
Finding Fixed Points in Finite Lattices 

Chris Martin 

Chris Hankin 

Department of Computing, 

Imperial College of Science and Technology, 

180 Queen's Gate, London SW7, 

England. 

ABSTRACT 

Recently there has been much interest in the abstract interpretation of 

declarative languages. Abstract interpretation is a semantics-based approach to 

program analysis that uses compile time evaluation of programs using 

simplified value domains. This gives information about the run-time properties 

of programs and provides the basis for significant performance improvements. 

A particular example of abstract interpretation is strictness analysis which 

allows the detection of the parameters in which a function is strict; these 

parameters may be passed by value without compromising the termination pro- 

perties of the program. 

The central, most complex task of an abstract interpreter is finding the 

fixpoints of recursive functions in the abstract value space. An elegant algo- 

rithm, the frontiers algorithm, has been proposed by Simon Peyton-Jones and 

Chris Clack that performs very well for the strictness analysis of first-order 

functions. In this paper we extend their algorithm and show how it can be 

applied to higher-order functions over arbitrary finite lattices. This raises the 

possibility of using the algorithm as the basis for more general abstract 

interpretation tools. We describe the algodthin in a modular way that is con- 

ducive to proofs of correctness and termination properties. 
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1. Introduction 

Abstract interpretation is a semantics-based method of finding properties of programs at com- 

pile time. A major example is strictness analysis, which involves analysing lazy functions to 

determine which parameters the functions are strict in. For these parameters, the more efficient 

call-by-value evaluation strategy can be used without affecting the semantics. (A unary func- 

tion f is strict in its argument if 

fJ. =± 

with the obvious generalisation to functions of more than one argument.) 

A large proportion of the functional language abstract interpretations described in the literature 

are defined over finite lattices. Strictness Analysis for example, uses the domain 2 ({0,1}), 

with 0 representing definite non-termination, and 1 representing possible termination. Arith- 

metic operators such as "+" and "*" that are strict in both their arguments become boolean and 

in the abstract domain, constants become 1, and the conditional becomes 

predicate and (consequent or alternative) 

For example: the "accumulating factorial" function 

afact  = ~, x y.if (x = 0) then y else afact  (x - 1) (x * y) 

becomes the abstract function: 

afact  # = L x y.  (x and 1) and (y or afact  # (x and 1) (x and y)) 

= ~, x y. x and (y or afact  ~ x (x and y)) 

The functions analysed are usually recursive and it is therefore necessary to find the fixpoints 

of abstract functions over finite lattices. Methods of finding fixpoints already exist for first- 

order functions over the two point domain. 

Finding the fixpoint of a recursive function is exponential in the number of arguments and the 

size of the expression, so we cannot expect to find efficient algorithms in the general case. 

What we can aim for is an algorithm that works well with the "average" functions that occur in 

functional programming languages. [Clack85,Abramsky87] contain the background to the 

frontiers method and show how it is efficient for these "average" functions. We shall not 

repeat this but concentrate on giving a formal basis for the algorithms. There is much scope 

for efficient implementation as there are many places in which heuristics can be used to make 

"optimal" choices to increase the average case efficiency of the algorithm. 

We shall outline an improved version of the frontiers algorithm of [Clack85] and we shall 

show how it can be extended to analyse functions that take functional arguments (higher-order 

functions). We shall then show how it can be extended further to include functions defined 

over arbitrary finite lattices. Finally we shall give a brief description of other work in this 

field, and other approaches that might be possible for finding fixpoints over general domains. 
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2. Definition of a Frontier  

A function over a finite lattice can be represented by labelling all the possible arguments 

(represented as tuples) with the value of the function at that point. Consider the function 

f = ~,xy.x and y 

over the abstract domain 2. Labelling all the possible arguments would give 

<x, y> f x y 

<0, 0> 0 
<I, O> 0 
<0, 1> 0 
<1, 1> 1 

We know, however, that there is an ordering on the domain of arguments to f (the argument 

domain: A), the pointwise ordering: 

<xl,  xa , . . . xn> <_ <yl.  y2,_. y . >  iff xi<YiVi: l <_i<_n. 

Therefore we have the following order on the argument domain A: 

<1, 1> 
! \ 

<1, 0> <0, 1> 
\ ! 

<0, O> 

We also know that the functions are monotonic: 

x <_ y -~  f x  <_ f y  Vx, y c A  

This means that all the nodes in A labelled with a 1 (the "l-nodes") will be above all those 

nodes marked with a 0 (the "O-nodes"). We can use this information to construct a much more 

compact representation of the function: we need only store those nodes on the boundary 

between nodes labelled with different results. 

Such sets of nodes on the boundary are called frontiers. Note that there are two choices for a 

frontier. We can either store the nodes on the "0" side of the boundary or the nodes on the 

"1" side of the boundary. We shall call the former maximum-O-frontlers and the latter 

minimum-l-front iers ,  as they record the maximum O-nodes, and minimum 1-nodes respec- 

tively. 

Clearly none of the nodes in a frontier are comparable - a frontier contains the maximum 

(dually: minimum) nodes that evaluate to the same value - if any two elements were compar- 

able, then one would not be a maximum (dually: minimum) node. We say that frontiers are 

irredundant.  

Frontiers  have the following properties:  

The maximum-0-frontier of a function f from an argument domain A to a base domain 2 
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f : A--> 2 

is a set F0 e 2  a such that: 

1. Vx cA,  f x -- 0 --> ~ y  EF0 : x < y. 

(All 0-nodes are less than at least one frontier node) 

2. ¥x eF0, f x  =0 .  

(All the nodes on the frontier are 0-nodes) 

3. Vx, y ~F0, x < y ---~ x = y. 

(the frontier is irredundant) 

A dual definition exists for the minimum-l-frontier. 

There is a one-to-one correspondence between functions and maximum-0-frontiers (dually: 

minimum-l-frontiers) : each frontier defines a unique function, and vice-versa. 

2.1. Definitions 

The frontiers algorithm does not examine the structure of the functions under analysis, and we 

shall only assume the following: 

Definition: a function f maps a point x in the argument domain A to a point r in the base 

domain B. We say that "f x evaluates to r" and that point x in the argument domain A is an 

"r-node". 

For an n-ary function, each node X in the argument domain A will be a tuple : 

X = < x i  .... x , >  

Definition: We call the ith component of an argument node X the "ith element" of that node, 

and each element is in the "element domain" E. 

Example: with first-order strictness analysis~ the base domain B and the element domain E are 

both 2 ({0,1}), and the argument domain is the n-wise cartesian product of the element 

domain; 2 with itself. Moving to higher-order strictness analysis, the base domain B is still 2 

but the element domain E may now contain functions over 2. 

Definition: We shall say that a point x in the argument domain "is contained in" a maximum 

frontier MAX-F 

iff ~ f ~ MAX-F: x < f. 

Similarly, a point x "is contained in" a minimum frontier MIN-F 

iff 3 f e MIN-F: x > f. 

2.2. Finding Fixpoints 

In finding the fixpoint corresponding to a function f of type (A ---> B): 
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A 

A 

A 

f , ,  

f = %xI . . . .  xn.body 

we actually need to find the fixpoint of the functional G of type (A --> B) --> (A ---> B), which 

is defined as 

G = 7Lf, xl . . . .  xn.body 

What we are looking for is the least fixed point (fixpoint) of the functional G, which will give 

us a function equal to f but without the recursion. The frontiers algorithm finds the fixpoint by 

iterating to find successive approximations to f, starting with the function that maps every argu- 

ment to the bottom value of the base domain ( .[ ). 

= ~. x~. x2 . . . .  x ~ . l  

= Gqo)  

= GffO 

= G (fro<) 

This sequence (the Ascending Kleene Chain : AKC) clearly has a limit as the functions are 

monotonic and there are only a finite number of functions over any finite domain. 

3. Finding Frontiers for First-Order Strictness Analysis 

At each step in the AKC, we need to find the frontier representation of the next approximation. 

We can then compare this with that obtained for the previous iteration, and if they are equal 

we have found the fixpointo The next approximation is the function f with the result of  the 

previous iterationf~_ I used to evaluate any recursive calls to f. 

3.1. Evaluating Recursive Calls 

When we encounter a recursive call during evaluation of a function, the result is that which 

would be returned by the previous approximation. This approximation will be represented by a 

maximum-0-frontier, and to determine the value of the function it represents with the given 

argument, we test if the actual argument is contained in the frontier. If  it is, then the argument 

is less than at least one of 0-nodes on the 0-frontier, and, by monotonicity, the function must 

return 0 at that point. Conversely, if the argument is not contained in the 0-frontier the func- 

tion returns 1. 

3.2. The Frontiers Algorithm 

As in [Clack85] we search the argument domain in parallel from the top and the bottom pick- 

ing arguments to evaluate alternately from the upwards and downwards searches. 

The [Clack85] algorithm uses the upwards search to look for the minimum-l-frontier. When it 

encounters a 1-node, it adds that node to the minimum-l-frontier it is consEucting. The down- 

wards search similarly looks for the maximum-0-frontier. When the two searches meet in the 

middle, the upwards search needs to evaluate the lowest "1-nodes" to know it has reached the 
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frontier. Similarly, the downward search needs to evaluate the highest "0-nodes" to realise it 

has found it's goal. It is possible, therefore, that certain nodes in the middle of the argument 

domain are evaluated twice. The main objective of the algorithm is to reduce as much as pos- 

sible the number of evaluations needed to determine the fixpoint, and so we should avoid 

evaluating nodes at points in the argument domain where we can determine the value of that 

node by other means. 

Our algorithm is different in that it uses the upwards search to build up the 0-frontier - every 

time a 0-node is found by either search, it is added to the 0-frontier (with the appropriate 

checks to ensure irredundancy). Once the algorithm has terminated this frontier will be the 

required 0-frontier. 

This frontier will always contain the maximum of the 0-nodes found so far, we can check any 

node picked for evaluation in the downward search against this frontier; if it contains the node, 

we know the point in the argument domain is a 0-node and need not evaluate it. 

Dually, a similar test is carried out before evaluating any node picked from the upwards search 

with the minimum-l-frontier being constructed by the downwards search. 

3.3. Searching The Argument Domain 

Each search is represented by two sets. For the upwards search building up the 0-frontier, 

these are: 

NewFr: This contains all the points that have evaluated to 0 so far. This is a maximum-0- 

frontier. 

TrialFr:  This is a minimum-l-frontier, which contains within it all the points that have yet to 

be evaluated during the upwards search that still might evaluate to 0. The elements of this set 

are the next values to be evaluated by the upwards search. 

As the upwards search progresses, 0-nodes are added to NewFr, and TrialFr moves up the 

argument domain. Once TrialFr is empty, the whole domain has been searched and the algo- 
rithm terminates. 

Notation: call the NewFr and TrialFr searching upwards building up the maximum-0-frontier 

"NewFr-0" and "TrialFr-0" respectively. Call their duals in the downward search "NewFr-1" 
and "TrialFr- I". 

The algorithm for finding the frontiers then becomes: 
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TfialFr-0 = {<0, 0 . . . .  0> ) 
NewFr-0 = (} 

TrialFr-1 = NewFr-0 from the previous iteration:f~_~ - initially {<1, 1 . . . .  1>} 
NewFr-1 -- NewFr-1 from the previous iteration:f~_l - initially {} 

while (TfialFr-0 • TrialFr-1 ~ {}) 

if TrialFr-0 ~ {} 

pick x from TrialFr-0 

if CONTAINS-MIN (New-Frl, x) 
then result = 1 
else evaluate f x to give result. 
endif 

Search-Upwards (x, result) 
Search-Downwards (x, resul0 

endif 

if TfialFr-1 ;~ {} 

pick x from TrialFr-1 

if CONTAINS-MAX (New-Fr0, x) 
then result = 0 
else evaluate f x to give result. 
endif 

Search-Upwards (x, result) 
Search-Downwards (x, result) 

endif 
endwhile 

3.4. The Search Actions 

The "Search-Upwards" and "Search-Downwards" routines need to update the "NewFr" and 

"TrialFr" frontiers each time they are passed information about a point in the domain. The 

upwards search is the exact dual of the downwards search and so we will only consider the 

downwards instance. 

The action taken by the downwards search on the receipt of  a 

(point, value) 

pair, indicating that "point" in the argument domain evaluates to "value" in the base domain, is 

as follows: 
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Search-Downwards (point, value) : 

if (value = 1) 
NewFrl := ADD-MIN (New-Frl, {point}) 
TrialFrl := REMOVE-MAX (TrialFrl, point) 

else 
TrialFrl := REMOVE-BELOW (TrialFrl, point) 

endil' 

3.5. Frontier Manipulation 

We will now define the operations we have used in the above algorithm. Note that where a 

particular function (ADD-MIN for example) is defined, we shall also define it 's dual (ADD- 

MAX) for the search in the other direction. 

3.5.1. CONTAINS-MAX and CONTAINS-MIN 

CONTAINS-MAX indicates whether a particular node is contained within a given MAX-FR: 

CONTAINS-MAX : MAX-FR x NODE 

CONTAINS-MIN : MAX-FR x NODE 

defined by: 

CONTAINS-MAX (Max-Fr, Node) = True 

= False 

---) {True, False} 

{True, False} 

iff 3x ~ Max-Fr: Node < x 

otherwise 

where < is the comparison operation on the argument domain A, which in turn is defined 

pointwise using < on the element domain E. Similarly CONTAINS-MIN is defined using >. 

3.5.2. ADI)-MIN and AI)I)-MAX 

We define a union operation on minimum-frontiers called: 

ADD-MIN : MIN-FR x MIN-FR ---) MIN-FR 

returning the Union of the two argument frontiers, keeping only the minimum of any two com- 

parable points (checking using CONTAINS-MIN). Clearly any point above either of the two 

component frontiers will also be above the union of them. The dual: 

ADD-MAX: MAX-FR x MAX-FR --) MAX-FR 

keeps the maximum of any two comparable points using CONTAINS-MAX. 

Clearly 

ADD-MIN (Min-Fr, {point}) 

returns the minimum-frontier "Min-Fr" but with "point" (and any points above it) as 1-nodes. 
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The dual, ADD-MAX (Max-Fr, {point}), returns the maximum-frontier "Max-Fr" but with any 

points below "point" as 0-nodes. 

3.5.3. REMOVE-MAX and REMOVE-MIN 

We use REMOVE-MAX to advance TrialFr-1 down the lattice when we encounter a 1-node: 

REMOVE-MAX : MAX-FR x Node --~ MAX-FR 

REMOVE-MIN : MIN-FR x Node --~ MIN-FR 

Then: 

REMOVE-MAX (Max-Fr, point) 

returns the maximum frontier "Max-Fr", but any nodes _> "point" become l-nodes. Intuitively, 

we need to remove any points in "Max-Fr" that are _> "point" and replace them with the 

highest points below "Max-Fr" that are ~ "point". Thus any points in the domain >_ "point" 

would not be in the resulting frontier, but the highest points that are ~ "point" would be. 

Example:  Consider functions over the domain 2 ~ 2 --~ 2 ~ 2 (functions with three base- 

domain arguments). The argument domain is: 

<1, 1, i> 
/ ', \ 

/ [ \ 
/ ! \ 

<1, 1, 0> <1, 0, 1> <0, 1, 1> 
I \ / \ /  I 
I v v i 
I /\ /\ k 
I i \ / \ L 

<1, 0, 0> <0, 1, 0> <0, 0, 1> 
\ I / 

\ I / \ . / 

<0, 0, 0> 

Consider the 0-frontier Fr = {<110>, <101>, <011>}, and a point x: <001>. All the points in 

the frontier above <001>, that is <101> and <011>, need replacing with the highest points 

below them that are not above <001>. These points are <100> (below <101>) and <010> 

(below <011>): 

Then Fr is the set of  highest 0-nodes (with point "x" marked, the 0-Fr labelled with "*" and 

representing the domain just by the result labelling): 

1 
0* 0* 0* 
0 0 0 ~-- point "x". 

0 

and the frontier we need to return is: 
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1 
0* 1 1 
0 0* 1 

0 

We require that any points above x in Fr are replaced by the highest points below Fr that are 

not above x. Assume we have a function 

NOT-ABOVE : Node x Node --~ 2 iv°a• 

which carries out this operation pointwise, i.e. 

NOT-ABOVE (x, y) = {g: g is below y but not above x} 

then we can define 

REMOVE-MAX : MAX-FR x Node ~ MAX-FR 

such that 

REMOVE-MAX (Max-Fr, Point) 

is the union (using "ADD-MAX")  of  those points not above "point" in Max-Fr  and 

NOT-ABOVE (point, f i )  

for those points fi E Max-Fr that are above x. 

We can prove that [Martin86] 

NOT-ABOVE (<xI . . . .  xn>, <YI, .. Y~>) 

is defined by the set 

u {Pj} 1 < j _< n, 

where 

Pj = {} PREDS(xj) = {} 

Pj = L) {Gj, k} 1 _ k -< Card (PREDS (xj)) 

for every i: 1 _< i _< n, PREDS (xj) ~ {}, Gj, k = {<g~, g2 . . . .  gn>} is given by 

gi = Yi i # j ,  

gi ~ PREDS (xj)  i -- j .  

Note that that there as many values in the resulting set as there are in the Union of all the 

"PREDS (xj)". 

PREDS : Element --~ 2 et,,,~t 

is defined as the predecessor operation on the element domain, for 2 it is defined by: 

PREDS (1) -- {0} 

PREDS (0) -- {} 

For higher-order functions "PREDS" potentially has non-singleton results. 
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The dual, "REMOVE-MiN" is defined in an exactly similar way, with dual types, but using 

"NOT-BELOW" and "ADD-MIN". 

3.5.4. REMOVE-BELOW and REMOVE-ABOVE 

REMOVE-BELOW removes all the nodes in a minimum-frontier that are below a particular 

point. We use this when a 0-node is found during the downwards search; clearly all the nodes 

below it must also be 0-nodes (by monotonicity) and so they can be removed from the search. 

REMOVE-BELOW : MIN-FR x Node -4 MIN-FR 

REMOVE-ABOVE : MAX-FR x Node -4 MAX-FR 

This is implemented in the obvious way, testing each element in turn. 

3.6. Basic Routines 

Note that the only operations needed to prove (and implement) all these operations are 

1. The compare operations ("<" and ">") on the element domain E. 

- for comparing two iterations for equality and implementing "CONTAINS-MAX" 

and "CONTAINS-MIN". 

2. A "PREDS" (and it's dual, "SUCCS") operation on the element domain. 

- for the "NOT-ABOVE" operation (and it 's dual: "NOT-BELOW") 

This is useful when we come to extend the method to higher-order functions, as we only have 

to define these two operations to be able to use the same algorithm and proofs. 

We have proved that  [Martin86] 

1. The algorithm is correct in that it does calculate the frontiers we are looking for. 

2. It terminates in all cases. 

This proof relies on all the domains being finite, and shows the "TrialFr" sets are 

continually moving up this finite domain - they must eventually reach the top, and 

then the algorithm terminates. 

3. Every node in the argument domain is evaluated in the worst case at most once. 

Normally we would expect better behaviour than this. 

4. Strictness Analysis and Higher-Order Functions 

In introducing higher-order functions into the element domain E, we follow the approach taken 

by [Burn85, Hankin86], and we will be working with a strongly typed language. To analyse 

functions we must expand the element domain to include all the possible functions that can be 

passed as arguments. 

Consider the function Apply of type (2 -4 2) -4 2 -4 2: 

A p p l y f x  = f x  

The element lattice for the first argument must contain all the possible functions of one 
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argument, ordered by monotonicity: 

~,x.1 
I 

~,x.x 
I 

Lx.O 

To use the frontiers algorithm, as we mentioned above, we need to include such functions over 

2 in the element domain E, and therefore need to be able to define the following operations on 

these functions: 

1. "<" and ">" - we need to be able to compare two elements for equality and approxima- 

tion. 

2. SUCCS and PREDS - given a member of the element domain we need to be able to find 

the elements that are above and below it. 

4.1. A Representation for Functions in the Element Domain 

We can use frontiers to represent the functions in the element domain, just as they were used 

to represent the approximations in the main algorithm. 

Comparison of two frontiers is easily implemented; it just involves evaluating the node of each 

frontier in the function represented by the other frontier. For Maximum-frontiers: 

F1 < F2 iff Vx e F2: CONTAINS-MAX(F1, x) 

if  F1 $ F2 and F2 $ FI ,  then the two functions are incomparable and: 

3 x e F1 : CONTAINS-MAX (F2, x) and 

y e F2 : CONTAINS-MAX (F1, y) 

The operation on minimum-frontiers is the dual using CONTAINS-MIN. 

The SUCCS/PREDS operations are more complex, although successor is easy if we are using 

0-maximum frontiers (dually, predecessor is easy if we are using 1-minimum frontiers) 

Each successor to a maximum-0-frontier is obtained by adding the predecessors of  one of the 

nodes in the original frontier back to this frontier. 

For example: Consider the element domain, of type: 2 ---> 2 ---> 2 - the functions of  two 

base-domain arguments, ordered by the usual function ordering and omitting the initial "~.xy.": 

1 
I 

x o r y  
/ \ 

x y 
\ / 

x and y 
I 

0 

If  we replace each function with its corresponding maximum-0-frontier, we get: 
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{} 

{<0,0>} 
/ '\ 

{<0,1>} {<1,0>} 
\ / 

{<1,0>, <0,1>} 
l 

{<1,1>} 

Then we would expect 

SUCCS (~xy.x and y) = {Xxy.x, 7Lxy.y} 

using the frontiers representations: 

SUCCS ({<1, 0>, <0, 1>}) = { {<1, 0>}, {<0, 1>} } 

This set can be generated by taking each node in turn from the original frontier: For every 

node, there is an entry in the resulting set obtained by adding its predecessors to the original 

set (less the element itself) and keeping the maximum of any comparable elements. 

Define 

PREDECESSOR-NODE : Node -* 2 m~ 

to return all the nodes directly below the node passed as arguments. This is the pointwise 

application of the base domain "PREDS" to each element in the node in turn. Note that 

PREDS still has the same type as with the first order case: 

PREDS : Element ---> 2 E~,,,~t 

but the element domain 2 now can contain frontiers itself. 

Then 

SUCCS ({<1, 0> ,  <0, 1>}) 

has two members, one is given by: 

ADD-MAX ({<0, 1>}, PREDECESSOR-NODE (<1, 0>)) = 

ADD-MAX ({<0, 1>}, {<0, 0>}) = 

{<0, t>} 

Whenever moving up the element domain using maximum-0-frontiers, we have shown that 

each successor can be generated by applying "PREDECESSOR-NODE" to the nodes already 

there. 

The operation: 

PREDS (;Lxy.x) 

which we expect to give the frontier representation of 

;Lxy.x and y 
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is more difficult. Using the frontiers, we expect that 

PREDS ({<0,1>}) = {<0, 1>, <1, 0>} 

To carry out this operation it is necessary to add the element "<1, 0>" to the frontier, and there 

is no clear way of knowing when values like this have to be added to implement the operation 

without recalculating every node in the entire domain. 

We are able to implement the "SUCCS" operation easily if we use maximum-0-frontiers to 

represent the functions in the element domain, and "PREDS" easily if we use a minimum-1- 

frontier representation. To implement the other operations (SUCCS with minimum-l-frontiers 

and PREDS with maximum-0-frontiers) we can use both the maximum-1 and the minimum-0 

frontiers. A function in the element domain is now represented by 

[ maximum-0-frontier, minimum-l-frontier ] 

and the domain of all the functions f in 2 --~ 2 ---> 2 now is: 

[{}, {<0,0>H 
1 

[{<0,0>}, {<1,0>,<0,1>}] 
/ \ 

[(<0,1>}, {<1,0>}] [{<1,0>}, {<0,1>}] 
\ / 

[{<l,O>,<O, 1>}, {<1,1>}] 
I 

[{<l J>}, {}l 

Consider the "PREDS" operation using this representation (the "SUCCS" operation is its dual). 

Each time we apply the operation to an argument [F0, F1], we need to return the maximum-0 

and minimum-1 frontiers [NF0, NFI] for all the element(s) directly below [F0, F1] in the lat- 

tice. 

NFI is defined, as above, by taking each node in F1 in turn, and replacing it in F1 with its 

pointwise successors keeping the minimum elements. For each node, there is a separate NFI. 

We add the value removed from F1 to F0 to construct NF0, keeping the maximum of any 

comparable points. 

For example: Consider the operation 

PREDS ([{<1,0>}, {<0,I>}]) 

First we find any pointwise successors to the minimum-l-frontier using "SUCCESSOR- 

NODE", defined in an analogous way to "PREDECESSOR-NODE". We have that 

SUCCESSOR-NODE (<0,1>) = {<1, 1>} 

there is only one such successor, and so we have only one element in the result. The 

minimum-l-frontier in the result is given by replacing <0,1> by its successor: <1, 1>. Since 

there is only one element we do not have any comparable elements: if we did we would keep 

the minimum. To find the maximum-0-frontier in the result, we add the value we took from 

the minimum-l-frontier, <0, 1> to the old maximum-0-frontier, giving: 
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{<0, 1>, <I, 0>1 

These two values are incomparable (if they were not we would keep the maximum). This 

gives the set 

{ [ {<0,t>, <1, 0>}, {<1, t>1 ] } 

as the result. Now consider it's dual, "SUCCS", moving up the function domain: 

SUCCS ([ {<0,1>, <1,0>}, {<1,i>t ]) 

We first find the pointwise predecessors to the elements in the maximum-0-ffontier and from 

these generate the new maxirrmm-0-frontiers: 

ADD-MAX ({<0, t>}, {<0, 0>1) = {<0, 1>} (1) 

ADD-MAX ({<1, 0>}, {<0, 0>}) = {<1, 0>} (2) 

Consider the element in the result set given by (1) - the other is very similar. The new 

minimum-l-frontier is given by adding the value removed from the maximum-0-frontier set in 

(1): <1, 0>: 

ADD-MIN ({<I, 1>1, {<1, 0>}) = {<1, 0>1 

as required. We have proved in [Martin86] that this implementation of successor and prede- 

cessor in the functional domain does give the correct results. 

5. General Finite Lattices 

The ordering of any finite base domain is carried over, by monotonicity, to the labelling of the 

argument domain. In a three point chain domain, for example, all the 2-nodes must be above 

any 1-nodes, but below any 3-nodes. 

A function over a lattice of n elements: al to a~, therefore, can be represented by n-t maximum 

frontiers, one for each element of the base lattice. No frontier is needed for the top element 

because any node above all the other frontiers must be an a~-node (in a complete lattice). Each 

maximum-a,,-frontier contains all the ai-nodes contained in the argument lattice for all ai : ai < 

amo Every maximum-am-frontier is above the maximum frontier for any elements ai where a~ <_ 

am, but below the maximum frontier for any elements aj where am < aj. Hence functions over 

general complete lattices can be represented using the frontiers technique. 

For  example: 4 = {1, 2, 3, 4}, ordered by: 

4 
/ \  

2 3 
\ /  
1 

Consider a function f : 4 ~ 4 ---> 4 defined by: 

f = XXl x2.xl 

The argument lattice is : 
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<4,4> 
<4,3> <3,4> 

<4,2> <3,3> <2,4> 
<4,1> <3,2> <2,3> <1,4> 

<3,1> <2,2> <1,3> 
<2,1> <1,2> 

<1,1> 

and the maximum-frontiers are given by 

max-I-frontier : {<1,4>} 
max-2-frontier : {<2,4>} 
max-3-frontier : {<3,4>} 

These three frontiers completely describe the function f. To evaluate any point in the frontier, 

we find the smallest m, such that the m-frontier contains the argument, and return m for the 

result. If the argument is not contained in any of  the frontiers, we return the top element in 

the base lattice. 

Frontiers can be the same for different elements; Consider 

~,x y.3 

where the frontiers are : 

max- 1-frontier 
max-2-frontier 
max-3-frontier 

:{} 
:{} 
: {<4,4>} 

There are no elements that evaluate to either 1 or 2, and so both the frontiers are empty. 

5.1. Implementing the Search Algorithm For Higher-Order Functions 

To extend the algorithm to general lattices, we must extend both the element domain operations 

and the searching algorithm. The searching algorithm only requires two operations, com- 

parison and successor/predecessor. 

Two functions are compared by comparing all their corresponding frontiers: for one function to 

be less than another every corresponding frontier would have to be lower. If  some frontiers 

are higher, and some are lower, then the two are incomparable. 

The predecessors to a particular function are obtained by increasing any of  the frontiers that 

can be increased. It must be ensured, however, that a lower frontier does not "overtake" a 

higher one: the maximum-arfrontier must never be greater than the maximum-aj-frontier where 

a i < aj, or the function would not be monotonic. 

For example: (represent a function by "[1-Fr, 2-Fr, 3-Fr])" 

PREDS ( [{<1,4>}, {<2,4>}, {<3,4>}] ) = 

{ [ {<1,4>}, {<2,4>}, {<4,4>} ], (increasing the 3-Fr) 
[ {<1,4>}, {<3,4>}, {<3,4>} ], (increasing the 2-Fr) 
[ {<2,4>}, {<2,4>}, {<3,4>} ] } (increasing the 1-Fr) 
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5.2. Searching the Argument  Lattice 

During the upward search of the argument lattice, we may encounter any am-node (unless we 

have already found the am frontier). Therefore we need to keep a "NewFr" set for every fron- 

tier we have yet to find. Each "a,~-TrialFr" contains all the possible nodes that could yet evalu- 

ate to am or betow, and so there must be as many of these as the maximum width of the base 

domain: Imagine a lattice consisting of the coalesced sum of "n" chain domains: we need at 

least a separate Trial Frontier for each distinct chain domain. 

Conceptually, we have a separate pair of  search processes (one up, one down) for each frontier 

we are looking for. When a point in the argument lattice is evaluated, that information is 

passed to all the search processes. Initially all the "NewFr" and "TrialFr" sets, apart from 

TrialFr-Upwards-1 and TfialFr-Downwards-n, are empty. These two contain the bottom and 

top elements in the argument lattice. 

On receipt of a "(point, val)" pair, there are three possible actions for each search process. 

Assume this is an upwards search building the maximum-m-frontier: then if 

1. val -< m. 

TrialFr-m := REMOVE-MIN(TrialFr-m, point) ; 

NewFr-m := ADD-MAX (NewFr, {point}) ; 

Action: "point" should be added (keeping the highest points) to the "NewFr", and 

any successors to "point" should be added to the "TrialFr", keeping the smallest 

nodes after removing any nodes < point. 

2. val > m. 

TrialFr-m := REMOVE-ABOVE (TrialFr-m, point) ; 

Action: Any points in "TrialFr-m" that are _> point should be removed, as they 

could never evaluate to "m-nodes". Note that the successors to "point" will be 

added to the TrialFr of  the search for a~ ,  as clearly the value can not evaluate to 

any of the elements between am and avaz. 

3. vat and m are incomparable. 

TrialFr-m := REMOVE-FROM-MIN (TrialFr-m, point); 

Action: If "point" a "TrialFr-m" then remove it and replace it with its successors in 

the argument lattice, otherwise do nothing (since the two elements are incomparable, 

we can deduce nothing about the m-frontiers from this result, the most we can do is 

ensure that "point" is not evaluated again). 

As the algorithm progresses, the TrialFr's for the "lower" searches will empty as the frontiers 

they are looking for are found. When choosing a node to evaluate, we will choose a node in 

the lowest TrialFr that is non-empty, If  there is more than one such node, then we can use 

heuristics, perhaps based on the structure of the function being analysed, to decide which node 

tO use .  
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Initially only the trial frontier for the node at the bottom of the lattice contains any values. As 

the search progresses, and the search upwards for the ai-frontier encounters nodes above ai, 

nodes are taken from that trial frontier and added to the trial frontiers of the elements directly 

above al. The union of all the "trial frontier" sets of all the searches moves up the lattice, 

when a value is removed from one trial frontier, it is added to the search for the next element 

up in the base domain. The dual minimum-frontier search from the top is similar. 

The "NewFr" sets in the searches are being built up all the time, however, as any search for a 

frontier can encounter a node evaluating to any value, and this must be stored in the "NewFr" 

set. Note that any time a node evaluates to a value ai, then this is added to the NewFr for 

every search from al to al. Hence even if no a,~ nodes are encountered in the lattice, it will 

still have a frontier: the same as that for am<. 

The main algorithm for the search now becomes: 

Initialise: 

All NewFr's and TrialFr's := {} 

TriatFr-Up-I := {0, 0, .. 0} 

TrialFr-Down-n := {1, 1, .. 1} 

bottom value in the argument lattice 

top value in the argument lattice 

while (u  TrialFr's ~ {}) 

pick a point from lowest non-empty TrialFr-Up 

Check point is not contained within the NewFr of any Downwards-NewFr 

evaluate f at that point to give result 

Call each upwards and downwards search with "(point, result)" 

Similar Downwards-search... 

endwhile 

As the number of incomparable elements in the base domain grows and the argument lattice to 

search becomes "less connected", the performance of the algorithm drops. It depends on using 

monotonicity information to remove the necessity to evaluate large parts of  the argument lat- 

tice, and the less connected the argument lattice is, the less the information about the whole 

lattice that each point can indicate. 

In the worst case, with two pointwise incomparable sub-lattice in the base lattice, evaluating a 

point in one will indicate no information about the other at all. With the coalesced sum of  "n" 

lattices, the "TrialFr"'s will separate into "n" disjoint sets once the top and bottom values of 

each sub-lattice have been evaluated. 
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It can be seen that the searches adapt themselves to the structure of the lattice being searched, 

only looking in the part of the lattice where they could find nodes comparable with the frontier 

they are building. 

6. Conclusion 

We have presented a significant advance in the implementation of strictness analysers, follow- 

ing the advances of the theory in [Burn85]. The algorithms here are based on those given in 

[Clack85], but we have extended the method to include both higher-order functions and general 

finite lattices. [Martin86] gives correctness and termination proofs for the algorithms included 

here. 

There are a number of places in the algorithm that we can make choices of which part of the 

argument lattice to explore next. We could use "heuristics", guided on the structure of the 

function being analysed, to explore parts of the lattice that give most information about the 

function first. This will further help the "average-case" performance of the algorithm. 

There are other possible approaches to finding fixpoints for first-order functions over 2. One 

interesting method is pending analysis [Young86] but there seems to be no obvious method of 

extending it to higher-order functions and more general domains. However the approach does 

give good results for first-order strictness analysis. 

Another approach that has been pursued [Martin87] is using a syntactic method of finding 

fixpoints without evaluating the function at all. The problems in proving termination are 

avoided by a process of substitution that gives safe approximations to the fixpoint sought, 

while guaranteeing termination. This can be very efficient on some functions, and is generally 

applicable to higher-order functions and even infinite domains. 
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