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Introduction 

It has been argued [7], that  lazy functional programming languages have a simple semantic defi- 

nition, which allows formal software development methods to be easily used. If the object of this 

exercise is seen to be the production of a working program, then the implementation should also 

be correct before the system may be said to meet its specification. 

Recent work has shown that such languages can now be efficiently implemented using graph 

reduction. Because of its concise definition this paper concentrates on Augustsson and Johnsson's 

G-machine [1] and [2]. Unfortunately, efficiency considerations lead to a complicated implementa- 

tion, the correctness of which is not immediately obvious. 

This paper outlines a proof that an implementation similar to Johnsson's is correct with respect 

to a stack semantics for a simple lazy functional programming language. This semantics has been 

shown elsewhere [3] to be congruent to the natural standard semantics for the language. The major 

difference between the method presented here and that  of Johnsson is the use of indirection nodes. 

The paper also furnishes a proof that Johnsson's alternative strategy is correct. 

H E Prog (Programs} 
A E Defs tFunetion Definitions} 
F e Comb (Combinator Bodies} 
E E Exp (Expressions} 
Z E Int (Integers} 
T ~ Bool (Truth Values} 
! E Ide {Identifiers} 

H ::= E w h e r e  A 
A ::= A0 a n d  A1 i I = F  
F ::= AI.F I AI.E 
E ::= I I Z ] T [ E o E I  

Figure 1: Syntactic Domains 

Figure 2: Abstract  Syntax 
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e E E = Z + T + L + F  (Express ionVahes )  
F = [E -* El (Function Values) 

t e L = (E x L) + {nil} (Lists) 
o • O = Z* (Outputs)  
p • U = Ide--* E (Environments) 

P : Prog --+ 0 
P ~E where A] 

Figure  3: Value Domains for the Standard Semantics 

= p r i n t ( C  IEI ( f i z (Ap .Pin i  t • P ~ I P ) ) )  

P : Defs -* U - - ,  U 
D ~Ao a n d  A ] l p  
D II = r l  p = 

D IZol p • D ga , !  p 

jr : Comb --* U --+ E 
jr ~ I . r l  p = 
jr IAI.Ei p = 

~.( jr  irl (p • {I ~ d ) )  in E 
Ae.(~" [El (p • {I ~-~ t})) in E 

~' : Exp - -*  U ~ E 
e ~Ii p 
e ~Zl p 
e aT] p 
e nEo E d  p 

= I = nil  - - *  nil  in  E, p IIl 
= z ~Zl 
= 7" aTl 
=- (to E F) ~ (to I F)~, ,  ? 

Where t ,  = ~" ~Ei] p 

Z : Int  ~ Z (Not further defined) 

T : Bool ~ T (Not further defined) 

pr in t  (e) 

p t i n t s  (t)  

Pinit i iq = 
Pinit ~add] = 
Pinit ~eql = 
Pinit [hd] = 
Pinit ~null] = 
Pinit ~cons] = 

= ( ~ z )  - - ,  [~lZ] ,  
(~F.T) --~ [], 
(~ E L) - - ,  p , int~(t  f L), 

= (~ = nil) ~ [], p , i n t ( d  ~ p , i , t , ( e ' )  
Where (~, g') = g I ( E  x L) 

Figure 4: Standard (or Direct) Semantics 

~nt,y3(e~i__t3 o g(pn~___h_h 1 ) (p~ ,h2)  o ~,~t o pu,h0)  
e n t r y 2 (  ezi___, tt2 o add o eval o p u s h 2  o e val o pushO) 

e n t r y 2 ( e z i t 2  o eq o eval o p u s h 2  ° eva! ° pushO) 
e n t r y l ( e z i t l  o hd  o eval o pushO) 

entr#l(ezi____ttl o nul l  o eval o pushO) 
e n t r y 2 (  e z i t2  o cons o push  l o push  l ) 

Figure 5: The Init ial  Environment Pinit 

In Section 1 the language and two al ternative semantic definitions are presented. Sections 

2 and 3 provide examples of some semantically equivalent pairs of representations for par t icular  

forms of expressions, whilst Section 4 concludes the paper.  
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[] "~ ys : y~  

( z  : zs) +f- ys = z : zs-H- ye 

(x : zs) ! 0 = z 
( .  :.~) ! ( . + l )  = ~ s : .  

#I] = o 
# ( z  : zs) = i + # z s  

takeO zs  = f] 

t a k e ( n + l ) l x : z s  ) = x : t a k e n z s  

dropO zs = ~ 

d r o p { n + 1 ) { x :  ~8) = ~ropnzs 

m~p f i] = [i 
map f ( z  : zs) = f x : map f xs 

fast zs = zs ! (#  z~-  i) 

Figure 6: Standard List Operations 

a E S = O x L * x V x G x U x D  (States) 
o E O = Z* (Output) 
g, E V = ( Z + T ) *  (Value Stack) 

e G = !L-~ N] (Graph Maps) 
u E N = A + I + I d e + Z + T + C + { n i l }  (Nodes) 

A = L × L (Application Nodes) 
I = L (Indirection Nodes) 
Z = { . . . .  - 1 ,  0, 1 . . . .  }± (Integers) 
T = {true, false}± (Truth Values) 
C = L × L (Constructor Nodes) 

p e U = [ I d e - ~ K ]  (Environments) 
5 E D = L** (Dumps) 

E L* (Stacks) 
n E U = [ S - * S ]  (Continuations) 

e B = [ Ide -*Z]  (Bindings) 
E L (Node Labels) 

Figure 7: Value Domains 

1 A D e s c r i p t i o n  o f  t h e  L a n g u a g e  

The notation used in this paper broadly follows Stoy [9], to which those readers interested in the 

mathematics underlying this model are referred. The syntax of the language we wish to describe is 

given in Figures I and 2. Notice that it is simpler than that used by Johnsson in [1], because there 

are no local definitions. General local definitions require lambda-lifting or some equivalent program 

transformation. Also, to compile correctly, recursive local definitions need to have definitions of 

the form x -- y eliminated. For these reasons we have omitted local definitions from our analysis. 
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P : Prog ---* S 
Y~EwhereA I - (print o e ~E] {}) ([l, [], l], {},Pini t(3P~A],  []) 

P : Defs--+ U 
P ~Ao and ~ x , !  - v [~ol • v F ' d  
v ~I = ri -- {I ~ 7 ff i  {} o} 

f : C o m b - - * B ~ Z ~ K  
b I . r l Z n  - Y F l ( Z e { l ~ n } ) ( n + l )  

7 ~AI.E] B n - e n t r y ( n + l ) ( l ~ [ E ] ( B q ) { I ~ n } ) ( n + l ) )  

~ : E x p ~  B - *  Z - *  K 
F 4  ~ n - e~it n o C IEi 

C : E x p - *  B ~ K 
C ~EI ~ = eval o C ~E I 

C : Exp ~ B--* K 
c[II ~ 

c Izl ~ 
C IT]/~ 
C ~Eo Ed ~ 

I = nil ~ pushvalue(nil in N) 
I • dora(B) ~ push(B ~I]), pushvalue(~I] in N) 

pu,h,alue (Z ~Zl i .  N) 
pushvalue (T ~T] in N) 
rakap o C IEol ( (~ .~  + ~) o a) o c RE,] 

Z : Int ~ Z (Not further defined) 

T : Bool ~ T (Not further defined) 

Figure 8: Stack Semantics 

The standard semantics for the language is given in Figures 3, 4 and 5. Apart from the method 

for dealing with output this is similar to [10]. 

Some of the notation differs from that of [9], and so we describe it now. The improper domain 

elements are J_ which is bottom and ? which is error. The domain [A ---+ B1 denotes the domain of 

all computable functions from A to B, and elements of this domain can be represented using the ),- 

notation. The domain A = A± is the lifted domain of the set A. The domain A + B  is the seperated. 

sum of the domains A and B, and we have the usual operators I (projection), in (injection) and E 

(subdomain test) from [9]. As a shorthand we define D* = (D × D*) + {nil}. We shall represent 

elements of D* using the SASL notation for lists, and use the standard list operations from Figure 6. 

The environment combining operator @ is defined by p O {I ~ e} = $z. (x  = I ~ e, px), and by 

its associativity. 

We now give the stack semantics for an implementation of this language using graph reduction, 

and from now on all semantic equations and domains will come from the stack semantics. The value 

or semantic domains are defined in Figure 7. The stack semantics of Figure 8 and the instructions 
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pushvaluev(o,  ~, ~P, % p, 6) 

pushn (o, 0, ¢,  7, P, ~) 

mkap (o, gt : ~. : ~, IP, 7, P, 5) 

exit n 

po_ep. (o, 0, ¢, 7, p, 5) 

updaten (o, g : 0, ~, 7, p, 5) 

eval(o, g : 0, ~, 7, p, 5) 

restore(o, 0, g', 7, P, 0 ~ : 5) 

en t ryna (o ,  g: 0, (J, 7, P, 5) 

unwind(o, ~ : 0, ~P, Y, P, 6) 

print(o, g : 4), fg, 7, P, 5} 

= (o, e: 0, ¢, 7® { e ~  ~}, p, ~) 
Where g = New(7)  

= (o, (¢, ! . )  : 0, ~, 7, ~,, 5) 

= pushvalue((g', £") i n  N) (o ,  O, ~0, 7, P, 5) 

= unwind o pop n o update n 

= (o, dropnO, ¢, 7, P, 6) 

= ( o , O , e , , T e { ( O ! n ) ~ t i n N } , p ,  6) 

= (re , tore  o ~nwind) (o, [t], ~,  7, p, O : 5) 

= (o, (E t ide7( tas to) ) :  O', ~, 7, P, 5) 

= # V > n - - ,  ~ ¢ ( o , ¢ ~ 0 , , ¢ , 7 ,  p, 6), 
(o, t :O ,  ¢, 7, p, 5) 

Where Oa = map(ArgT)( taker ,  O) 
0,  = drop ( . -  1)~) 

= (,, E Ide) ~ p (~, t Ide) (o, e : O, ~", 7, o, 5), 
( v E I )  ~ unwind(o, (v ] I) : O, ~P, 7, p, 5), 
(v E A) --~ unwind(o, lst(v [ A):  O, ¢, 7, p, 5), 

(o, e : 0 ,  ¢, % a, 5) 
Where v = 7 g 

= ( , , E z )  - -~  ( o ~ ( ~ i z ) , 0 , ¢ , 7 ,  o, 5), 
( v E T V v = n i t )  - -*  (o, 0 , % 7 ,  p, 5), 
( . E c )  - - ,  ~(o, , '  : t" : O, ¢, ~, p, 5)), £ 

Where v = 7 
x = print o evalo print o e~al 
( e , e ' )  = ( ~ , l c )  

Figure 9: Basic Instructions for Stack Semantics 

of Figure 9 are clearly based on the compiler and abstract machine of Johnsson [1]. Perhaps the 

most important  difference is the use of indirection nodes to implement the update instruction. The 

correctness of this alternative compilation technique is shown in Section 2. Other minor changes 

include 

1. We have dispensed with a code component within the state, and instead used continuations. 

This includes an if instruction with two alternative continuations, rather than the use of 

labels as Johnsson does in [1]. 

2. The entry instruction incorporates some of the function assigned to unwind by Johnsson. 

3. The local environment,  3, encodes directly for the stack offset of a variable, because we 
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N e w  ('/) satisfies 3, ( N e w  ('/)) = ± ^ New ( M . I )  = go e L 

? Arg'/* = (v E A) - -*  snd(v I A) , -  
Where v = ' / t  

Elide "/e = (v  E I) ----+ Elide ' / ( v  I I), t 
Where v = "7 g 

Pinit Iifl = 
Pinit ~add] = 
Pinit ~eq] = 
Pinit ~hdl = 
Pinit ~null] = 
Pinit ~cons] = 

q ' c r  'or (o, e : O, ¢, % o, 5) 

Figure 10: Auxiliary Definitions for Instructions 

entry3(ez i t .3  o i f (push  l ) (push2)  o oval o pushO) 
e n t r y 2 ( e z i t 2  o add o eval o push2  o eval o pushO) 
entry2(ezi__t.2 o e_q o eval o push2  o eval o pushO) 
e n t r y l (  ezit.1 o hd o eval o pushO) 
e n t r y l (  ezi___tt l o null o eval o pushO) 
en t ry2 (  ez i t2  o cons o p u s h l  o push1)  

Figure 11: The Initial Environment  Pinit 
? = v E T - - - + ( v l T - - - ~ I C T ,  n F ) ( O , ¢ , V ,  7, p, 6 ) , _  

Where v = ff (Elide "7 g) 

add(o, to : gl : ~), 0 ,  % p, 5) ? (v0 E Z ^vx  E Z) - - *  pushva luev (o ,  O, 0 ,  7, P, 5), _ 
Where v = ( r o l l + r i l l )  i n N  

vi = "/ ( Elide "/ gi ) 

eq(o, to :t~ : ¢ ,  ¢, % p, 5) ? (~,o E z ^ . ,  E z)  ~ m h v . l u e v ( o ,  0, 0, % p, ~), ._ 
Where v = ( v o l Z = v ,  IZ)  i n N  

v~ = "/ ( Elide "/ ti ) 

h_d(o, t:  0, ¢, % p, 5) ? = v E o - - ~ ( o ,  l s t ( v l O ) : ¢ , ¢ , % p , ~ ) , _  
Where v = 3, ( E l i d e ' / t )  

null(o,  g : ¢, ¢ ,  % P, 6) = pushwtue(~ = nil)(o, ¢, ¢, % p, 5) 
Where v = " / (E l i de ' / t )  

cons(o,  g' : t "  : ¢, ~,  '/, p, 6) = pushvalue((g ' ,  t")  in  N)(o,  ¢, ~, "1, p, 6) 

Figure 12: Instructions for Built-in Functions 

arrange for the offset to be incremented within ~. 

4. We have decoupled the dual role played by the dump in Johnsson's earlier work [2] as he 

himself does in [1]. This requires the introduction of a new stack V which is not used until  

Section 3. 

To provide the implementat ion with primitive functions is straightforward. We define an initial 

environment Pinit, for some representative functions, in Figure 11. The new instructions required 

are defined in Figure 12. The only point of interest is that the eq instruction is defined on integers 

only. In Section 2 we show how these functions can sometimes be coded in line. 
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One final point; the specification of New in Figure 10 is not as general as it might be. This is 

because we may be able to perform garbage collection, in which case New can return certain values 

not satisfying the definition given in Figure 10. The function Arg returns the argument component 

of an application node, whilst Elide removes any indirection nodes. 

At this stage the question naturally arises; to what extent are the two specifications equivalent? 

The equivalence {or congruence) is proved in [3], and we state and sketch a proof now. The proof 

follows the pattern of congruence proofs established by [4}, [8] and [9]. 

T h e o r e m  1 For all H in Prog 

Sketch of  P r o o f  We first note that because of its implementation by graph rewriting that we 

necessarily have )~II] _2 ]st(,~II]) by fixpoint (or computational)induction. 

Although we could derive the stronger result ~6~H] # 3_ ~ ~6~II ! "7 f s t (~I I l )  this is still 

insufficiently strong, because an applicative order implementation would also satisfy the above 

condition. 

The reverse inequality ~lII] _ fst(~YI]) can be demonstrated by the use of the inclusive pred- 

icates c (to compare constructor nodes}, e (to compare expressions) and f (to compare functions, 

by considering their application to congruent arguments}. The existence of such predicates is then 

proved by induction over the complexity of the domains used in the direct semantics. Details of 

this induction are provided in [3]. [] 

As an aside, there are a number of ways to view the stack semantics. Firstly it may be considered 

to be a denotational description, specifying mathematical objects to which parts of the abstract 

syntax are mapped. Secondly, the instructions may be implemented as function definitions in a 

functional language and then we have an interpreter for the language. Or thirdly, the code may be 

written out as a string and an abstract machine (specified by the auxiliary definitions of Figures 

9 and 10} executes these sequences. This is possible because the state is used completely strictly, 

in the sense that each intermediate state may be completely evaluated. 

2 Partial  Compi le - t ime  Reduct ion  

In this section we analyse the correctness of some of the simple code improvements suggested by 

Johnsson ilt ann Peyton Jones [6]. 

Before we attempt to do this we must establish the form of such an equivalence. Two graphs 

are isomorphic if they are the same except for the names we give to the labels for the nodes. In the 
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current situation we must extend this idea to cover indirection nodes and garbage or unreachable 

parts of the graph. We first define a function to remove indirection nodes from a state. 

Def ln l t ion  1 We define r i  as follows 

r i ( o , ~ , ¢ , % p , # )  = (o ,~ ' ,¢ ,q ' ,p ,# ' )  

Where ~ = map(Elide'~)¢ 

q'  = A t . ( q t ~  I ~ Ezideq(q0, qt) 

~' = map(map (Elid~q)) 

We now define the set of reachable nodes for a state, using mark. 

Def in i t ion  2 For a given s*ack ¢ in L*, dump ~ in D, and graph map q in C, the set 

mark(T, ¢ : ~), is defined as follows: 

1. If * is a label contained in $ : ~, then * is in the set mark(T, ¢ : ~). 

2. I f  ~ is in mark(% $ : 6), then let v = q~. 

(a) If v E A,  then *' and t" are in mark(% ¢ :  ~), where (l ' ,  *") = (v [ A).  

(b) If v E I, then t is in mark(%,  : ~), where t = (v I I). 

(c) If v E C, then t' and t" are in mark(% 0 :  ~), where {*', *") = (v [ C). 

3. No other labels are in the set mark(T, ¢ : ~). 

We now define a function to assign ± to all non-reachable nodes of the graph. 

Def in i t ion  3 We define gc as follows 

~c(o,¢,¢,%~,~) = (o, 0,¢,q ' ,~,~)  

Where 7' = At.(* e mark(% O: ~) --* "/~, ±) 

Two states, ao and a i  are then said to be eraph-i~omorphic if and only if there exists a relabelling 

of the nodes in a~ such that this is identical to ~ ,  where ~r~ = gc{ri(a~)). We denote this by writing 

a0 ~ a t .  Extending this notation, we may say that two continuations, n and d from K are graph- 

isomorphic if, for all a, ~¢ a ~ ~¢' a. 

We now state some continuation pairs that are graph-isomorphic. 

Theorem 2 For all E, E0, Ez and E2 in Exp, all ~ in B and all n > 0 

~" lifEoE, E~I ~ ~ ,__f(e IE,l ~) (e IE~I ~) o E gEol ~ 
C [addEo Ed/~ -'~ ~dd o C [Eol (in¢ o ~) o £ ned ~ 

~" Khd El ~ ~ ~ l  o hd o t" ~EI 
c ~u] l  E l ~ :~ ,,~,,u o ~" gEl 
~ ' l ¢ o n s E o E , l ~  ~ ~o~,oCgEol(~o ~)oCgE~l~ 
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P r o o f  All the proofs follow directly from the definitions of the instructions, and graph-isomorph- 

ism, there being no induction necessary. 

As an example we consider the first pair. Let t ing/~+n = ()~x.z + n) o 8, we have: 

¢~ [if E0 E ,  E2I ~ = eval o mkap o mkap o mkap o pushvahte (if in  N) o 

c aE0] ~+~ o C ~E,I ~+' o C aE~l 

Let us assume that just  prior to the execution of eval the state is of the form (o, t : ¢, ¢, .¢t, p, 6), 

such that  the roots of the graphs for expressions Ei are ti. Then after executing unwind and entry 

we have 

,e~tore o ~ (o, [to, 6 ,  ~ ,  tl, ¢, ~', P, ~ :  6) 

where ~ is ¢zt.'t3 o i f (pushl}  (push2) o eval o (pushO). We then consider, by cases, the result of 

executing the first two instructions of this sequence. If the result is a proper value and a member 

of T,  we then insert an indirection node from t to t i i  = 1, 2. Suppose the result on top of the 

stack were true. This gives 

restore o unwind(o, It], ~P, "~" ® {t ~-* t ,  in  N}, p, ¢ :  6) 

but by the definition of eval this is graph-isomorphic to 

eval(o, Q :  ¢, ¢, ~"@ {t ~ Q in  N}, p, 6), 

which in turn is graph-isomorphic to the right hand side of the continuation pair, under the 

assumption that  t0 reduces to true. By similar arguments this result applies when to reduces to 

false, ? or _l_. D 

We now study a generalisation (and formalisation) of an observation made in [11]. They 

observe that  indirection nodes accumulate rapidly during SKI combinator reduction, and propose 

as a solution that  the first argument to the K combinator  be reduced before reduction of K x y 

is a t tempted.  One could then copy the root of the answer rather than insert an indirection node. 

This was taken up independently by Johnsson and incorporated into the G-machine design. Our 

semantics from Figure 8 makes an alternative design decision, for two reasons. First ly the resulting 

machine is semantically cleaner, leading directly to a congruence proof. Secondly, it may execute 

faster for higher-order functions, a point to which we will return. We now prove Tbeorem 3, which 

demonstrates that  we may reduce the body of a combinator  before overwriting the root. As the 

resulting piece of graph will then be in head normal form we may use a copying form of update 

without losing sharing. This I have called Johnsson's technique. 

T h e o r e m 3  For n i l e  in Exp,  alI fl in B,  and alI m > 0  

~E i ~ m - ezi__lm o C [E I/~ 
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o r  

Proo f  We first observe that this is equivalent to showing ez i tm ~- ezi.._.jtm o eval by expanding )~ 

and £. Suppose that the state to which we apply each continuation is of the form 

(o, ~: ~ +~ ¢', ¢, % o, ~), 

with # (0) = m. 

We are required to show that 

unwind, 4 ~ (.ezit , ,  o resto,e) ~r° c 

where 

~ = ( o , ~ : ¢ ' , ¢ , ~ , p , ~ )  and 

~ = ( o , [ ¢ ~ , ~ °  ¢ o, ( ¢ ~  ¢ ' ) :~)  

with "7~ = "~ @ {(hd¢') ~ e in N} .  

We now observe that unwinda°~ and unwinda~ execute in the same way producing states of 

the form: 

= (o, ¢ ~ t : ¢ ' ,  ~, ~ ,  p, ~) 

= (o, tn +~ [t], ¢, ~ ,  ~, (¢ ~ ¢'): ~) 

until one of the following conditions occurs. 

1. The evaluation has completed, in which case 

unwindo'~ = a~ 

and 

~ = (o, tn +~ [~], ~, z ; ,  p, (~ +~ ~'): ~) 

If this is so 

~ = (o, tn, ¢, ~ i ,  p, ~ +~ [~" ~ [el +~ ¢'] +~ ~) 

and executing pop m o update m o restore on a~ gives a state graph isomorphic to a~. 
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2. We reach states ~ and ~r~ with hd¢,, = hd¢ ~ to which we apply unwind. The execution of 

the two forms then diverges, because ")'~ ~hd¢ t) # "1~ (hd¢'). 

Fortunately this loss of sharing is unimportant because it only occurs in programs that fail 

to terminate. 

To see this recall that we are attempting to reduce (hdCe). If, during this reduction, we 

attempt to reduce it again then we have an infinite regress. 

Notice the inefficiency that the g-scheme version has when dealing with the return of higher- 

order functions. First the stack is cleared of all except the last element. Next we restore the 

previous stack, performing some adjustments to it. Finally, we proceed to reconstruct the spine 

we have just thrown away. Contrast this with the way that the )~-scheme proceeds. We have to 

state, on the other hand, that the use of indirection nodes gives rise to the possibility of chains 

of indirection nodes building up, and the cost Of accessing arguments to a function is therefore 

increased. 

If the result is not a function then the g-scheme will work best, especially if we have a special 

unwind (called re_! in [6]) that doesn't check that the result is already unwound. 

At this stage we have seen that the built-in functions can sometimes be compiled in-line or 

perhaps more descriptively, that there exist correct partial compile-time reductions. 

3 A S t a c k  f o r  B a s i c  V a l u e s  

So far we have not used the third component of the state at all, this is now remedied. It is 

intended that this component should be a stack of integer or boolean values, and so we now 

provided instructions and alternative compilations for this use. 

Before investigating graph-isomorphic continuations, we digress a little to mention typing. We 

will presume that our language is polymorphically typed in the manner described by Milner in i51. 

We shall presume that we have a function T that returns the type of an expression. For most 

compilation purposes we are only interested in these types if they are Int or Bool. 

Def in i t ion  4 If T ~Ell = Int and T [EB] = Bool, then for all Ez, all EB and all 

B [Es] ~ ~ get o C [EB] 
mkint o 8 IE,i ~ ~- C UE,! 
rakbool o B ~EB]/~ ~ g UE~I 

We may now state Theorem 3. 
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qv,cr ~r  (o, ~, r:  ~p, 7, P, 5) = r $ T - - - - , ( r l T . - - - - , s c T ,  tCF)~,v. 
Where or = (o, q~, ~, 7, P, 6) 

Where f = to I Z + ~'l ] Z 

eqv(o, ep, ¢o : t~ : ~P, 7, P, 5) ? = (to E z ^ t l  E z )  - -*  (o, ¢, r : 0, % p, ~ ) , -  
W h e r e r = f o l Z = t ~  I Z 

nullv(o, t : O, ¢, 7, P, 6) = ( o , O , ( ~ , = n i l ) : , , % p , ~ )  
Where v = 7 (Argi7 ti) 

m k i n t ( o , C , f : ¢ , % p ,  5) = ( f E Z ) - - - - - + p u s h v a l u e ( t i n N ) ( o , C , ~ , % p , ~ ) , ?  

mkbool(o, ~, r:  ~, 7, P, 5) = (r ~ T) --* pushvalue(r in N)(o, ~b, ¢, 7, P, 5), 

get(o, t :  ~, ~, 7, p, 5) (v~z) --,  (o,~,,~,lz:~,7, p,~) 
(~,ET)---, (o,O,~'lT:¢,7, p,~),£ 
Where v = 7 (Argi7 t) 

Figure 13: Instructions for Built-in Functions (using V) 

r h e o r e m  4 For all well-typed programs, the following pairs of continuations are equivalent: 

B [addEoE,]  Z ~ aad~o 8 [ E o l ~  o 8 GE,IZ 
B [eqEoEl] ~ ~ eqvo 8~Eol~ o S [E,I~ 
g l i f E o E ,  E2]/~n ~ ifv(£[E,]/~n)(l~[E2l/~n)oSlE01a 
C~ifEoE, E~]/~ ~ ilv(CqElla)(eGE21a) oS~Eola 
B[ifEoE,  E2]/~ ~ i . tv(SREd~)(B~E2I~) o S a E o l ~  
B [null El/~ ~ nultv o ~" [E] 

P r o o f  All these are demonstrated using the definitions already given. [] 

This concludes our brief survey of some of the code improvement techniques used in the G- 

machine. 

4 C o n c l u s i o n  

We have shown that graph reduction can be represented using a stack semantics. The form of the 

specification suggests a compiler and abstract machine. Alternative semantics, e.g. for abstract 

interpretation, could also be built around the model provided here. 

As a consequence of this representation, we were able to show that some of Johnsson's code 

improvements were correct. The notion of graph isomorphism leads to a concise framework for 

reasoning about such code improvements. It is interesting to note that the technical difficulties 

with one of these improvements resulted from a loss of sharing which occurred only for certain 

non-terminating programs. Using this framework it is possible to prove Johnsson and Peyton 
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Jones' tail recursion improvements correct, although it is not done in this paper. 

ObYiousIy these results can be extended in a number of directions. These include extending 

the Ianguage, providing more code improvements and increasing the level of detail contained in 

the instruction definitions. Another avenue of pursuit would be to obtain a similar derivation for 

a parallel machine, using multiple stacks. 
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