6) will be evaluated independently. As a result, (+ 324) will be computed
twice. Hence the combinator a does not have the property of being fully lazy, and results in
more computat ion than necessaryJ

To improve this situation, one might generate super-combinators from f , in which full laziness
is (eonsercatively) guea'anteed by generating one combinator for ever), bound variable. To see
how this works, we first define a free expression with respect to a part icular bound variable v
as an expression in which there are no free occurrences of v. A maximally free expression (mfe)
with respect to v is a free expression which is not contained within any larger free expression
(with respect to v), When the context is clear, we omit naming the bound variable with respect
to which an expression is maximally fl'ee.

The algori thm for generating super-eombinators begins with the innermost lambda expres-
sion and works out, abstract ing at each level all mfe's with respect to the bound variable at that
level. For example, for the definition of f above, we see that the mfe of the innermost lambda
expression is (+ a 2 b). This expression is abstracted to form the super-combinator:

o : z e ~-~ $ x c

and thus f = Aa.)~b. a (÷ a s b). Next we note that a 2 is the mfe of the new innermost lambda
expression, so it is abstracted, forming the combinator:

[3yb=- c~(y + b)

and thus f =),a. fl (a2). Since there is no (non-triviM) expression in f that is free with respect
to a, the next (and final) super-combinator is:

-~a = Z (~)

and all occurrences of f in the program are replaced by %

Note that the shared expression mentioned earlier, (f 34), will reduce as follows:

(f 3 4) ::~ (^134)

(a 13)

and therefore (+ 324) is only computed once - - - thus achieving fully lazy evaluation.

Even if a function definition contains no explicit nesting of lambda expressions it can still be
transformed into a set of super-combinators. This is possible because a definition of the form,

f × l x2- . . x n - ~ e

can be transformed into

f ~---)tXl. ,,~X 2 x n . e

1This combina~or definition is essentially wha t would result from lambda lifting [8 t.

423

and the super-combinator algorithm can then be applied.

A formal algorithm for generating super-combinators from a program P is:

1. F ind the leftmost, innermost lambda expression L, of the form ,kv.exp.

2. Find the maximally free expressions, e~. . . e,, of exp with respect to v.

3. Create a new combinator (say a) defined by:

c , i , . . . i n = e:cp[i / e ,

where formal parameters i i . . . ix do not occur free in exp.

4. Subst i tute (a e l . . . e,,) for L in P.

5. Repeat steps t-4 until step 1 fails.

There are a few obvious optimizations to this algorithm, such as eliminating redundent
combinators, as in: a a b = fl a b,

4 . 2 R e f i n e d s u p e r - c o m b i n a t o r s

Although preserving full laziness is a worthy goal, the super-combinator approach is too conser-
vative. To see this, note in the previous example that the original single-combinator definition
for f would be perfectly satisfactory if no partial application of f were ever shared, for then
there would be no part ial result that might be computed more than once. And because one
combinator is used instead of three, the single-combinator solution would be more efficient with
respect to both time and space, as argued earlier. If one could infer from a given program
whether or not a part ia l application of f was shared, then one could choose either a one-, two-,
or three-combinator implementation for it, whichever is appropriate.

Not surprisingly, this is the key improvement that refined super-combinatol~ make over
ordinary super-combinators. The optimization turns out to be applicable for a great majori ty of
all .user-defined functions, since, despite the elegance of higher-order functions created through
part ial application, they are in reality used only a small percentage of the time, and an even
smaller percentage are shared. Thus a large improvement in performance can generally be
expected on most programs.

Assuming that the sharing information is given, we write "g (w, x) (y, z) " to indicate,
for example, that g applied to two arguments is shared, but not to one or three arguments.
We then generalize, in the obvious way, the notion of a maximally free expression with respect
to a single variable, to a maximally free expression with respect to a set of variables. Let
MFE(exp, S) be the set of mfe's of exp with respect to the set of identifiers S.

When generating refined super-combinators for a lambda expression such as

g (w, =) (y, z)

we treat each "group" of formal parameters as a single unit by abstract ing mfe's with respect
to each group, working innermost out as before. Given the previous discussion, the rationale for
doing this should be obvious - we cannot make the groups any larger, for tha t might violate full
laziness, nor is there any reason to make them any smaller, since no finer part ia l application is
shared.

424

As an optimization we can treat each application of a function separately, by generating a
different set of combinators for each application, with each set being tailored to the sharing
properties at that point. Although this creates a potential for code explosion, it is probably
a reasonable thing to do, for two reasons. First, the sharing properties typically do not vary
much, and thus code explosion is not a problem. Second, in some sense it is unreasonable to
penalize a programmer's use of a function in one place because of a use of the same function
somewhere else.

These ideas form the basis for the following algorithm for generating refined super-combinators:

1. Let f l . . . f n be the names of the defined functions in the program.

2. Let f/1.., f f be the k occurrences of the function variable f i in the program. For each f~,
replicate the function definition:

f l x i l . • . X i m " ~ v x P i

k times, yielding:

f il Xi l . . . Xim ": t x p i l

f i l e Z i l . o . X i m ~ c x p i k

where initially e x p i l e x p i k .

3. Partit ion the formal parameters of each definition fii so as to reflect the sharing of partial
applications at occurrence f~.

4. For each definition fij, repeat this step until there is just one partition of bound variables
remaining. Let (xi l . . . xin) be the right-most partition; i.e.,

f,j (x , l . . .) . . . (. . . ~,(~-1)) (x ,~. . . x, .) = ~i~

Define a new combinator (say a) by:

where vl •.. vp are new variable names not occurring free in e x p i i , and:

Then replace the previous definition of f i j by:

5. Replace the occurrence f~ by the variable fii.

5 C o n c l u s i o n

In this paper we have defined a non-standard denotational semantics for a functional language
that provides information about a very "operational" properW of programs, namely which ob-
jects get shared during execution. The abstraction of these sema~ltics provides a valuable com-
piler tool increasing the efficiency of functional language implementations.

425

6 Acknowledgements

I would like to thank Paul Hudak for his careful reading of earlier drafts and helpful suggestions.
Much of what I have learned about semantics and abstract interpretation has been a result of
discussions with Jonathan Young and Adrienne Bloss as well as Paul Hudak. I would also like
to thank Wendy Goldberg for helping out when time was short.

References

[1] Adrienne Bloss and Paul Hudak. Variations on strictness analysis. In Proe. 1986
ACM Conference on Lisp and Functional Programming, pages 132-142, ACM SIG-
PLAN/SIGACT/SIGART, Cambridge, Massachusetts, August 1986.

[2] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analysis for higher
order functions. In LNCS g17: Programs as Data Objects, pages 42-62, Springer-Verlag,
1985.

[3] C. Clack and S.L. Peyton Jones. Strictness analysis - a practical approach. In Functional
Programming Languages and Computer Architecture, pages 35-49, Springer-Verlag LNCS
201, September 1985.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th ACM Sym. on Prin. of
Prog. Lang., pages 238-252, ACM, 1977.

[5] H.K. Curry and R. Feys. Combinatory Logic. Noth-Holland Pub. Co., Amsterdam, 1958.

[6] P. Hudak and J. Young. Higher-order strictness analysis for untyped lambda calculus. In
lgth ACM Sym. on Prin. of Prog. Lang., pages 97-109, January 1986.

[7] R.J.M. Hughes. Super-combinators: a new implementation method for applicative lan-
guages. In Proc. 1982 ACM Conf. on LISP and Functional Prog., pages t-10, ACM,
August 1982.

[8] T. Jolmsson. The G-machine: an abstract machine for graph reduction. Technical Report,
PMG, Dept. of Computer Science, Chalmers Univ. of Tech., February 1985.

[91 A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative Pro-
grams. PhD thesis, Univ. of Edinburgh, 1981.

[10] M. Schonfinkel. Uber die bausteine der mathematischen logik. Mathematische Annalen,
92:305, 1924.

[11] J.E. Stoy. Denotational Semantics: The Seott-Straehey Approach to Programming Language
Theory. The MIT Press, Cambridge, Mass., 1977.

[12] D.A. Turner. A new implementation technique for applicative languages. Software - -
Practice and Experience, 9:31-49, 1979.

