
Theoretical Computer Science 60 (1988) 109-176 
North-Holland 

DESIGNING EQUIVALENT SEMANTIC MODELS FOR 
PROCESS CREATION* 

Pierre AMERICA 
Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands 

Jaco DE BAKKER 

109 

Centre for Mathematics and Computer Science, P. 0. Box 4079, I 009 AB Amsterdam, The Netherlands 

Communicated by M. Nivat 
Received September 1987 

Abstract. Operational and denotational semantic models are designed for languages with process 

creation, and the relationships between the two semantics are investigated. The presentation is 

organized in four sections dealing with a uniform and static, a uniform and dynamic, a non uniform 

and static, and a nonuniform and dynamic language respectively. Here uniform/nonuniform 

refers to a language with uninterpreted/interpreted elementary actions, and static/dynamic to the 

distinction between languages with a fixed/ growing number of parallel processes. The contrast 

between uniform and nonuniform is reflected in the use of linear time versus branching time 

models, the latter employing a version of Plotkin's resumptions. The operational semantics make 

use of Hennessy's and Plotkin's transition systems. All models are built on metric structures, and 

involve continuations in an essential way. The languages studied are abstractions of the parallel 

object-oriented language POOL for which we have designed separate operational and denotational 

semantics in earlier work. The paper provides a full analysis of the relationship between the two 

semantics for these abstractions. Technically, a key role is played by a new operator which is 

able to decide dynamically whether it should act as sequential or parallel composition. 

Contents 
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

2. Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

2.2. Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

2.3. Resumptions and domain equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

3. A uniform and static language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

3.1. Syntax and preliminary definitions............................................... 121 

3.2. Operational semantics......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

3.3. Denotational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

3.4. Equivalence of operational and denotational semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

4. A uniform and dynamic language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

* Most of this work has been carried out in the context of ESPRIT Project 415: Parallel Architectures 

and Languages for Advanced Information Processing: A VLSI-directed Approach. 

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) Bi/Jliotheek 
. tJfil voor Wiskur.Ce li.'n Wormatio.a 



110 P. America, J. De Bakker 

4.1. Syntax and intuitive explanation ......................... · · · · · . · · · .. · .......... . 
4.2. Operational and denotational semantics ..................... · · · · · · .............. . 
4.3. Equivalence of operational and denotational semantics ........... · ...... · ......... . 

5. A nonuniform and static language .................... · · · · · · · · · · · · · · · · · · · · · · · · · .. · · · · 

5.1. Syntax ................... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
5.2. Operational semantics ............................ · · · · · · · · · · · · · · · · · · · · · · · · .. · . · · 
5.3. Denotational semantics ................................ · .... · · · · · · · · · · · ....... . 
5.4. Equivalence of operational and denotational semantics ............. · .............. . 

6. A nonuniform and dynamic language .................... · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
6.1. Informal introduction and syntax ......................... · · · · · · · · · · · · · · · · ...... . 
6.2. Operational semantics ................................... · · · · · · · · · · · · · · · · ...... . 
6.3. Denotational semantics .................................... · .. · · · . · · · · ........ . 
6.4. Equivalence of operational and denotational semantics ............................ . 

Acknowledgment ............................... · · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
References ................................ · · · . · · · ... · · · · · · · · · · · · · · · · · · · · · 

1. Introduction 

132 
133 
135 
141 
141 
142 
148 
149 
153 
153 
154 
158 
161 
174 
175 

Process creation is an important programming concept which appears in a variety 
of forms in many contemporary programming styles. In imperative programming 
one finds it in languages such as Ada [ 1 ], NIL [ 43] and many others. In the context 
of functional or dataflow languages we refer to [22] for a semantic study dealing 
with process creation. For logic programming many recent references can be found 
in [ 42]. Object-oriented programming (see [5] for a general introduction from a 
theoretician's point of view) has the family of actor languages (see, e.g., [2, 23, 30]) 
as examples. The present study was inspired by the language POOL, an acronym 
for Parallel Object-Oriented Language, described in [3, 4]. 

In two previous investigations we have developed operational ( 0) and denota­
tional (ft!) semantics for POOL [6, 7]. These two semantic models were designed 
independently of each other, and the investigation reported below constitutes the 
first step towards the goal of settling the relationship between the two models. For 
this purpose we concentrate on the programming notion of process creation together 
with a simple version of process communication, and leave a number of further key 
notions in POOL for later study. More specifically, we treat communication in the 
sense-approximately-as exemplified by CSP [31, 32] and do not treat message 
passing and method invocation-notions which should be situated at the same level 
as remote procedure call or Ada's rendez-vous. A similar combination of process 
creation with CSP-like communication was first described in [19], a paper which 
provides a proof-theoretic treatment of these concepts taken together. 

Before going into the characteristics of the languages we shall deal with, let us 
say something about the terms "operational" and "denotational". Operational 
semantics gives a model of computation by constructing from a given program a 
kind of "abstract machine" having a set of "states" (which we shall call configur­
ations), and describing the transitions this abstract machine can make from one 
state to another. Denotational semantics works by assigning a meaning, which is a 



Equivalent semantic models for process creation 111 

mathematical entity, to each fragment of a program, in such a way that the meaning 

of a composite piece of program can be inferred by looking only at the meanings 

of its parts, not at their internal structure. We say that denotational semantics 

describes the meaning of programs in a compositional way. Fortunately, the technique 

we use for our operational semantics, transition systems in the style of Hennessy's 

and Plotkin's Structured Operational Semantics (SOS) [29, 38, 39] describes the 

abstract machine and its state transitions in a way that is directly related to the 
syntactic structure of the original program. Due to the explicit presence of this 

abstract machine, the transition systems employed have, we feel, a strong operational 

intuition. 
The emphasis in our semantics design is very much on a systematic development 

of the tools for both the operational and denotational models. We have therefore 

structured the presentation in four sections, dealing with four languages of increasing 

complexity. Using some terminology which will be explained in a moment, we shall 
successively present operational and denotational semantics for 

(1) a uniform and static language 2us; 

(2) a uniform and dynamic language 2ud; 

(3) a non uniform and static language 2nus; 

(4) a nonuniform and dynamic language 2nud· 

These languages are conceptually ordered according to the following diagram: 

In this classification, a uniform language is one which has uninterpreted elementary 

actions. In other words, the indivisible or atomic unit of such a language is just a 
symbol from some alphabet, and the meanings assigned to programs in a uniform 
language bear strong resemblance to formal languages (here with finite and infinite 

words). A nonuniform language has interpreted elementary actions, in our case 

assignments and communications. Thus, (individual) variables appear on the scene, 

and as a consequence we find in our semantics the notion of a state, i.e., of a 

mapping from variables to values. Programs now transform states, and we shall 

develop a mathematical structure with entities which combine the flavour of state­
transforming functions with that of a record of the computational history. In Section 
5, we shall provide evidence that the latter notion is necessary in view of the parallel 

execution operator. 
The second distinction in the above diagram concerns that of static versus dynamic 

languages. In the former, we have a fixed number of parallel processes, in the latter 

a dynamically growing number of processes: each time a new process is created, 



112 P. America, J. De Bakker 

the total number of active processes increases by one. (We shall not investigate in 
our paper any notion of process destruction, a concept not present in the language 
POOL.) 

The simplest element in the partial order is 2us, to be treated in Section 3. It is 
extended in two directions: one adds the notion of process creation (Y!ud), dealt 
with in Section 4, and the other adds the notion of interpreted elementary actions, 
described in Section 5. Finally, in Section 6, both extensions are brought together, 
and the full complexity of a nonuniform dynamic language is confronted. 

In Sections 3 and 4, the languages are uniform and the semantic models are of 
the so-called "linear time" variety (see, e.g., [11] or [ 40]), i.e., they consist of sets 
of (finite or infinite) sequences over a certain alphabet. The operational semantics 
is a uniform version of the Structured Operational Semantics (SOS) of Hennessy 
and Plotkin [29, 38, 39]. The denotational semantics is built on metric foundations 
(apart from the above diagram, no partial order is employed in our paper); this 
remains true for later (nonuniform) sections. A distance between two sequences or 
sets of sequences is readily defined, and most of the tools of metric topology we 
use are quite standard. In particular, we shall make heavy use of Banach's fixed 
point theorem for contracting functions on a complete metric space. Accordingly, 
our (denotational) semantics will be defined, when dealing with recursive constructs, 
only when the recursion is guarded. In formal languages, one would say that the 
grammar concerned satisfies a Greibach condition. (In the nonuniform setting we 
shall take an approach where guardedness is automatically satisfied.) 

In each of the Sections 3 to 6 we shall, after having presented the two semantic 
models, go on to investigate their equivalence. In Sections 3 and 4 we actually prove 
that the two semantics yield the same result, i.e., that for t E 2us or t E 2ud we have 
OM= ill[t]. For .flu., this is a result which was already obtained earlier (and 
presented in [ 16]). Below, we repeat certain parts of the proof as a first step towards 
the equivalence theorem for 2ud, a result which we believe to be new. In the analysis 
of .2ud we make essential use of the notion of continuation, both of a syntactic and 
of a semantic kind. Since we develop the semantics of 2us as preparatory for .2uct, 
we have adapted accordingly the treatment of [16], which does not employ continu­
ations. The equivalence proofs for 2us and 2uc1 have strong similarities. On the 
other hand, there is also a fundamental difference having to do with the following 
consequence of process creation: in a statement with a syntactic sequential composi­
tion (";"),say s1 ;s2 , we do not know whether to model the syntactic";" by semantic 
concatenation("·") or by parallel execution(" II"). To see this, contrast the statement 
a;b yielding the singleton set {ab} as its meaning, with the statement new(a);b. 
The intended meaning of the latter equals that of a II b, which in turn equals the set 
{ab, ba}. To overcome this problem we introduce an auxiliary semantic operator 
":"which is able, somewhat surprisingly, as it were dynamically to make the decision 
whether to opt for"·" or "II". We consider the introduction of this operator, together 
with the derivation of its basic technical properties (such as associativity) as a main 
contribution of our paper. 



Equivalent semantic models for process creation 113 

In Sections 5 and 6 we investigate the nonuniform case. 2nus has simple communi­
cation commands which are syntactic variations on CSP's P; ?x and P; !e constructs. 
We stress that our mentioning CSP here is only to indicate the type of communication 
we have in our language. Partial, let alone full, modelling of CSP is not our aim 
here. The mathematical structures used to model 2nus and 2nud are Plotkin's 
resumptions [37], presented in a fully metric framework as first described in [17] 
and subsequently extended and put in a category-theoretic perspective in [8]. We 
use the terminology of process domains P, satisfying certain (reflexive) domain 
equations of the form 

P== ;J/P(P) 

and we shall design the semantics of programs in 2nus and !tnud such that the 
meaning of a program is a process p E P. Processes are objects which have a branching 
structure, and the models for !tnus and !tnud are called branching time [11, 40]. 

The operational models for !tnus and 2nud once more use SOS style transitions. 
An important new feature is that, in defining the operational meaning of a program, 
we collect the information from the induced transition steps into a process. In other 
words, we assemble the information in successive transition steps into a branching 
time object. Denotationally, we also use processes as meanings, obtained in the 
usual manner by a compositional system of defining equations. For the nonuniform 
languages, we do not have that 0 and rllJ yield the same function: In order to allow 
a compositional definition of (jjJ for the communication constructs, we include in 
(jjJ[sD more information than in O[sD (here s is a nonuniform, static or dynamic, 
statement). We therefore introduce a natural extension O* of 0, which preserves 
one-sided communication information, and then on the one hand establish that 
()* = (jj), and on the other hand settle the relationship between eJ and O* in terms 
of an abstraction operator abs, resulting in the equivalence 0 = abs 0 O*. 

In Section 6, we combine the techniques designed for 2u6 and 2nus to deal with 
all of 2nud· In this way, the reader may obtain a better understanding of this 
somewhat complicated case: The concepts of process creation and value communica­
tion have first been treated in isolation, and now a synthesis of the methods from 
Sections 4 and 5 is made. In 2nud we have classes (ultimately stemming from Simula 
[24]), and creation of a process amounts to the creation of a new instance of a class 
(in the world of object-oriented programming, this instance would be called a (new) 
object). Such an instance has a name which is Uust) another value-in addition to 
values such as integers or truth-values-and which may be assigned to a variable. 
In 2nud we encounter for the first time expressions with nontrivial semantics. 
Consequently, the syntactic and semantic statement continuations used in previous 
sections are now extended with (syntactic and semantic) expression continuations. 

Operational and denotational semantics for 2nud are without major surprises once 
one has digested Sections 4 and 5. At various points, the definitions owe much to 
similar definitions in [ 6, 7], though a systematic redesign has been applied in order 
to allow the final equivalence proof. Again, techniques of Sections 4 and 5 are 



114 P. America, J. De Bakker 

brought together, in particular leading to a nonuniform generalization of the ":" 

operator. Also, an additional argument is necessary to deal with the two forms of 

recursion now present, one in recursive procedures and the other in recursively 

defined classes. 
This concludes our overview of the contents of the paper. We also mention that 

in Section 2 we collect some mathematical preliminaries. We list elementary 

definitions and some useful theorems in metric topology, and provide a brief sketch 

of the intuition and mathematical basis for (our way of) solving process domain 

equations. 
Detailed semantic models of process creation are scarce in the literature. Semantic 

studies are reported in a few of the already cited papers [2, 23, 42, 43], but these 

are all focused on very different problems and techniques. Our work shares with 

[22] the central role played by continuations. However, that paper investigates 

process creation in a (deterministic) dataftow setting, and does not address semantic 

equivalence issues. 
Our debt to Plotkin's seminal work in semantics should be clear from the above. 

To Nivat we are indebted for stimulating our interest in metric techniques going 

back to his lectures in [35]. Without the detailed semantic analysis of POOL described 

in [6, 7], the present paper would have been impossible. Many of our semantic 

definitions can be traced back to concepts and techniques first developed in these 

two papers. 

2. Mathematical preliminaries 

2.1. Notation 

If X is a set, we denote with f?>(X) the power set of X, i.e., the collection of all 

subsets of X. g; ,,.(X) denotes the collection of all subsets of X which have property 

1T. A sequence x0 , x 1 , ••• of elements of X is usually denoted by (x; )r=o or, briefly, 

(x;);. The notation/: X-.;. Y expresses that/ is a function with domain X and range 

Y. We use the notation f{y / x}, with x EX and y E Y, for a variant off, i.e., for the 

function which is defined by 

f{y/ x}(x') = {;(x') 
if x =x', 

otherwise. 

If/: X-.;. X and f(x) = x, we call x a fixed point of f. 

2.2. Metric spaces 

Metric spaces are the mathematical structures in which we carry out our semantic 

work. We give only the facts most needed in this paper. For more details, the reader 

is referred to [25, 26]. 



Equivalent semantic models for process creation 115 

2.1. Definition. A metric space is a pair (M, d) where M is a nonempty set and d 

is a mapping M x M-? [O, 1] having the following properties: 

(1) V'x,yEM[d(x,y)=O~x=y], 

(2) V'x,yEM[d(x,y)=d(y,x)], 

(3) V'x, y, z E M [ d (x, y),;::; d (x, z) + d (z, y)]. 

( d is called a metric or distance.) 

Examples. ( 1) Let A be an arbitrary set. The discrete metric on A is defined as 

follows: Let x, y EA. 

d(x,y)={o
1 

ifx=y, 
if x,., y. 

(2) Let A be an alphabet, and let A"'= A* u Aw denote the set of all finite and 

infinite words over A. Let, for x E A 00 , x(n) denote the prefix of x of length n, in 
case length(x) ~ n, and x, otherwise. We put 

d (x, Y) = 2-sup{11 ix(nl=y(11lf 

with the convention that r« = 0. Then (A"', d) is a metric space. 

2.2. Definition. Let (M, d) be a metric space and let (x;); be a sequence in M. 

(1) We say that (x;); is a Cauchy sequence whenever we have 

\Is> 0 3N EN V'n, m > N [d(x", x"') < s]. 

(2) Let XE M. We say that (x,); converges to x, and call x the limit of (x;); 

whenever we have 

TI s > 0 3 NE N TI n > N [ d (x, x11 ) < s ]. 

We call the sequence (x,); convergent and write x = lim,x;. 
(3) (M, d) is called complete whenever each Cauchy sequence in M converges 

to an element of M. 

2.3. Definition. Let (M1 , d 1) and (M2 , d2) be metric spaces. 
(1) We say that (M1 , d 1) and (M2 , d2) are isometric if there is a mapping f: M 1 -? 

M 2 such that 
(a) f is a bijection, 
(b) Tix, y E M 1 [d2(f(x),f(y)) = d 1(x, y)]. 

We then write M 1 = M 2 • If we have a function f satisfying only condition (1 )(b), 

we call it an isometric embedding. 
(2) Let f: M 1 -? M 2 • We call f continuous whenever, for each sequence (x;); with 

limit x in M 1 , we have that lim;f(x;) = f(x ). We shall denote the set of all continuous 

functions from M 1 by M 1 -?c M 2 • 



116 P. America, J. De Bakker 

(3) We call a function/: M 1 ~ M2 contracting ifthere exists a real number c with 

o~ c< 1 such that 

'rf x, y E M 1 [d2(f(x ),f(y )) ~ c d1 (x, y)]. 

(4) A function/: M1 ~ M 2 is called non-distance-increasing if 

'rfx, yE M 1 [di(f(x),f(y)) ~ di(x, y)]. 

We shall denote the set of all non-distance-increasing functions from M 1 to M2 by 
M1 ~NDI M2. 

2.4. Lemma. Let (M1 , d1) and (M2 , d2) be metric spaces, and let f: M 1 ~ M2 be a 
contracting function. Then f is continuous. The same holds for non-distance-increasing 
functions. 

2.5. Theorem (Banach). Let (M, d) be a complete metric space. Each contracting 
function f: M ~ M has a unique fixed point which equals lim;f;(x0 ) for arbitrary 
x0 EM. (Here f 0(x0 ) = Xo and f;+ 1(xo) = f(t (xo) ).) 

Proof. Since j is contracting, the sequence (/; (x0) ); is a Cauchy sequence. By the 
completeness of (M, d), the limit x = limJ; (x0) exists. By the continuity off (Lemma 
2.4),f(x) = f(Iim;f;(x0)) = lim;f;+ 1(x0 ) = x. If, for some y E M,f(y) = y then, by the 

contractivity off, d (x, y) = d (f(x ), f(y)) ~ c d (x, y ). Hence, since c < 1 we conclude 
that d (x, y) = 0, and x = y follows. D 

2.6. Definition. Let (M, d) be a metric space. 
( 1) A subset X of M is called closed whenever each converging sequence with 

elements in X has its limit in X. 
(2) A subset X of M is called compact whenever each sequence in X has a 

subsequence which converges to an element of X. 

Remarks. (1) The definition of compactness given here is in fact what is called 
sequential compactness in general topology. In a metric space this is equivalent to 
compactness. 

(2) Taking, in Definition 2.6(2), X equal to M defines when the space (M, d) is 
called compact. 

(3) In a metric space every compact set is closed. 

2.7. Definition. Let (M, d), (M1 , d 1), and (M2 , d2) be metric spaces. 
(1) We define a metric dF on the set M 1 ~ M 2 of all functions from M 1 to M 2 as 

follows: For every f 1 ,f2 E M 1 ~ M 2 we put 

dF(/1J2)= sup d1U1(x)J2(x)). 
XEM1 

(2) We define a metric dp on the Cartesian product M 1 x M 2 by 

dp( (xi, Y1), (x2, Y2)) = max d;(X;, Y; ). 
ie ll .2} 



Equivalent semantic models for process creation 117 

(3) With Mi LJ M 2 we denote the disjoint union of Mi and M 2 , which may be 

defined as ( {l} x M 1) u ( {2} x M2 ). We define a metric du on M 1 LJ M2 as follows: 

d ( ) -{d;(x,y) ifx,yE{i}xM;fori=l ori=2, 
u x,y - . 

1 otherwise. 

In the sequel we shall often write M 1 u M 2 instead of M 1 LJ M 2 , implicitly assuming 

that M 1 and M2 are already disjoint. 

(4) Let '2Pc1(M) = {X IX s; M, X closed}. We define a metric dH on {J;c1(M), called 

the Hausdorjf distance, as follows: 

dH(X, Y) = max {~~.e d(x, Y), ~~f d(y, X)} 

where d (x, Z) = inf:Ez d (x, z) (here we use the convention that sup 0 = 0 and inf 0 = 
1, so that the empty set will have distance 1 to every other set). 

2.8. Theorem. Let (M, d>, (M1 , d 1>, (M2 , d2), dh dp, du, and dH be as in Definition 

2.7, and suppose in addition that (M, d), (M1, d1), and (M2 , d2 ) are complete. We 

have that 

(1) (M1 ~ M 2 , dF> (together with (M1 ~c M 2 , dF) and (M1 ~ NDi M 2 , dF)), 

(2) (M1 x M 2 , dp), 

(3) (M1 LJ M 2 , du>, 
(4) ('2Pc1(M), dH) 

are complete metric spaces. (Strictly speaking, for the completeness of M 1 ~ M 2 , the 

completeness of M 1 is not required.) 

In the sequel we shall often write Mi~M", MixM2 , M 1LJM2 , '2Pc1(M), etc., 

when we mean the metric spaces with the metrics just defined. 

The proofs of parts (1 ), (2), and (3) of Theorem 2.8 are straightforward. Part ( 4) 

is more involved. It can be proved with the help of the following characterization 

of completeness of ('2Pc1(M), dH)· 

2.9. Theorem. Let ('2Pc1(M), dH) be as in Definition 2.7. Let (X; ); be a Cauchy sequence 

in r!l'c1(M). We have 

lim;X;={lim;x;IX;EX;, (x,); a Cauchy sequence in M}. 

Theorem 2.9 is due to Hahn [28]. Proofs of Theorems 2.8 and 2.9 can be found, 

e.g., in [25] or [26]. The proofs are also repeated in [ 17]. 

2.10. Theorem (Metric completion). Let M be an arbitrary metric space. Then there 

exists a metric space M (called the completion of M) together with an isometric 

embedding i : M ~ M such that 

( 1) M is complete, 

(2) for every complete metric space M' and isometric embedding j: M ~ M' there 

exists a unique isometric embedding J: M ~ M' such that J 0 i = j. 



118 P. America, J. De Bakker 

Proof. Standard topology. D 

Finally, we have the following result from Rounds [ 41]. 

2.11. Theorem. Let f: M 1 ~Mc. be an arbitrary function, where M 1 and M1 are 

compact metric spaces, and de.fine]: i?Pc1(M1) ~ :?P(M2 ) by f(X) = {f(x) Jx EX}. Then 

the following statements are equivalent: 

(1) f is continuous. 
(2) For every X E 2ilc1(M1) we have f(X) E 2ilc1(M2 ), andf is continuous with respect 

to the Hausdorff metrics. 

(3) For every X E gj>c1(M1) we have ](X) E i?Pc1(M2 ), and,for each decreasing chain 

(X;); (i.e., X; 2 X;+i for all i) of elements in i?J'c/M1) we have 

2.3. Resumptions and domain equations 

We begin with a brief intuitive introduction of the notion of resumption (due to 

Plotkin [37]). We use the terminology of processes p, q, which are elements of a 

process domain P. We emphasize that we are concerned here with semantics rather 

than with syntax: processes are elements of mathematical structures rather than 

(pieces of) program texts. Process domains are obtained as solutions of domain 

equations. In this informal introduction we let A and B stand for arbitrary (fixed) 

sets (where necessary provided with the discrete metric) and we shall denote by p 0 

an arbitrary mathematical object which shall play the role of a nil process. A very 

simple equation is 

P= {p0} u (Ax P). (2.1) 

We can read this equation as follows: a process p E P is either p0 , which cannot 

take any action, or it is a pair (a, q/ EA x P, where a is the first action taken and q 
is the resumption, describing the rest of p 's actions. Clearly, (2.1) has as a solution 

the set of all finite sequences (a 1 , a2 , ••• , a,,, p0 /, with n ;;, 0 and a; E A for all i. The 

set of all these finite sequences plus all infinite sequences (a 1 , a2 , ••. > is another 

solution. 

We next consider 

P:={p0}u (A~ (Bx P)). (2.2) 

This is already a much more interesting equation: each process p is either p0 or a 

function which, when supplied with an argument a, yields a pair p(a) = (b, p'). We 

see that p maps a to b, at the same time turning itself into the resumption p'. We 

can say that p determines its first step b and the resumption p' on the basis of a. 

The following equation we consider is 

(2.3) 



Equivalent semantic models for process creation 119 

Now, if we feed a process p ¥-Po with some a EA, a whole set X of possible pairs 
(b, q) results, among which the process can choose freely. For reasons of cardinality, 
(2.3) has no solution when we take all subsets, rather than all closed subsets of 
Bx P. Moreover, we should be more precise about the metrics involved. We should 
have written ( 2.3) like this: 

(2.3') 

where, for any positive real number c, idc maps a metric space (M, d) into (M, d') 
with d'(x,y)=cd(x,y). We shall adopt the convention that in domain equations 
like (2.1), (2.2) and (2.3) every occurrence of the defined space Pon the right-hand 
side is implicitly surrounded by id112 • (Note that (2.1) and (2.2) can be solved even 
without this convention, resulting in a set of sequences or trees respectively, with 
the discrete metric.) 

It will turn out that (2.3) is the right type of domain equation for our purposes. 
We shall, in Sections 5 and 6, specialize A and B to certain sets which have the 
appropriate semantic connotations. As we shall see later, an important advantage 
of processes as in (2.3) is that they allow a natural definition of their merge, which 
combines interleaving and communication steps in a way which is quite familiar in 
concurrency semantics (for one example, see ACP [18]). 

We next discuss how one may solve equations as exemplified by (2.1) to (2.3). 
These equations are special cases of domain equations as studied in depth in the 
domain theory initiated by Scott and developed further by many researchers (includ­
ing Plotkin's [37], see, e.g., [27] for a comprehensive reference). We shall here 
briefly sketch an approach to the solution of such domain equations which is fully 
couched in the setting of (complete) metric spaces (first described in [17]) and, in 
this way, avoids any mention of order-theoretic structures. We thus obtain a unified 
mathematical foundation for our semantics since we exclusively base ourselves on 
metric techniques. We present a somewhat streamlined version of the results in [17]. 
There is an important class of domain equations not covered in that paper, viz. 
equations of the form 

P=···(P-+··-)··· (2.4) 

i.e., involving functional domains with the "unknown" domain on the left-hand 
side of"-+". Recently, a fuller treatment of the metric approach has been described 
by America and Rutten [8]. There, equations P = Si(P) are solved in a category of 
metric spaces, also catering for situations as in (2.4). For the purpose of the present 
paper, the restricted case to be described below suffices, and we thus avoid the 
introduction of various category-theoretic notions which are not essential for the 

applications at hand. 
We consider a domain equation 

P=Si(P) (2.5) 

where Si is a function (technically, a functor on the category of complete metric 
spaces, but we do not have to be aware of this) which is constructed according to 



120 P. America, 1. De Bakker 

the following syntax (where c is a real number, 0 < c < 1, and M an arbitrary 

complete metric space with metric dM ): 

(2.6) 

The above definition of f!f should be understood as follows. For each complete 

metric space ( Q, d) we define the complete metric space (:¥( Q ), f!f( d )) to which [ff 

maps (0, d): 
(1) :!FM(Q)=M, f!fM(d)=dM. Thus, f!fM is the constant function, yielding 

(M, dM) for every O. In various applications, we just give some arbitrary set A and 

assume for A the discrete metric. 
(2) id,.(Q) = Q, id,.(d)(x, y) = c d(x, y). 

(3) If f!f = f!f 1 x f!f2 , assume that f!f;( O) = 0; and f!f;( d) = d; for i = 1, 2. Then we 

put f!f( 0) = 0 1 x 02 and f!f(d) = dr (see Definition 2.7). 

( 4) If f!f = f!f1 LJ F 2 , assume again that f!f; ( O) = 0; and :!ft;( d) = d; for i = 1, 2. Then 

we put :¥(0)= Q1 LJQ2 and f!f(d)=du (see Definition 2.7). 

(5) If:¥= fll>c1(f!f'), assume that f!f'(O) = O' and :!F'(d) = d'. Now we put :!F(Q) = 

@lc1(0') and f!f(d)=(d')H (see Definition 2.7). 

(6) If f!f= f!fM ~:¥',we already know that f!fM(Q) = M and f!fM(d) = dM. Now 

assume that f!f'( 0) = Q' and f!f'(d) = d'. We put f!f( Q) = M ~ Q' and :ffe(d) = (d')F, 

where (d')F is the function metric on M ~ O' derived from d' (see Definition 2.7). 

According to [ 17], for f!f as just given we can solve (2.5) by the following scheme: 

Define inductively 

Po=< {Po}, d0) d0 the discrete metric, 

P11 +1 = f!f(P,,). 

Observe that-ignoring the obvious identification of P with {i} x P for i = 1, 2 in 

case :!ft involves a disjoint union-we have for all n 

(2.7) 

Now we put (Pw, dw)=(LJ,, P,,, LJ,, d,,) (with the obvious interpretation ofU,, d,,) 

and we define (P, d) as the completion (see Theorem 2.10) of (Pw, dw). Then we 

have the following theorem. 

2.12. Theorem. For [ff and Pas above, we have P == f!f(P). 

Proof. A non essential variation of the results of [ 1 7]. D 

Remark. The scope of the techniques applied in the proof of Theorem 2.12 was not 

fully understood in [ 17], and substantial clarification was provided by [8]. In 

addition, [8] brings an essential generalization: The clause f!fM ~[ff' in (2.6) is 

replaced by f!f1 ~ .Cffe2 , thus dropping the restriction that only constants appear on 

the left-hand side of"~". A precise analysis is provided of the ensuing situation, 

involving the notion of contraction coefficient c ~ 0 of a functor f!f, and culminating 



Equivalent semantic models for process creation 121 

in the result that, for c < 1, (2.5) has a unique solution (up to isometry). A key step 
in this analysis is a generalization of (2.7): in the presence of general functional 
domains we can no longer gloss over the need for a precise embedding of Pn into 
Pn+1> and a rigorous definition of an arrow L: Pn ~ Pn+t is needed. For arbitrary 
complete metric spaces (M1, d1) and (M2, d2), such an arrow L: M 1 ~ M 2 is a pair 
(i,j) with i: M1 ~ M2 an isometric embedding and j: M2 ~ M1 a non-distance­
increasing function such that j 0 i is equal to the identity function on M1 • 

3. A uniform and static language 

We begin with a detailed study of 2us, a uniform and static language. First we 
present its syntax, and its operational semantics in the style of Hennessy and Plotkin 
[29, 38, 39]. Next, we develop the metric framework to define the denotational 
semantics for 2us· Finally, we discuss the relationship between the two semantics 
and outline an equivalence proof. Most of this section can already be found in (16, 
Section 2]; we repeat this material here to make the present paper self-contained 
and to prepare the way for the treatment of the dynamic case in the next section. 
There are a few new points in the development presented below as well, partly due 
to the fact that 2us has only one level of parallelism, partly caused by our wish to 
achieve a smooth transition to the definitions for 2ud. the language with dynamic 
parallelism (a notion not treated in [16]). The latter aim has in particular motivated 
our use below of the technique of continuations. 

3.1. Syntax and preliminary definitions 

Let A be a finite alphabet of elementary actions, with typical elements a, b, c (by 
this we mean that the letters a, b, and c, possibly adorned with primes or subscripts, 
will be used to range over elements of A) and let Stm V be an infinite set of statement 
variables, with typical elements x, y. Statement variables are used in the syntactic 
construct for recursion, as we shall see in a moment. 

3.1. Definition (Syntax for statements and programs). (1) The set Yus of (uniform 
and static) statements, with typical element s, is defined by 

s ::= a Ix I s1 ;s2 I s1 u s2 I µx[s'] 

The prefix µx in the construct µx[s'] binds occurrences of x ins' in the usual way. 
We call a statements closed if it contains no free occurrences of statement variables. 

(2) The set 2us of (uniform and static) programs, with typical element t, is defined 

by 

t ::= S1 II · · · jjsn (n;;;,; 1). 

Here we require that s 1 , ••• , sn are all closed (so that programs are always closed). 



122 P. America, J. De Bakker 

Examples. (1) Statements: a;b, µx[(a;x)ub], µx[(a;x)u(x;b)uc], 
µx[(a 1 ;x;a2) u µy[(y;b)u c]], a;y;b (only the last example is not closed). 

(2) Programs: Each of the closed statements listed under (1), and, in addition, 
(a;b) II µx[(a;x) u b] II µx[(x;b) u c], µx[a;x] II µy[b;y]. 

A statement s is of one of the following forms: 
• an elementary action a, 
• the sequential composition s1 ;s2 of statements s1 and s2, 

• the nondeterministic choice s1 u s2 (also known as local or internal nondetermin­
ism): s1 u s2 is executed by executing either s1 or s2, where the choice is made 

nondeterministically. 
• a statement variable x, which is (primarily) used in: 
• the recursive construct µx[s]: its execution amounts to execution of s, where 

occurrences of x ins are executed by (recursively) executing µx[s]. For example, 
with the semantic definitions to be proposed presently, the intended meaning of 
µx[(a;x)ub] is the set a*· bu{aw}. 

A program t = s1 II · · · II s" consists of n ;;;.1 statements which are to be executed 
in parallel. Since n remains fixed throughout the execution of t, we call the language 
2us static to distinguish it from the dynamic language 2ud studied in Section 4. 

2u• has no synchronization or communication. The issues which arise when such 
notions are added to it are studied in detail in (later sections of) [ 16]. We do not 
want to complicate our treatment of .Pus-which plays only a preliminary role in 
the present context-by including such ramifications. 

Substitution of a statement for a statement variable is defined in the familiar way: 
s[s'/x] denotes the result of substituting s' for all free occurrences of x in s, with 
the usual precaution of renaming bound variables when necessary to avoid clashes. 

In both operational and denotational models we shall use the universe of streams, 

defined as follows. 

3.2. Definition (Streams, cf. [20, 21 ]). We assume that J_ i! A. The set A"t of all 
streams over A is defined by 

A't =A* u Aw u (A* x {..l}) 

where A* (Aw) is the set of all finite (infinite) words over A. 

We shall use u, v, w to range over Ast and use E for the empty stream. Streams 
of the form (u, ..l) will be written as u · J_ or simply u..l. We shall abbreviate (E, j_) 
to ..l. The use of ..l is motivated, in an operational setting, by our wish to produce 
some visible result as the outcome of an infinite computation that does not produce 
an infinite sequence of elementary actions. For example, we shall organize the 
definitions such that both µx[x] and µx[(x;b) u c] deliver J_ as an outcome (in the 
latter case together with cb*). 



Equivalent semantic models for process creation 123 

We shall use aw for the infinite sequence of a's. length(u) yields the number of 
symbol occurrences (from Au {j_}) in u. In particular, for u EA"', length(u) = oo, 
and for u = u'J_, u' EA*, we have length(u) = length(u')+ 1. we use ",;;;;" for the 
prefix ordering on As', i.e., we put u,;;;; v whenever u = v or u EA* and, for some 
w E As', u · w = v (the reader who wants to see a precise definition of the concatena­
tion "·" of streams is referred to Definition 3.12). For example, we have ab ~ abc, 
an~ aw, ab ~ abJ_, but aJ_ ~ abJ_. We recall that each '5;-chain (u;);, with u;,;;;; ui+ 1 , 

i = 0, 1, ... , has a least upper bound u = lub; u; in A si, where ( u;); is either infinitely 
often increasing (u; ~ U;+ 1 for infinitely many i) and then u E Aw, or (u;); stabilizes 
in some U;,, ( U; = u;,, for all i ~ i0), and then u = u;,,. We conclude this list of definitions 
with the notation u(n), which denotes the ,;;;-prefix of u of length n in case this 
exists, and which equals u otherwise. 

In both this and all subsequent sections we shall make extensive use of so-called 
continuations, both of syntactic and semantic variety. In defining the semantics of 
a statement, we shall use a continuation to indicate the "actions" which remain to 
be done after this statement. Syntactically, this is done by a piece of program text, 
a syntactic continuation, to be defined below. Semantic continuations will be 
introduced in Section 3.3. The use of continuations in the context of 2us is not 
necessary or especially helpful, but it introduces the techniques which will be applied 
fruitfully in the following sections. 

We shall denote the empty syntactic continuation by E (note that E is not itself 
a statement) and then define the following sets. 

3.3. Definition (Syntactic continuations). ( 1) The set SyCo of syntactic continuations, 
with typical element r, is defined by 

r ::= EI s;r' 

Here we require that each statement s occurring in a syntactic continuation r is 
closed (so that syntactic continuations are always closed). 

(2) We define the set PSyCo of parallel syntactic continuations, with typical element 

p, as follows: 

.. -P .. _ 
(n~l). 

3.2. Operational semantics 

We now proceed with the operational semantics for Yu. and .2US' We apply the 
technique of transition systems, introduced by Hennessy and Plotkin [29, 38, 39], 
and proven to be quite fruitful in a variety of concurrency semantics. The particular 
version employed below is close to the style of definition in [9, 10], though these 
papers deal in fact with interpreted rather than with uninterpreted languages ( cf., 
for example, the discussion in [12] of the distinction between uniform and nonuni­
form). In [16] we also discuss the relationships between our version of the transition 
formalism and other variants one may encounter in the literature. 



124 P. America, J. De Bakker 

A configuration is either a pair (p, w), with w EA* x {..l}, or simply a stream w, 
with w E A*. A transition is a pair of configurations of the form 

(p, w)"'" (p', w') or (p, w)"'" w" 

(where w, w' EA* x {..L}, w" EA*). In order to understand such transitions, we first 

mention-anticipating later precise definitions-that a program t = s111 · · · llsn will 

correspond to a parallel continuation p = s1 ;E, ... , s,, ;E. For each configuration 

(p, w), we view pas the program currently to be executed, and was an (unfinished) 

stream of elementary actions collected so far. The ""'"" relation as given above either 

reflects a one-step transition to a new such pair (p ', w'), or a one-step transition to 

a (finished) stream w". The transition system to be defined in a moment provides 

the information necessary to deduce transitions of the given form. More precisely, 

we shall define the relation""'"" between configurations as the smallest (with respect 

to set inclusion) relation which satisfies the axioms given in the following definition. 

3.4. Definition (Transition system for 2u,). The system ?Tus for 2 0 , consists of the 

following five axioms (in a self-explanatory notation): 

( ... , a;r, ... , w..L)"'" ( ... , r, ... , wa..L), Elem 

( ..• , (s1 ;s2);r, ... , w)-? ( ... , s1 ;(s2;r), ... , w), SeqComp 

( ... , (s 1 u s2 ); r, ... , w)"'"( .. ., s1 ;r, .. ., w)/( ... , s2 ;r, ... , w) Choice 

(here X"'" Y / Z is short for X"'" Y and X"'" Z), 

( ... , µx[ s]; r, ... , w)"'" ( .. ., s[ µx[s ]/ x ]; r, ... , w), Ree 

(E, ... , E, w.1)"'" w. Term 

(Note that, by our conventions, in the first and fifth axiom w EA*, and in the 

remaining ones w EA* x {..L}.) 

Our next step is the definition of a semantic function O[ · ], yielding, when applied 

to some p, a subset of Ast. 

3.5. Definition. We define the function 

<0'[ ·]: PSyCo"'" fJJ (A sr) 

as follows. Let p E PSyCo. We put a stream w into O[p] whenever one of the following 
conditions is satisfied: 

(1) There is a finite sequence of configurations ((p;, w;))?=o such that (p;, w;)~ 

(P;+1, W;+1) for i = 0, ... , n - l, p0 = p, w0 = .l, and (pn, w,,)"'" w. 

(2) There is an infinite sequence of configurations ( (p;, w;/ )~ 0, such that (p;, w;) ~ 

(P;+1, W;+1l for i = 0, 1, ... , Po= p, w0 = .1, W; = w;..L, and w = (lub; w;).L 



Equivalent semantic models for process creation 125 

Remark. In clause (2) we use the obvious fact that if (p, w j_)--)' (p', w' j_), then w::::; w'. 

Note that, for ( w;); infinitely often increasing, w' = def lub; wi belongs to A"', so from 

the definition w = w' .l we infer that w = w' (by Definition 3.12, concatenating any 

stream to the right of some infinite stream has no effect). For (w;); stabilizing in 
wi0 , we obtain w = w;0 L 

Examples. (1) O[µx[ (a ;x) u b ];E] ={a"'} u a* b, O[µx[(x;a) u b ];E] = {j_} u ba*. 
(2) O[(c u (a;b) ); E,d ;E] = { cd, de, dab, adb, abd}. 

We conclude the operational semantics definitions with the definition of O[t] for 

t E 5£us: 

3.6. Definition. The mapping O[ ·]:.:£us--)' 9J(A'') 1s defined as follows. Let t = 

s1JJ · · · JJsn E .Xus· Then 

O[t] = O[s 1 ;E, ... , Sn ;E]. 

Remark. There is a natural connection between the notions discussed above when 

restricted to programs without parallelism ( t = s 1) and the languages with finite or 

infinite words produced by context-free grammars in the sense of, e.g., Nivat [35]. 

For example, the grammar X--)' aXblc produces {aw} u {ancbn In~ l}, and so does 

O[µ,x[ (a ;x;b) u c ]]. A difference arises in the presence of unguarded recursion ( cf. 

Definition 3.14 below); for example, O[µx[(x;b)uc]] equals {j_}ucb*, whereas 

X-* Xblc would, by Ni vat's definitions, produce only cb*. Briefly, the role of J_ in 

our style(s) of semantics has no counterpart in traditional formal language theory. 

Fixed point considerations for infinitary languages generated by grammars which 

may be left recursive (in other words, which do not satisfy the Greibach condition) 

are discussed for instance by Niwinski [36]. 

A number of elementary properties of O'[ ·] are collected in the following lemma. 

3.7. Lemma. (1) O[E] = {E}. 

(2) O'[a;r] = a·O[r]. 
(3) O'[(s1 ;s2 );r] = O[s1 ;(s2 ;r)]. 
(4) O[(s1 u s2);r] = O'[s 1 ;r] u O[s2;r]. 
(5) O[µx[s];r] = O[s[µx[s]/x];r]. 

Remark. This lemma presupposes the formal definition of operations on (sets of) 

streams to be given in Definition 3.12. 

Proof of Lemma 3.7. Obvious from the definitions. 0 

3.3. Denotational semantics 

By way of preparation for the denotational semantics for !:tu,, we present some 

basic definitions which introduce the metric setting we apply for this purpose. 



126 P. America, J. De Bakker 

3.8. Definition. We define the distance d : A St x Ast~ [ 0, 1] by 

d(u, v) = 2-sup{n\u(n)=v(n)}, 

where 2-00 = 0. 

3.9. Lemma. (1) (As\ d) is a complete metric space. 

(2) For finite A, (Ast, d) is compact. 

Proof. See, e.g., [35]. 0 

Let PP nc(As1) denote the collection of all nonempty closed subsets of A'1• We 
usually abbreviate PP0 c(As1) to Snc· Let X, Y range over Snc· We put X(n) = 
{u(n) I u EX}. Now we also define a distance a on Snc-

3.10. Definition. The distance d: S0 c x Snc~ (0, 1] is defined by 

d(X, Y) =2-sup{n\X(n)=Y(n)J, 

where, again, 2-00 = 0. 

We have the following important theorem. 

3.11. Theorem. (1) (Snc• d) is a complete metric space, and if A is finite, this space 

is compact. 
(2) d coincides with the Hausdorjf distance ( cf Definition 2.7) induced on Snc by 

the distance d on streams. 

Proof. Part (2) is easy from the definitions, and part ( 1) then follows from Theorem 
2.8 (together with a theorem that says that compactness also carries over from any 
M to PPc1(M), see (25, 26]). The omission of the empty subset, which has distance 
1 to every other subset does not disturb closedness or compactness. 0 

Remark. As a consequence of part (1) of Theorem 3.11, each Cauchy sequence 
(Xn)n in (S0 c, d) has a limit limn Xn in (S0 c, d), a fact we shall employ several 
times below. 

Next we introduce three semantic operators "-'', "u'', and "II", which are counter­
parts of the syntactic operators of sequential composition, choice and parallel 
execution. The first two are well-known; the JI-operator (when applied to two sets) 
consists of the shuffle of all streams in the two operands. As remarked before, no 
operations involving synchronization or communication are considered for this 
language. The precise definition of the semantic operators proceeds in stages. 



Equivalent semantic models for process creation 127 

3.12. Definition (Semantic operators). (1) We assume as known the operation "·" 

of prefixing an element a EA to a finite stream u EA*, yielding as a result a . u 

(also written as au). Moreover, we put a· (u, ..L) =(au, ..L) for u EA*. 

(2) Assume X, Y s; A* u (A* x {..L} ). We define 

(a) a·X={auJuEX}; 

(b) for uEA*u(A*x{..L}), we define u· X by induction on the length of u, as 

follows: E·X=X, ..L·X={..L}, (au)·X=a·(u·X); 

(c) X· Y=U{u· Y)uEX}; 

(d) Xu Y is (indeed) the set-theoretic union of X and Y; 

(e) ull_ W (which will be used in (2)(f) is defined by induction on the length of 

u, as follows: ElLX=X, ..Lll_X={..L}, (au)ll_X=a· ({u}llX); 

(f) XII Y=(Xll_ Y)u(Yll_X), where Xll_ Y=U{ull_X)uEX}. 

(3) Assume that X and Y are arbitrary elements of Snc• and let opE{., u, II}. 
Then we put 

X op Y = lim 11 (X(n) op Y(n)). 

3.13. Lemma. ( 1) The operators op from { · , u, II} are well-defined. In particular, for 

each X, YE Snc• (X(n) op Y(n))" is a Cauchy sequence. 

(2) Each op is a continuous mapping: S 11c x Snc-'? S 11c. 

Proof. Either by combining results from [11] with Rounds's theorem (Theorem 

2.11), or by appropriately modifying the proof as given in [17, Appendix B]. 0 

We need one last step before we can give the definition for the denotational 

semantic function ftJ[ ·]. We shall restrict the definition of 9£[ ·] to statements 

involving only guarded recursion defined as follows. 

3.14. Definition. (1) A statement variable x may occur exposed in a statement s. 

This notion is inductively defined as follows: 

(a) x occurs exposed in x; 

(b) if x occurs exposed in s, then x occurs exposed in s;s', s us', s' us, and 

µy[s] for y ¥ x. 
(2) A statement s is called guarded when for each of its recursive substatements 

of the form µx[s'] we have that x does not occur exposed in s'. A program 

t = s 1 11 · · · II s11 is called guarded if all its constituents s; are guarded. 

Examples. The statements µx[a;x] and µx[µy[b;y];x] are guarded, whereas 

µx[(x;b)u c] and µy[µx[y];b] are unguarded. 

Let Y'~s denote the sets of guarded statements and£'~, the set of guarded programs. 

We shall now define the mappings ill: 

ND! 

f!tl[ ·]: .ns ~(I'-'? (SeCo-----" Snc)) 
and 



128 P. America, J. De Bakker 

where r is the set of environments and SeCo the set of semantic continuations, both 
to be defined below. (Recall from Definition 2.3 that -* NDI stands for the set of all 

non-distance-increasing functions.) We take y to range over r and cp to range over 
SeCo -* NDI Snc. The type of especially the first '!lJ might require some explanation; 

it means that we apply the function '!lJ to a guarded statement, an environment, and 

a continuation in order to get an element from Snc, i.e., a nonempty, closed set of 

streams. 
The definition of the set SeCo of semantic continuations is simple: We just take 

SeCo = Snc> 

and use X, Y to range over SeCo as well. A semantic continuation denotes the 

semantics of the statements to be executed after the one to which 221[ ·] is applied. 

To be more precise, when '!lJ is applied to a (guarded) statements and an environment 
y, we get a function cp: SeCo -7 NDI Snc. The interpretation of this function is as 

follows: if X E SeCo = Snc is the semantics of a statement, say s', to be executed 

after s, then the semantics of s and s' together is given by cp(X) (this is illustrated 

very well by part (l)(b) of Definition 3.15 below). At this point continuations may 

seem a complicated way of doing a simple thing (concatenating sequences), but in 

later sections we shall see that the technique of continuations enables denotational 

semantics to do in a simple way things that otherwise require quite an effort. 

There are two reasons to require the function cp to be non-distance-increasing: 

The technical reason is that we want Lemma 3.16 below to hold. The intuitive reason 

has to do with the fact that such a function cp will not have the opportunity to 

analyse its argument in detail and make decisive choices based on that analysis, 

but it will just concatenate the argument to the end of some set of streams, possibly 

(in later sections) interleaving it with yet another set of streams. This kind of 

operation will "shift" the argument "to the future", and due to the nature of the 

metric on Snc' this means that the distance between cp(X) and 'P( Y) will possibly 
be smaller than the distance between X and Y, but definitely not greater. 

For the set of environments we use 

ND! 
T = StmV-7 (SeCo ~ S11c). 

An environment gives a meaning to each statement variable. In more conventional 

languages, which use procedure declarations where we use the µ-construct, the 

meaning of such a set of declarations would be recorded in an environment )',which 
is subsequently used to interpret the procedure calls in the statements after the 

declarations. Our recursive construct effectively combines a declaration and a call 

of a "procedure", named with a statement variable. Therefore the statement s within 

the recursive construct µx[s] will be interpreted with respect to an environment 

different from the one used in interpreting the recursive construct, where the 

difference lies in the meaning assigned to the statement variable x (see equation 
(3.1) below). 

We are now sufficiently prepared for the following definition. 



Equivalent semantic models for process creation 129 

3.15. Definition (Denotational semantics for .Cf us and 2 us). ( l) Assume that s E f/0 , 

is guarded. We define £0[ s] by structural induction on s: 

(a) 0J[a]( y)(X) =a· X, 

(b) 0J[s1 ;s2]( y)(X) = 0J[s1]( y)(0J[s2Il( y)(X)), 

(c) 0J[s1 u s2]( y)(X) = 0J[s1]( y)(X) u 0J[s2]( y)(X), 

(d) 0J[x]( y)(X) = y(x)(X), 

(e) £0[µ,x[s]]( y)(X) = 'Poo(X) where <p," is the unique fixed point of the operator 

<P : (SeCo ...,.. NDI S 0 cl...,.. (SeCo ...,.. NDI S0 c) given by c:P( 'P) = 0J[s ]( y{ <p / x} ). (We 

use the variant notation y{ 'P / x} introduced in Section 2.1.) 

(2) For t = S1 II · · · ils", t guarded, we put 

0J[t] = 0J[s1]( y)({E})ll · · · ll0J[sn]( y)({E}) 

where y is arbitrary (and we assume the obvious associativity of "II"). 

The definition in clause (l)(e) is justified by the following lemma. 

3.16. Lemma. Ifs is guarded and x does not occur exposed in s, then we have that 

the operator <P defined by <P=A1p.0J[s](y{1p/x}) is contracting. 

Proof. Induction on the complexity of s, using the condition on x. O 

By Banach's theorem (Theorem 2.5), the operator c:P in Definition 3.15(1 )( e) 

indeed has a unique fixed point 'Pcx,,. In particular, for the meaning of µx[s] we 

have the familiar fixed point relation (for each y): 

'Poe•= £0[µ,x[s ]]( y) = 0J[s]( y{ 'Po.:/ x} ). (3.1) 

Note furthermore that 'Pee =Jim; <p;, where 'Po can be chosen arbitrarily and the rest 

of the sequence is given by 'P;+ 1=0J[s](y{<p;/x}). 

3.4. Equivalence of operational and denotational semantics 

After having defined both eJ and 0J for (guarded elements of) Yus and .:tu,, we 

next discuss the relationship between the two semantics. We shall in fact establish 

that, for t guarded, 

eJ[t] = 0J[tTI. (3.2) 

We need some technical properties of 0 which will play a role in the inductive 

argument to prove (3.2). A very detailed treatment of variants of these results can 

be found in [16] (variants stemming from the fact that the latter deals with nested 

parallelism as well). Therefore, we state the results here without proof. 

3.17. Lemma. (1) eJ[s;r] = O[s;m · eJ[r]. 

(2) O[r1 , r2] = O[r1] II O[ r1]. 

For the statement of the next theorem we need some further notation: Consider 

a recursive construct µx[s ]. Let D be a new elementary action, i.e., D >:'.A. (This is 



130 P. America, J. De Bakker 

the only place where we find it convenient to distinguish a syntactic elementary 
action (0) from the corresponding semantic one (l_ ).) !1 will play a role only in 
connection with Theorem 3.18 below. We first introduce a corresponding axiom 
(extending the list of transition axioms in Definition 3.4): 

( ... ,!1;r, ... ,W)-7W. Undef 

(Recall that w EA* x {..L}. Thus, Undef is an axiom which terminates the computation 
with an unfinished stream.) Moreover, for each n;. 0, s, and x, we introduce the 

notation s~" 1 given by 

s~ = !1, 

The following theorem is proved in [16]. 

3.18. Theorem. Assume that µx[s] is closed and guarded. Then we have 

O[µx[s];r] =Jim,, O[s~"';r]. 

Proof. See the argument in [16], which involves an elaborate development of 
auxiliary tools. D 

Theorem 3.18 is in fact crucial for the proof of (3.2). We shall prove (3.2) in a 
way that anticipates the strategy followed in the next section where we deal with 
::tud. Our reason for doing this is our wish to pinpoint the places where the proof 
of the dynamic case is essentially more involved than that of the static case. 

In order to prove (3.2), we first prove a more general result, and then obtain (3.2) 
as a direct corollary. 

3.19. Theorem. Let s be guarded but not necessarily closed, and let the set of free 
statement variables of s be contained in {x1 , ••• , x,,J, m;. 0. Let s 1 , ••• , s,,, be closed 
and guarded statements, let s=s[s;/x;];':i, and let, for any r, (Q[r] be short for 
A.X.(V[r] · X). Let furthermore 

IP;= (Q[s; ;E] 

for i = 1, ... , m, and let y = y{ <p;/ x;} ~~ 1• Then we have 

(Q[s; E] = ffi[s]( yJ. 

Proof. Induction on the complexity of s. We treat three representative cases: 
Case 1: s=x;. Then (Q[S;E]=(Q[s;;E]=<p;=0J[x;](y). 

Case 2: s = s';s". Now the free statement variables of s' and s" are also among 
{x 1 , ... , Xm}. We can write s' = s'[s;/ X;] ~~ 1 and similarly for s". Then we get 

(Q[s;E] = (Q[(S';S");E] 

= (Q[s';(S";E )] (Lemma 3.7) 



Equivalent semantic models for process creation 131 

= A.X.V"[s';(s";E)]. x 
= A.X.( V'[s';E] · ( V'[s";E] · X)) (Lemma 3.17 and associativity of"·") 

= A.X.(@[s';E](@[s";E](X))) 

= A.X.(f2J[s']( y)(f2J[s"]( y)(X))) (twice the induction hypothesis) 

= f2l[s';s"]( fl. 

Case 3: s = µy[s']. Let us first remark that from the conditions ons and s1, ... , sm 

it follows that s is guarded. We define s' = s'[ S;/ X;] 7~ 1 (note that y may still be free 

in s'). Now we have on the one hand 

(!J[s; E] = A.X.( O'[s; E] . X) 

= A.X.lim" ( el'[s',.(" 1;E] · X) (Theorem 3.18 and continuity of"·") 

=Jim,, (@[s',.1" 1; E]). 

On the other hand, we have ffi[s]( y) = lim,, !/Jn, where !/Jo can be chosen freely and 

tfn+ i = ffi[s']( y{ !/Jn! y} ). Our choice for !/Jo will be !/Jo= A.X.{j_}. We prove, by induction 

on n, that 

@[s~1 " 1 ;E] =!/Jn-

The case n =O is clear. Now assume (3.3) as induction hypothesis. Then 

(!)[ s',.1n+ 11; E] = @[s'[ s;/ X;] 7~ I [S~1 n 1/ y ]; E] 

= ffi[ s'] ( y{ qi;/ x;} ;'~ i{ !/Jn/ Y}) = ffi[s']( Y{ If!,,/ Y}) = tfn + 1 • 

(3.3) 

Here we have used the main induction hypothesis with s' replacing s, m + 1 replacing 
d ~11 " 1 I . I d f h . . d . m, an s 1, ... , s,,,, sy rep acmg s1, ... , Sm. n or er or t e mam m uct10n 

hypothesis to apply we have to establish that (IJ[s',.1" 1;E] =!fin, which is nothing but 

our nested induction hypothesis (3.3). 

Now that we have proved (3.3) for all n, it is evident that @[s;E] = f0[s]( y), 

which proves the most difficult part of the theorem. 0 

3.20. Corollary. For guarded t we have <'.J'[t] = ffi[t]. 

Proof. For any closed and guarded s, and any y, we have, by the previous theorem, 

that @[s;E]=ffi[s](y). Hence, O'[s;E]=@[s;E]({c})=fi!J[s](y)({t}). If t= 

S1 II · · · II Sn, we therefore obtain 

el'[t] = V'ITsi ;E, ... , Sn ;E] = V'[s1 ;E]ll · · · llV"[sn ;E] 

=0l[s1](y)({z})ll · · · llffi[sn](y)({c})=ffi[t]. 0 

We conclude this section with a remark on possible other models for :£us. Besides 

the operational and metric denotational (linear time) models for 2uso we have also 

developed several other models which have been described elsewhere: 



132 P. America, J. De Bakker 

(1) A denotational semantics based on a cpo structure on (certain) sets of streams 
equipped with the Smyth order [12, 14, 33, 34]. 

(2) A denotational semantics based on a cpo structure on (certain) sets of so-called 
finite observations equipped with the order of reverse set inclusion [12, 14]. 

(3) A branching time denotational semantics based on a process domain of the 

kind described in Section 2.3 [ 11]. 
The equivalence of the models in (1) and (2) has been established in [14], the 

equivalence of the model in (1) and the denotational metric model is proved in 
[13], and the relationship between the branching time model and (any of) the linear 
time models is settled in [ 11 ]. 

4. A uniform and dynamic language 

We now turn our attention to a language with process creation. In this section we 

study the uniform version of this phenomenon as couched in the language ::tud· In 
Section 5 we shall investigate a nonuniform generalization. 

A substantial part of the semantic theory for ::tu, can be carried over to the present 
case. Thus, we can be much shorter in our definitions. The main equivalence result 
also closely follows the approach from Section 3, but for one important new problem 
which requires nontrivial additional analysis. 

4.1. Syntax and intuitive explanation 

We start with the following definition. 

4.1. Definition (Syntax for statements and programs). ( 1) Let s range over the set 

Y'uct of (uniform and dynamic) statements: 

s ::= a ) x) s1 ;s2 ) s1 u s2) µx[s']) new(s'). 

(2) Let t range over the set ::tud of (uniform and dynamic) programs: 

t ::= s 

Here we require again that s is closed. Thus, a program in .'fud is simply a closed 
statement from Yud. 

The intuitive operational semantics for t or s may be described in terms of a 
dynamically growing number of processes which execute statements in parallel in 
the following manner: 

( 1) Set an auxiliary variable i to 1, and set s1 to s, the program to be executed. 
A process, numbered 1, is created to execute this s1 • 

(2) Processes 1 to i are executed in parallel. Process j executes s; (1.,. j.,. i) in 
the usual way (see Section 3) if s; begins with an elementary action, sequential 

composition, choice, or a recursive construct. For example, if sj begins with an 
elementary action a, then this a is appended to the output word, and sj is set to its 
(syntactic) continuation (the part after this atomic action). 



Equivalent semantic models for process creation 133 

(3) If some process j (l ~j ~ i) has to execute a statement of the form new(s'), 

then the following happens: The variable i is set to i + l, then S; is set to s', and a 

new process, with number i, is created to execute s;. Process j will continue to 

execute the part after the new-statement (s; is set to its continuation). Go back to 

step (2). 

(4) Execution terminates when there is no process left with a nonempty continu­

ation. 

Examples. (1) The statement a;new(b;c);d determines the execution as suggested 

by the following picture (where the arrow denotes creation of a new process): 

a 

d b 

c 

(2) The statement a;new(b;new( c;d);e );f determines the execution as suggested 

by the diagram: 

a 

f b 

e c 

d 

4.2. Operational and denotational semantics 

The above intuitive explanation would clearly benefit from a more formal descrip­

tion, and this will be the main content of the present section. 

We first develop the operational semantics for !tud. We profit from the preparatory 

work in Section 3, and assume the general framework as described there. Also, 

configurations (p, w) or simply w' (with w E A* x {.1}, w' EA*) are as before, except 

that the statements s in such a parallel syntactic continuation p (see Definition 3.3) 

should now belong to Yud instead of Yu,. The transition relation "-7" is now defined 

as the smallest relation satisfying the axioms in the following definition. 

4.2. Definition (Transition systemfor,Y!ud)· The transition system :Yud for 2ud consist 



134 P. America, J. De Bakker 

of all the axioms of Definition 3.4 (i.e., of all of .'J0 .), and in addition the axiom 

( ... , new(s);r, ... , w)~( ... , r, ... , s;E, w). New 

Here on the left-hand side we have a parallel syntactic continuation p with, say, 
n;;;:.1 components and new(s);r as the ith component (for some i, l~i~n}. On 
the right-hand side we have the parallel syntactic continuation p' with n + 1 com­
ponents, r as the ith component and s;E as the (n + l)st component (and no changes 
with respect to p in the remaining components). 

The definition of O[p] is as before, but now with respect to transition system .'Y"ud· 

Also, since each t E 2ud equals some s E flud• we simply put, fort= s, O[t] = O[s;E]. 

Example. Take t = a; new( b; new( c); e) ;f Then 0[ t] = { afbce, abfce, abcfe, abcef, 
afbec, abfec, abefc, abecf}. 

The elementary properties of 0 listed in Lemma 3.7 remain valid. In addition, 
we have the following lemma. 

4.3. Lemma. O[new(s);r] = eJ[r, s;E]. 

Proof. Clear from the definitions. D 

We proceed with the definitions for the denotational semantics for flud and :fud· 

A complication which arises is that the notion of a statement being guarded has to 
be refined. A typical case concerns a recursive construct such as µx[new(a);x], 
where the elementary action a does not fulfil the duties of a guard: this construct 
may choose to start execution with the recursive call x. The precise definition of 
guardedness requires an amended definition of"x is exposed ins", and this involves, 
in turn, a notion of generalized new-statement. 

4.4. Definition. (1) A generalized new statement g is defined by 

g ::= new(s) I g1 ;g2 I g'u s I su g' I µx[g'] 

(2) When a statement variable x occurs exposed in a statement s E Yud is defined 
inductively as follows: 

(a) x occurs exposed in x; 
(b) if x occurs exposed ins, then x occurs exposed in s;s', sus', s'us, µy[s] 

(if y ¥- x), new(s), and in g;s. 
(3) A statement s E Yud is called guarded if, for all its recursive substatements of 

the form µx[s'], s' contains no exposed occurrences of x. 

We shall now give a denotational semantics for 2ud by defining 

NDI 
~[ ·]: fl~d~ (I'~ (SeCo-----? Snc)) and ~[ ·]: 2~d~ Snc• 



Equivalent semantic models for process creation 135 

where we use I: SeCo, and Snc as in Section 3.3. (Analogously to Section 3.3, .<!~d 

denotes the set of guarded statements, and £'~ct the set of guarded programs.) 

4.5. Definition. ( 1) For guarded s E .<f'ud, s not of the form new(s'), we take over 

the clauses from Definition 3.15. 

(2) For guarded s of the form new(s') we put 

0l[new(s') ]( y )(X) = 0l[s']( y )( {E}) II X. 

(3) For guarded tE£'uct, t=s, we put fiil[tTI=0l[s](y)({E}), where y is arbitrary. 

We see that the meaning of a new-construct new(s') in a situation that X remains 

to be done (i.e., with a semantic continuation X) is given by the result of putting 

X in parallel with the meaning of s' where nothing remains to be done after it 

(continuation {io}). 

Remark. It has been proved that the expressive power of £'ud is essentially greater 

than that of £'"" in the sense that for each t E S:us there is a t' E :J!uct such that 

O[t] = O[t'] (indeed, take t' = t), but not the other way around. (IJ.J. Aalbersberg 

and P. America, personal communication.) 

4.3. Equivalence of operational and denotational semantics 

We now address the question as to whether, for guarded t, O[t] = 0l[t]. We follow 

the line of reasoning as in Section 3. First, we again have this lemma. 

4.6. Lemma. (1) For all ri. r2 E SyCo we have O[r,, r2] = V[r1] 11 Vh]. 

(2) If µ,x[s] is closed and guarded, then O[µ,x[s];r] =Jim,, O[s~" 1 ;r]. 

Proof. See the sources given with Lemma 3.17 and Theorem 3.18. D 

The next step in the argument concerns the analogue of Lemma 3.17(1) (and, 

somewhat more hidden, the way in which <P[ ·] is defined, cf. Theorem 3.19). Let 

us see whether we may expect that O'[s;r] = O[s;E] · O[r]. It is easy to see that this 

is not the case by taking, for example, s = new(a) and r= b;E. Then the left-hand 

side equals { ab, ba} and the right-hand side equals { ab }. On the other hand, taking 

s =a, r = b;E, we see that neither is it true in general that 1!5'[s;r] = O[s;E] 11 O[r]. 

What we need here (and in the definition of (I)[·]) is an operator which, as it were, 

is able to decide dynamically whether the operation at hand is of a sequential or 

of a parallel character. 
Having pinpointed the problem which distinguishes the situation in the current 

section from that in Section 3, we develop some additional tools and associated 

lemmas in such a way that eventually we shall be able to adopt the same style of 

argument for the main equivalence result as used in Section 3. 



136 P. America, J. De Bakker 

We shall introduce the semantic operator'':", which should clearly be distinguished 

from both"·" and "If". The definition of":" requires the introduction of an auxiliary 

elementary action, not belonging to Au { ..L}, and denoted by I Its intuitive function 

is to mark the termination of a local process and (thus) to indicate where a 

continuation should start. We shall put A'= Au {J}, and introduce the extended 

stream set A est as 

We now define the operator ":" as follows. 

4.7. Definition. We shall put S~0 = f!l>nc(A°st) (recall that Snc= f!l>nc(A")). 

(1) The operator ":":A°5'XAest-?S~c is given by 

{ w1·(w2flw') ifw=w1Jw2, 
w·w'= 

· { w} otherwise. 

(Note that w' could again contain an occurrence of J, which will behave as an 

ordinary elementary action with respect to "II".) 

(2) For X, YE S~c, X and Y with finite streams only, we put 

x: y = u { u: v I u E X, v E Y}. 

(3) For arbitrary X, YE S~c, we put 

X: Y=limn(X(n): Y(n)). 

An important tet:hnical lemma concerning the operator":" is the following one. 

4.8. Lemma. (1) ":" is continuous as a mapping A 0 " x A est~ S~c and as a mapping 

S~c x S~c-? S~c· 
(2) Restricting the domain of ":" to S~c x Snc will restrict its range to Snc, or in 

other words, ":": s;,c x Snc-? Snc. 

(3) (X:Y):Z=X:(Y:Z),forX, Y,ZES~c· 
(4) { wJ}:X = wX,for w EA", X E S~c· 

(5) (Xu Y):Z = (X:Z) u ( Y:Z), for X, Y, Z E S~c· 

(6) (XffY):Z=Xfj(Y:Z),forXESnc, Y,ZES~c· 

Proof. We only prove part (3). Below, we shall prove that (u:v):w=u:(v:w) for 

u, v, w EA est. Then we obtain, for X, Y, Z with finite streams only, 

(X: Y):Z = U U (u:w) = U U U ((u 1 :ui):w) 
ue::X:Y WE.'Z u 10X u 2E-:Y wc.Z 

= U U U (u, :(u2 :w)) =X:( Y:Z). 
u 1EX u2E Y wEZ 

For general X, Y, Z, we take the limit of X(n):Y(n):Z(n). 



Equivalent semantic models for process creation 137 

We now prove that (u:v):w = u:(v:w). If u E Ast (so that u has no occurrence of 
../) then (u: v):w = {u} = u:( v: w), and if v E A"1 then (u:v):w = u: v = u:(v:w ). Now 
suppose that u = u1.Ju2 and v =: v1..Jv2 • We prove two inclusions: 

(1) (u: V): w £ u: ( v: w). Wehaveu: v =: u1 • (u2JJ v),so(u: v): w :::LJw'e(u,Uvl(u1 w'): w. 
Let w' E u2JJ v. We distinguish two subcases: 

(a) w'eA"1• This is only possible (since v=:v1../v2 ) ifu2eA"'u(A*x{.l}). Then 

w' E u2Jlvi. so w' E u2JJ(v1 -(v2JJw)) = u2JJ(v:w), and therefore (u 1w'):w =: 

{u1w'}s;; u:(v:w). 

(b) w'=w;..Jw2. Now there are u2i. u22 such that u2=u21 u22 , w;eu21 Jlvi. wie 
uizilv2 • We obtain 

(u1 w'): w = U1 w;( w2JI w) !: U1(U21ll V1)( udJ v2ll w) 

£ u1(u2Jl(v1(v2Jlw))) =: u:(v;w). 

(2) u:(v:w) £ (u:v):w. We have u:(v:w) = u1 • (u2JJ(v:w)) = Uu'ev:w U1 • (u2Jlu') = 
Uv'evillw U1 -Cu2JJ(v1v')). Now let v'E v2 JJw and w'E u2 JJ(v1v'). There are u2 i. u22 , 

w;, and w2 such that w' = w; w2, w; E u21 JJ Vi. w2 E udJ v'. We have that 

(4.1) 

(The inclusion holds since u2JJv1..Jv2 contains the set (u21 JJv1)../(unlJv2 ), which in 
tum contains w;../(udv2).) We conclude that 

U1 w' = u1 w; w2 E U1 w;(u22ll V2ll w) £ (u:v):w, 

where the last inclusion follows from (4.1) by postfixing both sides with ":w". 0 

We next show how the new operator ":" solves the problems described after 
Lemma 4.6. First we extend-for the remainder of this section-the definition of 
SyCo ( cf. Definition 3.3 ), and now put 

r ::= E I ..J I s; r' 

We emphasize that the "elementary action" ..J occurs only in syntactic continuations; 
the syntax for statements s E Y0 a is not modified. Before we can state and prove the 
equivalent of Lemma 3.17(1), we discuss the induced amendment of the transition 
system ff0 a. Firstly, all axioms of !!10 a now refer to r (and p) which may involve 
..J. Secondly, we extend !!10 a with an axiom catering for ..J. In the present context, 
we need this axiom only in a restricted version: 

( ... , ..J, ... , w .l) ~ ( ... , E, ... , w..J .l) Elem' 

where w EA* and none of the continuations appearing at the dots ( ... ) involves 
..J. In other words, we restrict attention to parallel syntactic continuations p which 
involve at most one constituent syntactic continuation rending in../. This is no real 
restriction since that property applies to all configurations in transition sequences 
which interest us: It holds trivially for p containing only one component, and it is 
preserved by applications of the axiom New, which creates new components. 



138 P. America, J. De Bakker 

We can now state the following lemma, which applies the technique of induction 

loading to prove Corollary 4.10. 

4.9. Lemma. Lets E Y'uct (not necessarily closed) and suppose that all the free variables 

in s are in {x1 , ••• , xd. Now let s1 , ••• , sk be closed and guarded and define s = 
s[sJ X;] 7 = 1• Suppose further that for i = 1, ... , k and for any r we have 

O[s; ;r] = O[s;;J]:O[r] 

and that s is guarded. Then we have for any r 

O[s;r] = O[S;)]:O[r]. 

Proof. Induction on the complexity of s. We give full details of the proof, in order 

to exhibit its dependence on Lemma 4.8. 

(1) If s = a, then s =a, so we get 

O[s;r] = O[a;r] =a· O[r] 

= {avl}:O[r] 

= O[a;J]:O[r] = O[s;)]:O[r]. 

(Lemma 3.7) 

(Lemma 4.8(4)) 

(2) Ifs= X;, then s = S; and the property follows from the assumption about S;. 

(3) Ifs= s';s", then we get in an obvious way s = s';.~". so 

O[s;r] = O[(S';s");r] 

= O[.S';(s";r)] (Lemma 3.7) 

= O[s';J]: V'[s";r] (ind. hyp. for s') 

= O[.S';J]:(O[s";)]:O[r]) (ind. hyp. for s") 

= (O[s';J]:v'[s";)]):O[r] (Lemma 4.8(3)) 

= O'[.S';(s";))]:O[r] (ind. hyp. for s') 

= O[(S';s");J]:O[r] 

= O[s;J]:O[r]. 

( 4) If s = s' u s", then, again, s = s' us" and we get 

O[s;r] = O[(S'u s");r] 

= O[s';r] u V'[s";r] (Lemma 3.7) 

= (O[s';)]:O[r]) u (O[s";)]:O[r]) (ind. hyp. for s', s") 

= ( O[s';)] u O[s";)]):V'[r] (Lemma 4.8(5) 



Equivalent semantic models for process creation 

= O[(S' u s");J]:O[r] 
= O[S;J]:O[r]. 

(5) Ifs= new(s'), we get s = new(s') and then 

O[s; r] = l'.J[new(S');r] 

= O[s';E] llO[r] (Lemmas 4.3 and 4.6(1)) 

= ( O[s'; E] II { J}): O[r] (*) 

= ( O[s'; E] II O[v']): O[r] 

= O[new(S');J]:O[r] 

= O[s;v']: <0'[r]. 

139 

Here, at the place marked(*), we have used (Xlj{J} ): Z = XjjZ if X E Snc• Z E S~c; 

this is a special case of Lemma 4.8(6) together with Lemma 4.8(4). 

(6) Lets= µx[s']. Suppose (without loss of generality) that x ~ {x1 , ••• , xd. Put 

S1 = s'[s;/ X;] ~= 1' so that s = µx[S']. Then we have by Lemma 4.6(2) 

O[s;r] = O[µ,x[S'];r] =Jim,. O[s'}" 1; r]. 

Now we shall prove in a minute that 

O'[s~<"\ r'] = O[s~1 "l;J]:O[r'] 

for all n and for all r'. Once we have proved this, we can calculate 

O[s;r] =Jim,. O[s~<" 1 ;r] (Lemma 4.6(2)) 

=Jim,. ( e:J'[s:cn 1;v']: l'.J[ r]) (property ( 4.2)) 

=(Jim,. O[s:c"\J]):l'.J[r] (continuity of":") 

= l'.J[s;v']:O[r] (Lemma 4.6(2)), 

which is what we wanted. 

(4.2) 

We still have to do the proof of property (4.2), which runs by an induction on n 

(nested within our original induction on the complexity of s ). For the case n = 0, 

we have s~(O) = n, so O[s~101 ;r'] = J_ = _!_:O[r'] = eJ[s~(Ol;JlO[r']. 

For the induction step we assume that property (4.2) holds for a certain value of 

n. Then we can apply the main induction hypothesis fork+ 1 to s' with x 1 , ••• , xk+i = 

X1, .• • , Xko X and S1, .•• , Sk+ 1 = S1, ••• , Sk. S~(n I in order to get 

= O[s'[s;/x;J7~f;r'] 

= O[ s'[ s;/ x;] 7~f ;v']: l'.J[ r'] 

= O[s~<n+ii;J]:O[r']. D 



140 P. America, J. De Bakker 

4.10. Corollary. For closed and guarded s, O[s;r] = O[s;vlO[r]. 

We are, at last, sufficiently prepared for the main theorem of this section. 

4.11. Theorem. Let s E ,</ud, not necessarily closed, and let the set of free statement 

variables of s be contained in {x 1 , ••• , xm}, m 3 0. Let s1 , ••• , s,,. be closed and guarded 

statements, let s = s[ s;/ x;];: i. and de.fine @[ rll by 

@[Ell= @[J] = AX.X, @[s';r] = AX.(O[s';)]:@[r](X)). 

Let furthermore ip; = <D[s, ;Ell for i = 1, ... , m, and let y = y{ <p;} xJ ;: 1• Now ifs is also 

guarded, we have 

@[S;E] = SJ[s]( y). 

Proof. Very similar to that of Theorem 3.19. We shall prove two cases of old 

statements plus the case of the new statement. 

Case 1: s = s';s" 

@[s;E] 

= m[(s';s");E] 

= AX.(O[(S';s");J]:l9[E](X)) 

= AX.(O[S'; (s";))]:X) (Lemma 3.7) 

=AX.( O[s';./]:( CJ'[s";vl]:X)) (Corollary 4.10 and Lemma 4.8(3)) 

= AX.@[s'; E](l9[s"; E](X)) 

= AX.fill[s']( f)(0)[s"]( f)(X)) (ind. hyp. for s' and s") 

= SJ[s';s"]( f) = 0J[s]( y). 

Case 2: s = µy[s']. As in Theorem 3.19, let us defines'= s'[sjx,];: 1 and calculate 

l9[s;E] = AX.(O[s;vlll:X) =AX.Jim"( e:J'[s~(n);J]:X) =Jim., @[s~(n>;E]. 

Here we have used Lemma 4.6(2) and the continuity of":". From this point on the 

argument follows exactly the same lines as in Theorem 3.19. 

Case 3: s = new(s'). 

l9[new(s'); E] 

= AX.(O[v/,S';E]:X) 

=AX.(( {v/}110[.s';E]):X) 

= AX.(e:J'[s';E]llX) (Lemma 4.8, parts (6) and (4)) 

=AX.(( e:J'[s';J]: O[E]) II X) (Corollary 4.10) 

= AX.(@[s';E]( {E}) llX) (Lemma 3.7 and def. oflD) 

= AX.(SJ[s'll( y)( {E}) llX) (induction hypothesis) 

= SJ[new(s'H( y) (Definition 4.5). 0 



Equivalent semantic models for process creation 141 

4.12. Corollary. For guarded t E 2uct we have O'[t] = 0J[t]. 

Proof. Clear from Theorem 4.11. O 

We have thus completed the semantic analysis of 2uct, and are now ready for the 
generalization to the nonuniform case. 

5. A nonuniform and static language 

This section is devoted to the semantic definitions for a nonuniform and static 
language. The elementary actions are now interpreted, viz. as assignments and 
communication actions. However, for the moment we return to a static framework, 
and leave the treatment of the dynamic case to the next section. 

5.1. Syntax 

The nonuniform framework involves the introduction of three new syntactic 
classes: 
• The set IndV of individual variables, with typical elements x, y. For IndV we 

take an infinite alphabet of variable names. 
• The set Exp of expressions, with typical element e. 
• The set Test of conditions, with typical element b. 
We shall return to the syntax for expressions and conditions in a moment. Note 
that we have changed the notation with respect to Sections 3 and 4 in that we now 
use x, y for individual rather than statement variables. For the latter purpose we 
here use variables v ranging over Stm V. (The nonuniform framework has no streams, 
so we can freely use the letters u, v, w.) 

In the static case, a program will again be composed of n components s1 , ••• , s,,. 
Contrary to the uniform case, we are also interested in the identity of, in general, 
the ith statement (or process, in a terminology used, e.g., in CSP [31, 32]), and we 
introduce for this purpose the set I= {1, 2, ... } of indices, with i,j, k, I ranging over 
I. Typically, indices i,j will be used in communication statements of the form i?x 
or j!e, denoting communication of two sorts: The first occurs, in general, in some 
process k and requires a value for the variable x from process i. The second occurs, 
say, in a process I and sends the current value a of the expression e to process j. 
In the case that k = j and I = i and, moreover, the communications synchronize in 
the usual sense, then the "handshake" communication can indeed take place, and 
the variable x takes the value a. Once more, this informal description requires 
formal definition, to be elaborated in the sequel. 

The last syntactic set we need to introduce is that of (individual) constants. We 
shall not bother to make a distinction between syntactic constants and semantic 
(basic) values, and use the set V, with typical elements a, /3, for both purposes. 

We now define the syntax for Ynus and 2nus (and for Exp). 



142 P. America, J. De Bakker 

5.1. Definition. (1) Let e range over the set Exp of expressions: 

e ::= x I a I e, op e2 j op e' 

(Here op stands for an arbitrary binary or unary operator. We prefer not to take 

the trouble to introduce general n-ary function symbols into our language.) 

(2) We do not specify a syntax for the elements b of Test. We only require that 

their evaluation terminates and takes place without complications such as side­

effects. 
(3) Lets range over the set Ynus of nonuniform and static statements: 

s ::= x:= e I s1 ;s2 Iv I µv[s'] I if b then s, else s2 fi I i?x I i!e 

(4) Let t range over the set 2nus of nonuniform and static programs: 

We require that the statements s 1 , ••• , s,, are closed and furthermore that every 

index i occurring in t actually corresponds to a component statement, i.e., i ~ n. 

We see 2 11 us is similar to (classical) CSP (as in [31]). There are also important 

differences: the absence (in 2 11 uJ of guarded commands with communication in 

guards or features such as the distributed termination convention. On the other 

hand, !fnus has full recursion rather than only iteration. Compared with :£"" we 
have simplified ffnus by dropping the "u" operator. Extension of the treatment 
below to cover "u" is not difficult and we leave it to the reader. 

5.2. Operational semantics 

We proceed with the development of the framework for the operational semantics 

for 2nus. Syntactic continuations r are, as before, defined by 

r ::= E ls;r' 

where sis closed. Instead of parallel syntactic continuations p in the form of n-tuples 

r1 , ••• , r,,, we now let p range over sets of the form 

where all the indices i1 , ••• , i,, must be different. Thus, in the pair ( i, r), we make 

explicit the identity of the component r. We shall not require that every index i 

occurring in a communication statement i !e or i?x within p also occurs as the first 
component of a pair (i, r) E p. 

We shall often use the notation p u { (i, r;) }, with the convention that p is supposed 

not to contain an element of the form (i, r'). Such a condition also applies to the 

notation p u { (i, r;), (j, rj) }: here we suppose that i-¥- j and that p does not contain 
an element whose index is i or j. 

The next step in the development of the semantic model is the introduction of 
states, and of the meaning or evaluation function for expressions (and conditions). 



Equivalent semantic models for process creation 

5.2. Definition. (1) The set of states I, with typical element u, is defined by 

I= I~ (lndV ~ V). 

(2) We define the meaning function for expressions, 

[ · Il: Exp~ (I~ (I~ V)), 

as follows: 

[x](i)(u) = u(i)(x), [a](i)(u) =a, 

[e1 op e2](i)(u) = ([e1](i)(u)) OPsem([e2TI(i)(u)), 

[op e](i)(u) = OPsem([eD(i)(u)). 

Here we use OPsem for the semantic operator corresponding to op. 

143 

(3) We do not give a detailed definition of [bTI(i)(u), which yields an element of 
the set of truth values {t, f}. 

The operational semantics for gnus and 2nu• is again given through a transition 
system. This time, configurations are of the form (p, u). Transitions are pairs of 
configurations written in the form 

(p, u) ~ (p', u'). 

There is no special role here for (an equivalent of) the .l-action. 
Non uniform transitions involve states rather than streams as the intermediate and 

final results. Since states are entities which are not naturally amenable to the 
operation of merging, we shall encounter below the necessity to resort to additional 
means to formulate results which are counterparts of uniform facts such as O[r1 , r2D = 
O[r1D II O[r2]. 

We first give the transition system fl"nus for 2nus. Extending the formalism of the 
uniform case, we also employ rules, written in the format 

1~2 

3~4 

The meaning of such a rule is the following: In case a transition 1~2 is an element 
of fl"nus, then the rule allows us to infer that 3 ~ 4 is a valid transition of fl"nus as well. 

Remark. Our framework for the operational semantics gives us quite some freedom, 
so that we can choose whether to use a rule or an axiom to express the semantics 
of a certain construct. The intuitive meaning remains the same, but technically an 
axiom needs a transition to perform a certain transformation, while a rule does not. 
We could, in fact, formulate the operational semantics for 2nus in terms of axioms 
only, but we prefer the version as adopted below. The reason for this is our wish 
to stay as close as possible to the denotational semantics to be developed sub­
sequently. The denotational framework does not provide so much freedom, mainly 
because of the necessity to arrive at contracting operators having unique fixed points. 
We have chosen the denotational semantics with the least possible number of 
computation steps, and tuned the operational semantics to match it. 



144 P. America, J. De Bakker 

5.3. Definition. The transition system :Ynus specifies the relation "~" between 
configurations of the form (p, u) as the smallest relation which satisfies the following 
axioms and rules: 

(pu{(i, (x:= e);r)}, u)~(pu{(i, r)},u') 

where u'=u{u(i){,B/x}/i} and ,B=[e](i)(u). 

(p u {(i, s1 ;(s2 ;r))}, u)~ (p', u') 

(p u {(i, (s1 ;s2);r)}, u)~ (p', u')' 

(p u { (i, µ.v[s ];r)}, u) ~ (p u {(i, s[µv[s]/ v ]; r)}, u), 

(p u {(i, if b then s 1 else s2 fi;r)}, u)~ (p u {(i, s1 ;r)}, u) 

in case [b](i)(u) = t, and an analogous axiom for the case [b](i)(u) =f. 

(p u {(i, (j?x);r1), (j, (i!e);r2)}, u)~ (p u {(i, r1), (j, r2)}, u') 

where u'= u{u(i){,B/x}/i}, and f3 =[e](j)(u). 

Ass 

SeqComp 

Ree 

Cond 

Comm 

Remarks. (1) Observe that no transition is defined for a configuration (p \... 
{(i, (j?x);r)}, u) in the case that p does not contain the matching pair (j, (i!e);r'; 
(and a symmetric observation). 

(2) The difference in treatment between SeqComp and Ree-the first as a rule 
the second as an axiom-is motivated by the corresponding definition in the 
denotational semantics (which will be given in Definition 5.8). In operational terms 
replacing (s1 ;s2);r by s1 ;(s2 ;r) does not take a time step, whereas the replacemen 
of µ.v[s] by s[µv[s]/v] does take a (silent) time step, (i.e., a step that does no 
change the state). In a uniform setting, the same effect would be obtained b~ 
transforming each recursive construct µ.x[s] into µ.x[skip;s] where skip is a specia 
elementary action denoting the silent step. Accordingly, the automatic introductio1 
of silent steps obviates the need for the guardedness restriction. 

(3) In the axioms Ass, Cond, and Comm we see how the evaluation of an expressiot 
e or condition b is parameterized by the index of the statement which contains th1 
occurrence of the expression or condition involved. Effectively, this means tha 
different components are treated as if they had disjoint sets of variables. 

The transition system :Ynus is a natural generalization of the corresponding system 
f!fus and f!fud. What is more difficult is the definition of O[p] and O[ t]: a formulatioi 
which is a straightforward extension of the uniform approach is not feasible 
assuming that we want to express results which are variations on relationships sucl 
as 

(5.1 

Two problems arise when we consider (5.1). The first concerns the basic questio 
as to well-formedness of (5.1): we have as yet no outcome for O[p] which allow 



Equivalent semantic models for process creation 145 

the operation of merging to be applied to two instances of it. The second may be 

considered as a more "practical" one: In a situation where p1 involves a send and 

p2 a matching receive communication, p1 u p2 will allow a matching transition by 

the Comm axiom, whereas the components p1 and p 2 separately do not allow the 

corresponding send and receive actions to proceed. Thus, we expect that neither 

O'[p1] nor e:i'[p2] will contain the necessary information enabling the communication 

to take place through the semantic operator "II" (in whatever way the latter will be 
defined). 

In order to solve the principal problem, we apply a new method, which might 

be considered somewhat drastic in an operational context: we choose to deliver a 

process, now taken in the technical sense of Section 2.3, as the outcome of e:i'[p n. 
Thus, the outcome of e:i'[p] is an element of a certain process domain P obtained as 

the solution of an appropriate recursive domain equation P = :!f( P), where the form 

of :!f is to be determined in a moment. We intend to show that, by adopting this 

approach, we achieve two goals: Firstly, we shall be in a position to define "II" as 

an operation on processes and to apply it to O'[p 1] and e:i'[p2] above. Secondly, since 

we shall employ processes as well in our denotational model, we have a much 

smaller distance to bridge between the operational and denotational definitions. 

The domain equation we use to determine the appropriate process domain P 
exploited below is described in the following definition. 

5.4. Definition. ( 1) Let the set Comm of communications, with typical element T, 

be given by 

Comm= Ix (J?IndVu I! V). 

(The delimiters "?" and "!"are used here to underline the connection with statements 

of the form i !x and i !e. Properly speaking, they are cosmetic variants of the Cartesian 

product operator "x".) 
(2) Let the set Step of steps, with typical element ri, be given by 

Step = 2: u Comm. 

(3) Let the function :!f be given by 

:!f(P) ={po} u (2: ~ Pl'c1(Step X P) ). 

( 4) Let P be the process domain solving the equation P = :!f( P). We shall use 

p, q to range over P. 
(5) Let P0 = {p0}, Pn+i = :!f(Pn). By the general theory (Section 2.3) we know that 

each p E P is either an element of some Pn, in which case we shall call p finite, or 

else p is called infinite and there is a Cauchy sequence ( Pn)" with Pn E Pn such that 

p =limn Pn· For finite p, we call the smallest n such that p E P" its degree. 
(6) We shall use X, Y to range over Pl'c/Step x P) and 7T to range over Step x P. 



146 P. America, J. De Bakker 

Example. We have ((i,j?x), p) E Step x P. Below, we shall always adopt for this the 

simpler notation (i,j?x, p). 

We proceed with the semantic definitions for the familiar operators"·" and "II", 
this time defined as mappings P x P-+ P. We shall in fact propose two definitions. 

The first one is probably simpler, and is based on an induction on the degree for 
finite processes. The second one involves Banach's theorem and is given here to 
familiarize the reader with its subsequent use in definitions where the simpler 

inductive definition is less convenient. 

5.5. Definition. Let p, qe P. We define p · q and pllq as follows: 
(1) (Definition by induction on the degree of p and q.) We first consider the case 

that both p and q are finite. We put Po · p = PollP = p II Po= p. If p is (or if p and q 
are) different from Po, we put 

p· q=ACT.(p(CT) · q), 

Pllq =ACT.((p(a)llq)u (q(u)llP) u (p(a)j.,. q(u))) 

where X·q={7T·qj7TEX}, Xllq={7Tllqj7TEX}, ('YJ,p')·q=('YJ,p'·q), and 
( 77, p')llq = ( 77, p'll q) (note that, here, the degree of p' is less than the degree of p, or 
the maximum of the degrees of p and q ). Moreover, 

x1.,. y = u { 7T1lu 7T2 I 7T1 EX, 7T2 E Y}, 

where 7T11., 7T2 is defined by 

(i,j?x, P1)lo- (j, i !a, P2) = {(u', Pi llP2)} 

with u' = u{ u(i){ a/ x}/ i}, together with a symmetric clause, and 7T1 I.,. 7T2 = 0 for 
7T1 , '1T2 not of the above form. 

Finally, for p or q infinite, so that we have p =limn Pn and q =limn qn with 

Pn, qn E Pn, we put P · q = limn(Pn · qn) and Pllq = limn(Pn llqn). 
(2) (Definition with Banach's theorem.) We define "·" and "II" as the unique 

fixed points of the contracting (higher-order) functions <P, 1/1': (P x P-+ P)-+ 
(P x P-+ P) given in the following manner: Let cp, ljJ e P x P-+ P be arbitrary. We 
now define <l>(rp) and 1Jr(l/f). Let us abbreviate <J>(<p)(p, q) to p<{;q and 1Jr(ljl)(p, q) 
to pJq. Then we put 

- { q if p =Po, 
pcpq= Au.(p(u)<{;q) ifprf=p0 ; 

{
q if p =Po, 

pljlq = P if q =Po, 
Aa.((p(u) $q) u (q( a) $p) u ( p( u)Jo-,l/J q( a))) otherwise; 

where X<,0q={7T<,0ql7TEX}, X$q={7T~q,7TEX}, (17,p')<Pq=(7],p 1 <pq), 
( 'T/, p') ~q = ( 7], p' ljlq), and where 

Xla-. .P Y=LJ{7T1lu . .p7T2l7T1EX,7T2E Y}. 



Equivalent semantic models for process creation 147 

Here 1T1 I ",•/l 1T2 is given by 

(i,j?x, P1)l",<1' (}, i!a, P-1l = {(o-', Pi !f;p2)} 

with o-' = o-{ o-( i){ a Ix} Ii}, together with a symmetric clause, and 1T1 I","' 7T2 = 0 for 

1Ti, 1T2 not of the above form. 

Now we define"·" to be the unique fixed point of<!> and "II" as the unique fixed 

point of tJr. 

It should be clear from these definitions that they are variations on one theme: 

in the second an appeal to Banach's theorem replaces the inductive argument of 

the first. We omit the proof that the above definitions are justified (and that they 

define the same operators). Details of a very similar proof are given in [7]. 

We are now ready for definition of the operational semantics of 2nus. 

5.6. Definition. (1) We define O[ ·]: PSyCo ~ P as follows: Let p E PSyCo. If pc;;; 

{(1, E), ... , (n, E)}, we put l'.Y[PTI = p0 . Otherwise, 

O[PTI = Ao-.{(o-', O[p'])i(p, o-)~(p', o-')} 

where, of course, the transition relation "-?" is the one given by !200 .. 

(2) The function O[ ·]: 2 00.-? P is defined as follows. Let t = s 1 II · · · !Is"" Then 

O[t] = l'.Y[{(l, s1 ;E), ... , (n, Sn ;E)}]. 

It is not difficult to verify that 0 as given in part ( 1) of this definition is well-defined. 

Once more, we deduce this by the following reasoning: Let the (higher-order) 

mapping F: ( PSyCo ~ P) ~ ( PSyCo ~ P) be defined in the following manner: 

F( ;U)(p) ={Po if pc;;; {(1, E),. .. , (n, E)}, 
· Ao-.{(o-', .M(p'))l(p, o-)~(p', o-')} otherwise. 

Then Fis a contracting mapping, and 0 as given in Definition 5.6(1) is the unique 

fixed point of F. 

Remarks. (1) It is not difficult to establish that, for each (p, o-), there are only finitely 

many (p', a') such that (p, o-)-?(p', o-'). Hence, the set occurring in the Ao-.{ ... } 

clause in Definition 5.6(1) is finite and therefore closed. 

(2) Note that O[p] = Ao-.0 may well occur. For example, 0[{(1, (2?x);E)}] = ACT.0 

since there are no transitions ({(1, (2?x);E)}, o-)~ · · · defined in :Y11 us· In general, 

l!J does not preserve information on one-sided attempts at communication. 

(3) Processes p which equal O[p] for some p are in fact elements of a process 

domain P' which satisfies 

P' = {p0 } u (.1' ~ 0\1(.1' x P')). 

This is the case since no steps in Comm x P are delivered by the transition relation 

"-?".The more involved process domain P is exploited in full only in the definitions 

of I!}* and of the denotational semantics ~. both of which we shall discuss presently. 



148 P America, J. De Bakker 

Now that we have given a process interpretation for Ci'[p Il, yielding results in a 

domain for which "II" is well-defined, we have a well-formed question to ask: is it 

true that O'[p 1 up Il = O[p1] II O[p2]? The answer is negative-for the same reason as 

already explained earlier. However, a not too far-fetched variation on this property, 

which does indeed hold, will be presented soon. Rather than immediately getting 

to this, we first develop the denotational semantics for :£,,us. In this way, the reader 

may acquire some additional appreciation for the way we utilize the process notion 

in our framework. In fact, a combination of ideas involving: 

• the tools of environments and semantic continuations as employed in Section 3, 

• the operational semantics of 2,,u., and 

• the definition(s) of" II" 
will altogether provide most of the background to understand the denotational 

definition. 

5.3. Denotational semantics 

We introduce semantic continuations and environments in the following definition. 

5.7. Definition. (1) The set of semantic continuations is given by Se Co = ctei· P. 

(2) We define the set of environments by r = def Stm v--"> (I--"> (SeCo --"> NDI P) ). 

We shall use p, q to range over SeCo and y to range over r. 

The definition of 0J will be given for all s E gnus and all t E Ynus. Thus, the 

restriction to statements with only guarded recursion is lifted. As remarked earlier, 

this is explained by our definition of recursion which involves a treatment of recursive 

calls such that always at least one initial "silent" step is made upon "procedure 

entrance". That is, (the equivalent of) a transition is made which does not affect 

the state but which does take (what may be seen as) one unit of time. For example, 

execution of µv[ v] will result in an infinite sequence of such silent steps (rather 

than in just J_ as in the uniform case). All this is a matter of taste rather than of 

principle. One may disagree with our feeling that silent steps are more natural in a 

nonuniform than in a uniform setting. 

We now give the definitions of 0J[s] and of 0J[t]. We shall often suppress 

parentheses around arguments of functions for easier readability. 

5.8. Definition. ( 1) We define the function 

ND! 
0J[ ·]:gnus~ (I'~ (I--"> (SeCo ---7 P))) 

as follows: 

(a) 0J[x := ebip =Au.{ (u', p) }, where u' = u{ u( i){ a/ x }/ i} and a = [ d iu; 

(b) 0J[s1 ;s2hip = 0J[s1]yi(0J[s2]yip); 
( c) 0J[if b then s1 else s" fihip 

= Au.{(u, if [b]iu = t then 9LJ[s1hip else 0J[s2hip fi)}; 



Equivalent semantic models for process creation 149 

(d) 92J[v]yip = y(v)ip; 

(e) 92l[µv[s]]yip = 'Pcc(i)(p) where 'Poo is the unique fixed point of the operator 

<P, which maps the space I-.;. (SeCo-.;. NDI P) to itself, and is given by 

<P(t:p) = Ai.Ap.Aa.{(a, ffi[s]y{t:p/v}ip)}; 

(f) 92J[j?x]yip = Acr.{ (i, j?x, p) }; 

92J[j !e]yip =Au.{ ( i, j !a, p) }, where a = [ e] ia. 

(2) We define the function ffi[ ·]: !fnus-.;. P as follows: Let t = s1 11 · · · II Sn and let 

y be arbitrary. Then 

Remark. The definition in clause ( 1 )( e) above is justified by the fact that the function 

<P is contracting. Note that its unique fixed point can again be obtained as 'Po..'= 

Iimk 'Pk> where 'Po is arbitrary and 

'Pk+1 = <P( 'Pk) = Ai.Ap.Aa.{ (a, ffi[s ]y{ 'Pd v }ip) }. 

Examples. (1) ffi[µv[v]]yip = Aa.{(a, Aa.{(a, ... )})}. 

(2) We have 

ffi[(2?x)ll(l !3)] = ffi[2?x]ylp0 ll ffi[l !3]y2p0 

def 

= Aa.{(1, 2?x, Po)} II A0".{(2, 1 !3, Po)} = q, llq2 

= A0".{(1, 2?x, q2), (2, 1!3, q 1), (0"{0"(1){3/x}/ l}, Po)}. 

The resulting process, say q, contains two steps resulting from one-sided (failing) 

communication: (1, ... ) and (2, ... ). Moreover, there is one step resulting from 

successful communication: (a{ ... }, p0), where 3 is assigned to x. We recall that the 

latter step ultimately results from the definition of 1T1I"1T2 (or rr1!"·'"1T2 ) given in 

Definition 5.5. The operation of abstraction, to be introduced in a moment, will 

simplify the result q to just A<T.{(O"{ ... }, p0)}, throwing away the unsuccessful parts 

(1, ... ) and (2,. .. ). 

5.4. Equivalence of operational and denotational semantics 

We return to the question concerning the (non)compositionality of 0. We shall 

introduce an extension of :?700, to :Y;u,, which induces an associated operational 

semantics (}*, and we then settle the relationship between O~ (}*, and 92!. 

5.9. Definition. (1) We expand the notion of configuration such that it includes 

pairs of the form (p, YJ) (recall that YJ ranges over Step=}; u Comm). Therefore, in 

addition to configurations of the form (p, <T), we also consider configurations of the 

form (p, r). (Actually, the latter ones will only occur on the right-hand side of a 

transition.) 



150 P. America, J. De Bakker 

(2) The transition system .o/~us extends the system .o/nus of Definition 5.3 by adding 

to it the axioms 

(p u {(i, (J?x);r), a)-"> (p u {(i, r)}, (i,j?x)), 

(p u {(i, (j!e);r)}, a)-"> (p u {(i, r)}, (i,j!et)) 

where a = [ e] ia. Moreover, the rule SeqComp of .o/nus: 

(p u {(i, Si ;(s2 ;r))}, a)-" (p', a') 

(p u {(i, (s1 ;s2);r)}, a)-"'(p', a') 

is replaced by 

(p U { ( i, S J ; ( S 2 ; f))}, (]") -'> ( P 1 , Y} ') 

(p u {(i, (s 1 ;s2);r)}, a)-'> (p', YJ 1
} • 

(3) The operational meaning <0'*: PSyCo--"' P is defined by 

IndComml 

IndComm2 

{
Po if p £: {(1, E), ... , (n, E)}, 

<!i'*[p] = ,\a.{(YJ', O*[p'TI)\(p, a)-'>(p', YJ')} otherwise. 

(Here we take"--"'" as determined by .o/;;'us·) 
( 4) The operational meaning(')'*: 2nus--"' P is defined as follows: Lett= s1 II · · · 11 s,,. 

Then 

O*[t] = O*[{(l, s 1 ;E), ... , (n, s,, ;E)}]. 

Following the detailed analysis as in [16], it is not difficult to prove the following 

theorem. 

5.10. Theorem. O*[Pi u P2] = <!i'*[p1] II O*[p,]. 

For example, 

CP*[{(l, (2?x);E), (2, (1 !3);E)}] 

= ,\a.{(l, 2 ?x, p1), (2, 1 !3, P2), (a{ a(l ){3/ x} / 1}, Po)} 

where Pi= ,\a.{(2, 1 !3, p 0)} and p2 = A.a.{(l, 2?x, p0)}. Thus, 

<!i'*[{(l, (2?x);E), (2, (1 !3);E)}] = A.a.{(l, 2?x, p0)} 11A.a.{(2,1 !3, Po)} 

= O*[{(l, (2?x);E)}] II V'*[{(2, (1!3);E)}D. 

The relationship between (')' and ('.)'* is settled by the introduction of an abstraction 

operator abs: P-'> P' (with P' as given in remark (3) after Definition 5.6). When 

applied to some p E P, abs ( p) deletes from p all pairs ( T, p') which occur anywhere 

"inside" p: all unsuccessful attempts at communication disappear, and only the 

results of successful communications remain, together with the "normal" steps 

caused by, e.g., assignments. Again (as was the case with any p), abs(p) may have 

(inner) branches of the form ,\a.0-a phenomenon which is often called deadlock. 

The abstraction operator is defined as follows. 



Equivalent semantic models for process creation 

5.11. Definition. For finite p we put abs(p0 ) = p 0 , abs(A<T.X) = >..u.abs(X), and 

abs(X) = {(u', abs(p')>l(u', p') EX}. 

151 

(Note that a pair ( r, p') EX will not contribute to abs(X).) For infinite p, with 

p=limnPn andp,,EPn, we take abs(p)=lim,,abs(p,,). 

Again relying on the general results in [ 16 ], we have the following theorem. 

5.12. Theorem. l!J =abs o l!J*. 

The final part of this section is devoted to the proof of the equality of l!J* and rzt;. 

5.13. Theorem. For all t E .2nus. l!J*[ t] = rzt;[ t]. 

The proof closely follows the strategy applied for the uniform version of this 

result described in Section 3. We first state a simple lemma on (I)'* which we need 

below. 

5.14. Lemma. (1) O*[{(i, (x := e);r)}] = A<T.{(u', l!J*[{(i, r)}])}, with u' as usual. 

(2) O*[{(i, (s 1 ;s2);r)}] = O*[{(i, s 1 ;(s2 ;r)>}]. 

(3) V'*[{ (i, if b then s 1 else s2 fi; r)}D 
= Aa.{(a, if[b]i<T then O*[{(i, s1 ;r)}] else V'*[{(i, s2 ;r)}]fi)}. 

(4) V*[{(i, (j?x);r)}] = Aa.{(i,j?x, O*[{(i, r)}])}. 

(5) l!J*[{(i, (j!e);r)}] = Aa.{(i,j!cx, O*[{(i, r)}])} where ex =[e]iu. 

(6) V*[{(i, (j?x);r1), (j, (i!e);r2)}] = Aa.{(i,j?x, O*[{(i, r 1), (j, (i!e);r2)}]), 

(j, i!a, O*[{(i, (j?x); r1>, (j, r2)}]), (a', O*[{(i, r 1), (), r2 )}])} with a =[e]i(J' and u' as 

usual. 

Proof. Easy from the definitions of .'J:0 , and O*. D 

Remark. Note that part (2) of this lemma would not hold in the form as given if 

.'J110s contained an axiom for SeqComp, rather than a rule. Conversely, part (3) 

would not hold if we had a rule for Cond, instead of an axiom. 

The next lemma applies some notation which is a slight variant of the one 

introduced preceding Theorem 3.18. Let us, temporarily, add the statement skip to 

our language, with an associated transition 

(p u {(i, skip;r)}, a),(p u {(i, r)}, <T) Skip 

(note that we could take skip as another name for x := x). Let, for given s and v, 

s~" 1 be defined by s~? 1 =skip and s~n+i 1 =skip;s[s~." 1/ v]. We can then prove the 

following lemma, once more using the framework of [ 16]. 



152 P. America, J. De Bakker 

5.15. Lemma. For closed s: 

O'*[{(i, µ.v[s];r)}] = lim,, O*[{(i, s~">;r)}]. 

We are now ready for the statement of the main step in the proof of Theorem 5.13. 

5.16. Lemma. Lets E Ynus be arbitrary (not necessarily closed) and let the set of free 

statement variables in s be contained in { v 1 , ••• , vd, k ~ 0. Let s1 , ••• , sk be closed 

statements, and let s = s[sh / vh] ~ = 1. Let, for any p, lD[p] be short for ,\p.( O*[p] · p ). 

Let, furthermore, for h = 1, ... , k, 

'Ph = Ai.lD[{(i, sh ;E)H 

and let y = y{ 'Phi vh} ~ = 1 • We then have, for any i, 

lD[{(i, s;E)}] = £Ll[s]( Y)(i). 

Proof. Induction on the complexity of s, following the argument as given in the 

proof of Theorem 3.19, but for the addition of an extra parameter i, and replacement 

of X by p (and using Lemmas 5.14 and 5.15 to deal with the individual cases). 0 

5.17. Corollary. For closed s: 

lD[{(i, s;E)}] = f0[s]( y)(i). 

Now it is easy to prove Theorem 5.13. 

Proof of Theorem 5.13. Take any t = s1\\ • • • lls,,. Then 

O*[t] = O*[{(l, s1 ;E), ... , (n, s,, ;E)}] 

= V'*[{(l, s1 ;E)}] II··· II O*[{(n, s,, ;E)}]. 

By Corollary 5.17, we have for each i that 

O*[{(i, S; ;E)}] = V'*[{(i, S; ;E)}] · p0= lP[{(i, S; ;E)}](p0) = £Ll[s;]( y)(i)(p0). 

Thus, 

O*[t] = O*[{(l, s1 ;£)}]I/··· l\O*[{(n, s,, ;£)}] 

= £Ll[s1]( y)(l)(po) II··· II f})[s,,]( y)(n)(po) = f0[t]. D 

Remark. Contrary to the situation for the uniform case, we have at present investi­

gated only metric (operational and denotational) models for .!£nus. Therefore we 

have no information on the feasibility of order-theoretic models for this purpose. 



Equivalent semantic models for process creation 153 

6. A nonuniform and dynamic language 

We have, at last, arrived at the presentation of the semantic models of a nonuniform 
and dynamic language. Not surprisingly, it brings a synthesis of the ideas of Sections 
4 and 5; for the reader who has understood these sections, the present section 
contains few surprises. Still, some technical difficulties which are not straightforward 
from previous considerations remain to be overcome. 

6.1. Informal introduction and syntax 

As usual, we begin with the syntax. Statements are almost as before, but for the 
fact that communications i?x or i!e (with static i, 1 ~ i ~ n) are now replaced by 
communications e?x or e le', in which the value of the expression e is (the name 
of) a dynamically created process. The expression itself can be, for example, a 
variable, in which this process name is stored. The syntax of expressions also contains 
an essential new clause, viz. "new( c)". This expresses that a new process (of class 
c) is to be created. Each program consists of a set of class declarations (ck{=sk>Z=1> 
and, assuming that c above equals ck for some k, the (side-)effect of new(c) is the 
creation of a new process which will execute the statement s = sk. Here we have the 
counterpart of the construct new(s) in Section 4. In addition, this new process is 
referred to by a (new) name, say a, and the value of the expression e will be this 
name a. Therefore, in the (common) case that new( c) occurs in an assignment 
x := new(c), the name a of the newly created process is assigned to x. In this way, 
upon subsequent occurrences of x in, e.g., x!e, it is known that the value of e has 
to be sent to process a. 

We now give the formal syntactic definitions. Let CNam be the collection of class 
names, with typical element c. Let IndV and Stm V be as before, and let a and f3 
range over the set Obj of objects to be defined presently. 

6.1. Definition. (1) The set Exp of expressions, with typical element e, is defined by 

e ::= x\a\e1ope2 \ope'\new(c) 

(Here, again, op stands for an arbitrary binary or unary operator.) 
(2) We do not give a detailed syntactic definition for the set Test of conditions 

(with typical element b) but we assume, for simplicity, that conditions (unlike 
expressions) can be evaluated without side-effects. 

(3) We define the set Elnud of statements, with typical element s, by 

s ::= x := e I s1 ;s2 \ v \ µ,v[s'] \if b then s1 else s2 fi \ e?x I e!e' \ ?x \ !e 

(4) The set .:t'nud of programs, with typical element t is defined by 

t ::= (c1{=s1 , ••• ,cn{=sn) (n;;;;:l). 

Here we require that all the s; are closed, that all the c; are different, and that any 
class name c occurring in any S; (in the context new(c)) is one of C1o ••• , Cn. 



154 P. America, J. De Bakker 

Remarks. (1) In Elnud we allow communications of the form ?x or !e which do not 
name a corresponding process (they are, in fact, willing to communicate with any 
other process). However, we shall require, in order that a match be established 
between a pair of send and receive statements, that at least one of the two explicitly 
identifies the process in which the other occurs. (Hence, no communication takes 
place between ?x and !e.) 

(2) By convention, executing a program t=(ck{=sk>k=i is initiated by executing 
the statement x := new( c1 ), for some fresh x (i.e., some individual variable not 
occurring in t). In other words, a process of class c1 is created implicitly. (Its name 
is stored nowhere, so this process cannot be addressed explicitly by other processes.) 

(3) Note that we now have two forms of recursion, one in constructs of the form 
µ.v[s] and the other in case of a declaration such as c{=· · · c· · ·. 

The set Obj of objects replaces the set of values v which we encountered in 
Section 5. It consists firstly of the so-called standard objects SObj. Here one may 
think of the union of the set of values V and the truth-values {t, f} as employed in 
Section 5. Moreover, we now also have the set of so-called active objects AObj, 
which consists of the names of processes as mentioned in the introductory paragraph 
of this section. In fact, we may see AObj as the generalization of the set I of Section 
5. We define AObj as 

AObj = CNam x 1\1 

where 1\1 is the set of nonnegative integers. At each moment an active object (c, I) 
is the name of the lth process of class c, i.e., the process created by the lth execution 
of a new( c) construct. 

From now on we shall use the term "object" in the above sense, i.e., for an 
element of AObj, not to confuse it with the technical term "process" in the sense 
of Section 2.3, the precise meaning of which we shall give in Definition 6.5. 

6.2. Operational semantics 

We proceed with the preparations for the operational semantics for 2nud· Firstly, 
we refine the class of syntactic continuations, by distinguishing between statement 
continuations and expression continuations. 

6.2. Definition. ( 1) The class of syntactic statement continuations SyStCo, with 
typical element r, is defined by 

r ::= E I s;r' I e:g 

where sis closed. (The colon":" used here should not be confused with the semantic 
operator":" as introduced in Definition 4.7. Here it is simply a syntactic symbol, 
comparable with ";".) 



Equivalent semantic models for process creation 155 

(2) The class of syntactic expression continuations SyExCo, with typical element 
g, is defined by 

g ::= Az.r 

where z E IndV. Here z may not occur as the left-hand side of an assignment in r. 
(3) The class of parallel syntactic (statement) continuations PSyCo, with typical 

element p, is defined as the collection of sets of the form 

{<£¥1, r1>. ... , <C¥n, rn)} (n ~O) 

where the £¥; are different elements of AObj. 

The intuitive meaning of a syntactic expression continuation g = A.z.r is to describe 
a computation which depends on some value. The variable z serves as a placeholder 
for this value in r. When g is given a value, i.e., an object a E Obj, then it delivers 
a syntactic statement continuation r[ a/ z] (where the value a is put in the place of 
z ). A syntactic statement continuation r of the form e :g is executed by first evaluating 
the expression e (which may or may not take some time steps or have some side-effect) 
and then feeding its value into g in the way described above. This yields a syntactic 
statement continuation which is executed subsequently. 

We also extend the class of states by introducing a second component, as follows. 

6.3. Definition. We define the set of states by 2 = .1' 1 x .1'2 , with typical element 
o- = (o-(1), o-( 2 )). We put 2 1 =AObj4 (IndV 4 Obj) and 2:'2 = CNam 4 N. 

A state u has the following function: 
• The first component u(l) is as u in Section 5, but for the replacement of I by 

AObj and of V by Obj. Thus, for any object a and individual variable x, o-< 1/ a )(x) 
is the value of a's x-variable. 

• The second component ar 2l records for each class name c the number l = ar21(c) 
of objects of that class that have been created up to this point. 
We shall usually suppress indices and simply write a, also in cases where a(I) or 

a(2) is meant. 
In the transition system to be presented in a moment, we shall take into account 

the fact that evaluation of expressions may now be more involved since they may 
contain new-constructs. For reasons of simplicity, we shall not include a similar 
extension in our treatment of conditions. We shall, just as in Section 5, assume that 
evaluation of a condition b-expressed by the notation [ b ](a)( a )-is simple and 
has no side-effects. (Of course, it is a minor exercise to adapt the treatment below 
to cover the case of conditions which may include new-constructs.) 

The operational semantics for 2:'nud is given in terms of a transition system ffnud 

of axioms and rules for configurations (p, a). Throughout, ffnud assumes one fixed 
program t=(ck'*"'sk)Z=1> and we shall also assume that all class names occurring 
in any statement are declared in this program t. (We might carry the information 



156 P. America, 1. De Bakker 

contained in t along as an extra component of the configuration, but we find this 
too cumbersome.) 

6.4. Definition. The transition system .o/nud is given by the following axioms and 
rules: 

(p u {(a, (x := /3);r)}, u)-+ (p u {(a, r)}, u') 

where u' = u{u(a){f3/x}/ a}. 

(p u {(a, e: Az.( (x := z ); r))}, a)-+ (p', u') 

(pu{(a, (x:= e);r)}, u)-+(p', u') 

Assl 

Ass2 

where z is a fresh variable, i.e., an individual variable not occurring in p, e, or r 
(actually, it is sufficient to require that z does not occur in r). Note that this rule 
is only useful if e is not itself a constant f3. 

SeqComp, Ree, and Cond are as in Definition 5.3 (with a replacing i). 

(p u {(a, e: Az.( (z?x );r))}, u)-+ (p', u') 

(p u {(a, ( e?x );r)}, u)-+ (p', u') 

with z fresh. 

(p u {(a, e: Az.( e': Az'.((z !z');r) )) }, u)-+ (p', u') 

(p u {(a, (e !e');r)}, u)-+ (p', u') 

with z and z' fresh. 

(pu{(a, e:.Az.((!z);r))}, a)-+(p', er') 

(p u {(a, ( !e );r)}, u)-+ (p', er') 

with z fresh. 

Receive I 

Send I 

Send2 

(p u {(a, ( /3 ?x );r1}, (/3, (a !a');r2)}, er)-+ (p u {(a, r 1), ( /3, r2) }, u') Comm I 

where u' = u{u(a){a'/x}/ a}. 

(p u { (a, ( /3 ?x); r1), ( /3, (!a'); r2)}, u)-+ (p u {(a, r1), ( /3, r2)}, u') 

with u' as above. 

with u' as above. 

(p u {(a, x: g)}, er)-+ (p u {(a, er( a)(x): g)}, u). 

(pu{(a, r[/3/z])}, u)-+(p', er') 

(p u {(a, f3: Az.r)}, u)-+ (p', er')· 

(p U {(a, ( /31 OPsem /32): g)}, u)-+ (p', a') 

(pu{(a, (/3 1 opf32):g)}, u)-+(p', er') · 

Comm2 

Comm3 

IndV 

Obj 

BinopJ 



Equivalent semantic models for process creation 157 

Here, f31 OPsem f32 stands for the object {3 that results if we apply the semantic operator 
OPsem corresponding to op to the objects {3 1 and {3 2 • 

(p u { (a, e 1: Az 1 .( e1: Az2 .( ( z1 op z2) : g)))}, cr) ~ (p', a') 

(p u { (a, ( e 1 op e2 ) : g)}, a)~ (p ', cr') 

with z1 and z2 fresh. 

(p U {(a, (OPsem ,B): g)}, cr) ~ (p', cr') 

(p u {(a, (op {3): g)}, cr) ~ (p', a') · 

Binop2 

Unopl 

Again, OPsem {3 stands for the object {3' that results if we apply the semantic operator 

OPsem corresponding to op to the object {3. 

(p u {(a, e: Az.( (op z): g ))},a)~ (p', er') 

(pu{(a, (op e):g)}, er)~(p', er') 

with z fresh. 

(p u {(a, new( c): g)}, u)~ (p u {(a, f3: g), ({3, s;E)}, a') 

where c~s occurs in t,,B=(c,er(c)+l) and cr'=cr{cr(c)+l/c}. 

Unop2 

New 

Remarks. (1) In the New axiom, dealing with the case e = new(c), a new object 

executing the statement s is created, and the name f3 = ( c, a( c) + 1) is delivered as 

the resulting value for e. As we already saw, (c, I) is the name of the Ith object of 

class c, and, for each c, u( c) stores the currently highest object number. This also 

explains the update cr' of cr upon object creation. 

(2) The general scheme to deal with expression evaluation is the following. If 
the expression e occurs in a certain context, for example x := e; r, then an application 

of a rule (in our example, Ass2) transforms the context to one of the form e:g (in 

our case, e: Az.(x := z;r)), indicating that first e is to be evaluated, after which its 

value can be used. Because a rule is applied and not an axiom, this does not take 

any time steps. Now the axioms IndV or New (which do take a time step) or rules 

like Binopl and Unop I (which do not take time) will take care of the evaluation of 

the expression. If necessary, the rules Binop2 or Unop2 will break the expression 

further apart (again without taking time). After the expression has been evaluated, 

the rule Obj will put the resulting object {3 back into the original context, and further 

axioms or rules (in our example, Assl) will deal with this result f3 in an appropriate 

way. 

The step from .'Ynud to the corresponding (J is very similar to the one described 

in Section 5. We first introduce the relevant process domain. 

6.5. Definition. ( 1) The set Comm of communications (with typical element r) is 

defined by 

Comm= AObj x (AObj?lndVu ?IndVu AObj!Obju !Obj). 



158 P. America, J. De Bakker 

(2) We define the set Step of steps (with typical element YJ) by 

Step = l: u Comm. 

(3) The process domain P (typical elements p and q) is the solution of the 

following domain equation: 

6.6. Definition. (1) O[ ·]: PSyCo ~ P is defined by 

[ { Po if p = {<a 1 , E), ... , (a,,, El}, 
() Pll = 

A0".{(0" 1, O[p'Il/ I (p, O") ~ (p', 0" 1)} otherwise. 

(2) O[ ·] :2nud~ P is defined as follows. Let t = (ck~sk>Z~i· Then 

O[tll = O[{((c1 , 1), s1 ;E)}Il. 

Remark. Although not specified here, the process p = V'[tll will of course be started 

in a state 0"0 , which satisfies 0"0 ( c1) = 1 and a 0 ( c) = 0 for c -,t. c1 • The choice of this 

a0 and p above amounts to starting the computation with the first object of class 

c1 , while objects of other classes do not yet exist. 

Anticipating the definition of Pllq, to be given in Definition 6.7, we again remark 

that it is not the case that O[p1 u p 2 Il = O'[p1] II O[p2]. As before, we shall remedy this 

by extending ff nuct to .o/~uct, and then introducing a corresponding extension of V' 

to t'J*. 

6.3. Denotational semantics 

We proceed with the denotational semantic definitions. We first fill in the details 

of the definition of the merge operator "II" (in this section, we do not use the 

operator"·"). 

6.7. Definition. Let 1/f, !./!, if;, ~, if;, X, Y, and 1T be as in Definition 5.5(2), but with 

P as in Definition 6.5. The only new element in the definition of "II" with respect 

to Definition 5.5 concerns 1Td ""'' 7r2 , which is here given by 

(a, f3 ?x, P1l l",.1' ({3, a !a', P2l = {(O"', P1 t/Jp2)}, 

(a, ?x, Pil I""·'" (/3, a !a', P2l ={(a', P1 tfrP2)}, 

(a, f3 ?x, Pil lcr,<Jr (/3, !a', P2l ={(a-', P1 t/Jpz)} 

with a-'= er{ er( a){ a'/ x} /a}, together with three symmetric clauses, and 1Tt I cr,•/I 1T2 = 0 
for 1T1 , 1T2 not of the above form. 



Equivalent semantic models for process creation 159 

Corresponding to the distinction, for syntactic continuations, between statement 

continuations r and expression continuations g, we have a similar distinction at the 

semantic level: We have, besides the set of semantic statement continuations 

SeStCo = cter P (with typical element p ), also a set of semantic expression continu­

ations SeExCo = cter Obj-+ P, with typical element .f 
Furthermore, corresponding to the two types of recursion, we accordingly have 

two components of an environment, defined as follows. 

6.8. Definition. The set of environments is defined by r = r 1 x T1 , with typical 

element y = ( )'( 11, y( 2J), where 

NDI 

r1 =StmV-+(AObj-+(SeStCo~ P)) and r2 =CNam-7(AObj-7P). 

In an environment y = ( )'( 11 , y12 J), the first component y111 assigns an interpretation 

to each statement variable, which gives a process after being told which object is 

to execute the statement and which process is to be activated after this statement 

variable. This first component corresponds to the environments as used in Section 5. 

The second component y12 J is important for the creation of new objects. When 

given the class c and the name a of the object to be created, y 121 ( c) (a) is the process 

to be activated for it. 

Again, we shall often omit the indices in dealing with environments. 

We shall define two semantic evaluation functions l}lJ and "8, the first for statements 

and programs, and the second for expressions. Since expressions are now more 

involved than in Section 5, we consequently need a more complicated definition of 

their meanings. The relevant types are 

ND! 

f0[ ·]: «lnuct-+ (r-+ (AObj"' (SeStCo - P)) ), 

ND! 

~[·]:Exp' (r-+ (AObj-7 (SeExCo- P))) 

and, in addition, f0[ ·]: IL'nuct-+ P. We draw attention to the fact that lb'[ e], when 

supplied with some y, a, and f, delivers a process p E P instead of some value 

{3 E Obj. Values (i.e., objects) which result from evaluating an expression are always 

passed on to some expression continuation rather than being delivered explicitly 

by the semantic function. 

6.9. Definition. ( 1) The function "8 is defined by 

(a) ~[x]yaf = Au.{ (a-,f( u( a )(x) )) }; 

(b) "8[,B]yaj= /(,B); 

(c) ~[e 1 op e2]yaf= ~[e1]ya(Af31-~[e2]ya(Af32.f(f31 OPsem/32))); 

(d) i&'[op e]yaf = ~[e]ya(A,B.f(opsem ,B)); 

( e) ~[new( c )]yaf =Au.{ (u', y( c )( ,B) II/( {3))} where {3 = (c, u( c) + 1) and u' = 
u{ u( c) + 1 / c}. 



160 P. America, 1. De Bakker 

(2) We define the function ~ for statements as follows: 
(a) ~[x := eD-yap = ~[e]ya(A,8.ACT.{ (CT', p)}) where 0" 1 = CT{CT(a ){ .B/x}/ a}; 
(b) ~[s1 ;s2hap = ~[s,]ya(~[s2hap); 
(c) ~[if b then s1 else s2 fihap 

= Au.{(u, if [ bllau = tthen ~[s1] yap else ~[s2hap fi)}; 

( d) ~[ vhap =/'(I)( v )ap; 
(e) ~[µv[s]hap = cp""(a)(p), where cp00 is the unique fixed point of the function 

<P, from the space AObj-+ (SeStCo-+ NDI P) to itself, which is given by 

<P(cp) = Aa.Ap.Au.{(CT, ~[s h{ <p / v }ap)}; 

(f) ~[e?x]yap = 'IS'[eha(A,8.Au.{(a, ,B?x,p)}); 
(g) ~[?xhap=Au.{(a, ?x,p)}; 
(h) ~[e!e'hap = ~[e]ya(.A,8. ~[e']ya(.A,B' . .Aa.{(a, f3 !{3', p)})); 
(i) ~[!ehap = 'iS'[e]ya(Af3 . .Aa.{(a, !,8,p)}). 
(3) Let, for a program t, the mapping 1/',: I'2 -+ I'2 be given as follows: 

where c<;=.s occurs in t, and y 1 Er, is arbitrary (since t is closed, the choice of y 1 

is really immaterial). If c is not declared in t, we can put 1P',( y 2)(c) = .Aa.p0 , for 
example. 

Let y 2 , be the unique fixed point of 1P'1 (see the remark below). We put 
y 1 =def (y" y2,), for arbitrary /'1 EI',. 

(4) Now we can define the denotational semantics of programs as follows. Let 
t = ( C1 <;=.s1, •••• , Cn <;=:.Sn). Then 

Remarks. (1) The clause for 'iS'[new(c)] uses essentially the same idea as in Section 
4 of putting the newly created process y(c)(/3) in parallel with the (expression) 
continuation f (supplied with the new name f3 which is the value of the expression 
new(c)). Here y(c)(/3)-or 'Yc 2>(c)(,B), to be precise-will, in the context of a 
program t = (ck<;=.sk>Z=1o contain the relevant information on the class c as a result 
of the definition of y, (to be precise, y 21 ) in clause (3). We also observe that due 
to our requirement that all class names used in a program t must be also be declared 
in it, the result of y1 for undeclared classes does not matter (actually, new objects 
of such classes would execute the process p0 ). 

(2) Clause (2)(e) is justified by the fact that the mapping <1> is contracting. Again 
we can obtain its unique fixed point by 'Pco = lim; <p;, where cp0 is arbitrary and 

'Pi+i = Aa.Ap.Au.{(u, ~[sh{cp;/v}ap)}. 

(3) The mapping 1Jt, in clause (3) is contracting since recursive occurrences of c 
in any s are always constituents of statements which take time steps (specifically 
in evaluating new(c)) before we apply y to such a recursive occurrence of c. 



Equivalent semantic models for process creation 161 

6.4. Equivalence of operational and denotational semantics 

We start this section with the promised extension of .o/nus and 0. 

6.10. Definition. ( 1) The notion of configuration is expanded so as to include pairs 
of the form (p, YJ) (note that YJ ranges over Step= 2: u Comm). 

(2) We obtain the transition system .?T~uct from .?Tnuct by adding the axioms 

(p u {(a, ( .B ?x);r)}, u) ~ (p u {(a, r)}, (a, ,B ?x)), 

(p u {(a, ( ?x); r)}, u) ~ (p u {(a, r) }, (a, ?x)), 

(p u {(a, (,B !,B');r)}, u)~ (p u {(a, r)}, (a, ,B !,B')), 

(pu{(a, (!,B);r)}, u)~(pu{(a, r)},(a, !,B)) 

and by replacing, in all rules, 

by 

(P1, u)~ (p', u') 

(pz, u)~ (p', u') 

(Pi. u)~ (p', YJ') 

(p2, fT)~ (p', YJ'>" 

(3) Now we define O*[ ·]: PSyCo ~ P by 

Receive2 

Receive3 

Send3 

Send4 

Cl*[p] ={Po 
Au.{(YJ', O*[p'])l(p, u)~(p', T/')} 

if p = {(a 1 , E), ... , (a11 , E)}, 

otherwise. 

( 4) CJ'*[· l 2nuct ~ P is defined as follows. Let t = (ck <=sk) Z~ 1. Then 

O*[t] = O*[{((c 1 , 1), s 1 ;E)H. 

As in Section 5, we have the following lemma. 

The abstraction operator abs can be defined as in Definition 5.11 (but now applied 
to P as in Definition 6.5). Again, we have 

6.12. Lemma. 0 = abs 0 O*. 

We can now discuss the relationship between O* and <j/). The treatment combines 
ideas of Sections 4 and 5. We first present a lemma listing various properties of O* 



162 P. America, J. De Bakker 

which are either direct from its definition, or follow as in Section 5 (in turn relying 

on [16]). 

6.13. Lemma. (1) O*[{(a, (x := ,B);r)}] = Aa.{(a', O*[{(a, r)}])} with a' as usual. 

(2) O'*[ {(a, (x := e );r)}] = O'*[ {(a, e: Az.((x := z );r) }] where z is fresh. 

(3) 6'*[{(a, (s 1 ;s2);r)}] = O*[{(a, s 1 ;(s2;r))}]. 
(4) O*[{(a, if b then s 1 else s 1 fi;r)}] 

= Aa.{(u, if [b]au then O*[{(a, s1 ;r)}] else O*[{(a, s2;r)}]fi)}. 

(5) O*[{(a,µv[s];r)}]=lim"O*[{(a,s~">;r)}] where s~0>=skip and s~"+ 1 >= 
skip;s[s~">; v]. Note that here we cannot use x := x for skip any more because x := x 
now costs two steps. 

(6) O*[{(a, (e?x);r)}] = O*[{(a, e: Az.((z?x);r))}] with z fresh, and similar 

equations for e !e' and !e. 
(7) O*[{(a, (,B?x);r)}] = Au.{(a, {3?x, O*[{(a, r)}])} and similar equations for ?x, 

,8 !(3 1, and !,B. 
(8) O'*[ {(a, (,8 ?x);r1), (,8, (a !a'); r2)}] = Au.{(a, ,8 ?x, O*[ {(a, r1), (,8, (a !a');r2)}D), 

((3, a !a', O*[{(a, ({3?x);r1), (,8, r2)}]), (u', O*[{(a, r,), (/3, r2)}])} where u' is as usual, 

and similar equations for ?x with a !a' and for (3 ?x with !a'. 
(9) O*[{ (a, x: g) }] =Ao-.{ (u, O*[ {(a, a( a )(x): g) }])}. 

(10) O*[{ (a, ,8: Az.r)}] = O*[ {(a, r[ /3 / z ])}]. 

(11) O'*[{(a,(,8 1 op{32):g)}]=O*[{(a,({3 1 op.emf32):g)}] and a similar equation 

for unary operators. 
(12) O*[{(a,(e1 ope2):g)}]=O*[{(a,e1 :Az1 .(e2 :Az2 .((z1 opz2 ):g)))}] and a 

similar equation for unary operators. 

(13) O*[{a,new(c):g)}]=Au.{(u',O*[{(a,{3:g),(/3,s;E)}])} where c{=:.s occurs 

in t and with u' = u{u(c) + 1/ c} and (3 = (c, u(c) + 1). 

We continue with the analysis which links O* with ~ and 'l. Our aim is the proof 
of the following theorem. 

6.14. Theorem. For a given program t = (ck{=:.sklk=" for closed s, arbitrary r, e and 
g, and for y, as in Definition 6.9(3), we have 

(1) O*[{(a, e: g)}] = 'l[e]( y,)(a)(Aj3.0*[{(a, ,8 :g)}]), 
(2) O*[{(a, s;r)}] = ~[s]( y,)(a)(O*[{(a, r)}]). 

In order to prove this theorem, we apply a nonuniform version of the strategy 
used at the end of Section 4. Since we are concerned with both statements and 
expressions, we need the nonuniform argument in two forms. Firstly, we introduce 
the branching time analogues of the constructs u.J v from Section 4. One form also 
mentions the .J, the other one is parameterized by objects ,B from Obj, each of which 
plays a role similar to the one played by .J. For the remainder of this section we 
introduce three domains P, Q, and R with typical elements p, q, and r respectively 
(the last not to be confused with reSyStCo). 



Equivalent semantic models for process creation 163 

6.15. Definition. (1) Recall from Definition 6.5 that P is the solution of 

As before, we shall use X to range over '?f>c1(Step x P) and 1T to range over Step x P. 

(2) The domain Q is the solution of the following domain equation 

We shall use Y to range over '?f>c1(Step x Q) and g to range over Step x Q. 

(3) The domain R is defined as the solution of 

R ;;:= ( Obj x P) u (2: ~ Pc1(Step x R) ). 

We shall use Z to range over '?f>c1(Step x R) and ?; to range over Step x R. 

The intuitive interpretation of Q and R is as follows. An element of Q is a process 
executing a specific statement (the "local" one), possibly in parallel with some other 

processes. Termination of the local statement is explicitly indicated by -/. The idea 

is that a continuation can start at that point (see the definition of the operator ":" 

below). More specifically, if q E Q is of the form U, p) this means that the local 

process terminates immediately, and that the parallel processes continue with p. If 
in q the local process does not terminate immediately, an ordinary step is possible, 

after which we come in the same situation again. Because we have also included 

Po in Q, P can be embedded in Q in a canonical way. We shall therefore assume 

that actually P s; Q. 
An element of R is evaluating an expression, again possibly in parallel with other 

processes. It will be composed with elements of Obj-? Q or Obj-? R by the operator 

.. : ". If the evaluation of the expression terminates, it delivers a value f3 being the 

result of this expression, together with an ordinary process p representing the ongoing 

computation of the other processes (which is to be executed in parallel with the 

semantic expression continuation). 
We shall define four forms of the operator ":" which will take care of the 

composition of elements of Q and R with appropriate continuations (notice the 

analogy with Definition 4.7): 

6.16. Definition. (1) We define":": Q x Q ~ Q by the following clauses (which can 

be completed to a full definition along the lines of Definition 5.5): 

(a) Po: q =Po; 
(b) (vi,p):q=pllq (see Definition 6.17 below); 
(c) (Ao-. Y): q =ACT.( Y: q), where Y: q = {g: q I g E Y} and (YJ, q'): q = (YJ, q': q>. 

(2) We define ":": Q x R ~ R as follows: 

(a) Po: r =Po; 
(b) (vi,p):r=pllr (see Definition 6.17); 
(c) (ACT. Y): r =ACT.( Y: r), where Y: r= {g: rig E Y} and (YJ, q'): r= (YJ, q': r). 



164 P. America, 1. De Bakker 

(3) The operator":": Rx ( Obj-? Q)-7 Q is given by the following clauses: 

(a) ({3,p):f=pllf({3); 
(b) (Ao-.Z) :f = Ao-.(Z :f), where Z :f ={?:JI ( E Z} and (TJ, r) :f = (TJ, r :/). 

( 4) Finally, we define the operator":" : R x ( Obj -7 R) -7 R by the following clauses 

(we shall use h to range over Obj...,. R): 

(a) ({3, p): h = Pllh({3); 
(b) (Ao-.Z): h = Ao-.(Z: h), where Z: h =U: h l?EZ} and (17, r): h = (77, r: h). 

Note that if q E P, then p: q E P, so that we also have":": Q x P-7 P. Analogously, 

if f E Obj-? P, then we get r :f E P, so that we can state ":":Rx ( Obj...,. P)...,. P. 

We also need the definitions of p II q and p 11r: 

6.17. Definition. (1) We define the operator "II": P x Q-7 Q by the following 

clauses: 

(a) Pollq=q, PllPo=p, Pll\J,p')=(v,pllP'); 
(b) for p =P p0 and q ~ {p0} u ( {v} x P) we define 

Pllq = Ao-.((p(o-)llq) u (pllq(o-)) u (p(o-) l"q(o-))); 

(c) for X E 9Jc 1(Step x P) we put XII q = { 1Tll q I 7T EX}, where ( 77, p')ll q = ( 7/, p'll q); 

(d) for YE 9'c1(Step x Q) we put Pll Y = {pll5" I 5"E Y}, where Pll\77, q') = ( 7/, Pllq'); 

(e) for X and Y as above, we define 

Xlcr Y = LJ {1TI,, 5"l 7T EX, 5"E Y} 

where (17 1,p')la\77"' q')={(o-',p'llq')} with o-' as usual if 77 1 and Y/ 2 are matching 

communications, and 7T l,,5" = 0 otherwise. 

Note that restricted to P x P this coincides with the old operator "II" (see 

Definition 6.7). 

(2) We define the operator "II": P x R-? R by the following clauses: 

(a) Pollr=r, Pll(f3,p')=(f3,P!lp'); 

(b) for p ¥ p 0 and re Obj x P we define 

Pll r =Ao-.(( p(o-) 11 r) u CPll r( o-)) u (p(o-) l,,r(o-)) ); 

(c) for XE9Jc 1(Stepx P) we put Xllr={1Tilrl7TEX}, where (Y/,p')llr=(ry,p'llr); 

(d) for ZE9'c1(StepxR) we put PllZ={pll?l?EZ}, where Pll\11, r')=(11,Pllr'); 

(e) for X and Z as above, we define 

Xj"z =U {7TI,, ?I 7T EX, (E Z} 

where (111, p')I" (Y/2 , r')= {(o-', p'llr')} with o-' as usual if 77 1 and Y/l are matching 

communications, and 7TI,,? = 0 otherwise. 

Analogous to Lemma 4.8 we have the following important lemma. 

6.18. Lemma. (1) Al/forms of the mappings":" and "II" are continuous. 

(2) The operators "II" are associative: 

(a) (P1llP2lllq=p1ll(P2llq), 

(b) (P1llP2lllr=p1ll(P2lir). 



Equivalent semantic models for process creation 

(3) The operators ":" with the first argument from Qare associative: 
(a) (q1 :q2):q3 = q1 :(q2:q3), 
(b) (q1 :q2):r = q, :(q2 :r). 

165 

(4) The operators ":" with the first argument from R have an analogous property 
(let us call it A-associativity): 

(a) (r:f):q = r:A.(3.(f((3):q), 

(b) (r:f):r' = r:A(3.(f(f3):r'), 
(c) (r:h):f= r:A{3.(h(f3):f), 
(d) (r:h):h' = r:A.(3.(h((3):h'). 

(5) Finally, we have a kind of distributivity: 

(a) (Pllq):q'=pll(q:q'), 

(b) (pllq):r=pll(q:r), 

(c) (pll r):f = Pll(r:f), 
(d) (pjjr):h = pjj(r:h). 

Proof. Part ( 1) can be proved by observing that each version of ":" or "JI" is the 
unique fixed point of an appropriate higher-order function that maps continuous 
operators into continuous operators. Therefore, ":" and "II" are themselves con­
tinuous. 

For the other parts, one first proves that p: q = p and p: r = p for all p E P, q E Q, 
and rE R. The rest of the properties are then proved in the order (2)-(5)-(3)-(4), 
by a metric argument. We illustrate this technique by giving the proof of part (3)(a). 
(We assume that part (5) has already been proved.) Consider the operators cfJ and 
'I', given by cfJ(q 1 , q2 , q3 ) = (q, :q2):q3 and tJr(q1, q2 , q3 ) = q, :(q2:q3 ). Both can be 
seen as elements of the metric space Q x Q x Q' Q. We shall show that cfJ = tJr by 
proving d ( cfJ, 1Jt) = 0. Let us therefore denote d ( <P, 1Jt) by c:, or in other words, 

c:= sup d0 ((q,:q:):q3,q1:(q2:q3)). 
41 ,'J]_,q,-,,~ Q 

Now let q 1, q2 , q3 E Q be arbitrary. We show 

do((q1 :q2):q3, qi :(q2:q3)) ""~E. 

Distinguish the following cases: 

(1) q1=Po· Then (q1:q2):q3=po:q3=po=q1:(q2:q3). 

( 6.1) 

(6.2) 

(2) q 1 =(J,p). Then (q1:q2):q3 =(plJq2):q3=(by part (5)(a)) P!ICq2:q3)= 

qi :(q2:q3). 
(3) qi E J;-? o/' c1(Step x Q ). Now by Definition 6.16 we have that qi: q2' (qi: q2): q3' 

and q1 :(q2:q3 ) are also elements of J;'rJ>c1(StepxQ). Let uE.J: be arbitrary and 
set Y = q 1 ( u ). Then we get, by Definition 6.16, 

(q1:q2)(u)= Y:q2={g:q2ltE Y}={(77, q':q2)!(77, q')E Y}, 

((q1 :q2):q3)(u) = ( Y:q2):q3 = {(77, (q':q2):q3) i(11, q') E Y}, 
and 

(qi :(q2:q3))(u) = Y:(q2:q3) ={(77, q':(q2:q3))!(11, q')E Y}. 



166 P. America, 1. De Bakker 

Now the time has come to remember our convention from Section 2.3 that, implicitly, 

every occurrence in the right-hand side of the domain being defined is surrounded 

by id 112 (cf. equation (2.3')). Of course, this also holds for the defining equation for 
Qin Definition 6.15. From (6.1) it follows that 

dQ((q':q2):q3, q':(q2 :q3)):::;: e. 

Therefore 

d;ct,1,wJ((q':q2):q3, q':(q2:q3)) ::;;~e. 

By applying the clauses of Definition 2. 7 (and remembering that a was arbitrary) 

we can conclude that 

dQ((q1:q2):q3, q1:(q2:q3)) ::;;~s. 

Because qi, q2 , and q3 were arbitrary in (6.2), we can conclude from (6.1) that 

e :::;: i e, so that d ( <P, P) = e = 0 and <P = P. D 

Next, we state the analogues of Lemma 4.9 and Corollary 4.10. By way of 
preparation we need some extensions to the definitions of PSyCo and V'*. 

6.19. Definition. (1) We define the set PSyCo', with typical element p, to be the 
same as PSyCo, except that at most one of the components has an r E SyStCo ', 

defined (together with g E SyExCo') by 

r ::= JI s;f' I e:g g ::= A.z.r 
with s closed. 

(2) The set PSyCo", with typical element p, is the same as PsyCo except that 

exactly one component has an r E SyStCo", which is defined together with g E 

SyExCo" by 

r ::= s;r' I e:g ii ·· Az.rlJ 
with s closed. 

(3) We define the function O[ ·]: PSyCo'-? Q as follows 

{
Po 

O[p] = (), O*[p']) 

Aa.{(a', O[p']) I (a, p)-? (a', p')} 

if p = {(a 1 , E), ... , (a:k, E)}, 

if p ={(a:, J)} up', 

otherwise. 

Here we interpret the transition relation "-?" with respect to .'Y~ud (only extended 

in so far that we declare the existing axioms and rules also applicable to our new 

parallel syntactic continuations). 

( 4) We define the function V[ ·]: PSyCo"-? R as follows 

0'[ ··n = {(/3, O*[p'.~) if p={(a, f3:J)}u p', 

p Aa.{(a',O[p'])j(a,p)-?(a',p')} otherwise. 

Note that PsyCo 5; PSyCo', and that 6 restricted to PsyCo is equal to O*. Further­

more, Lemma 6.13 also holds for tJ and 0, and we can restate Lemma 6.11 as follows. 



Equivalent semantic models for process creation 

6.20. Lemma. (1) O[p up]= V'*[p]llO[p]. 
(2) 6[p u .0] = O*[p]llC[ji]. 

Now we can state the next lemma. 

167 

6.21. Lemma. ( 1) For any e E Exp, a E AObj, and g E SyExCo we have 

V'*[{<a, e:g)}] = 6[{<a, e:v')}]:(,\{3.V'*[{(a, {3:g)}]) 

and the same for any g with V* replaced by 6 and for any g with O* replaced by 6. 
(2) Lets E Y'nud (not necessarily closed) and let all free statement variables of s be 

contained in { v1 , ••• , vd. Now let s 1 , ••• ,sk be closed statements such that, for any a 
and r, 

V*[{<a, S; ;r)}] = O'[{<a, S; ;v')}]:O*[{<a, r)}] 

and for any r the same with V* replaced by f'J and.for any r the same with O'* replaced 
by 6. If we defines= s[s;/ V;] 7~-i. then we have, for any a and r, 

V*[{<a, s;r)}] = O[{(a, s;v')}TI:V*[{(a, r)}] 

and analogously for any r and for any r. 

Proof. Part (1) is proved by induction on the complexity of e. We give some typical 
cases: 

Case 1: e = {3. 

tf[{(a, {3:v')}]: (Af3'.V*[{(a, f3':g)}]) 

= ({3, p 0): (Af3'.V*[{(a, f3':g)}]) (Definition 6.19) 

= PollO'*[{<a, {3:g)}] 

= V*[{<a, {3:g)}TI 

(Definition 6.16) 

(Definition 6.7). 

Exactly the same proof works for g with 6 and for g with 15. 
Case 2: e =op e'. 

V*[{<a, (op e'):g)}] 

= V*[{<a, e':Az.(op z:g))}] 

= o'[{<a, e':v')}TI: (,\{3'.0*[{(a, {3 1:,\z.(op z: g))}]) 

= O;[{(a, e':v')}]: (Af3'.0'*[{(a, op {3': g)}]) 

(Lemma 6.13(12)) 

(ind. hyp.) 

(Lemma 6.13(10)) 

= 6[{(a, e':v')}]: (Af3'.V*[{(a, OPsem /3 1
: g)}]) (Lemma 6.13(11)) 

= 6[ { (a, e':))}]: (,\{3 '.0[ {(a, OPsem /3 1
: y')}]: (,\{3.0*[ {(a, /3 :g) m) 

(Case 1) 

= (d[{(a, e':v')}]: (A/3'.0[{(a, OPsem /3':))}])): (Af3.V'*[{(a, f3:g)}]) 
(Lemma 6.18(4)) 



168 P. America, J. De Bakker 

= ( O[ {(a, e':.J)}]: (ft.,B '.V[{(a, ,B':ft.z.( op z: .J))}TI)): (A.,8.0*[{(a, ,B :g)}]) 

(Lemma 6.13(11, 10)) 

= O;[{(o:, e':,\.z.(op z :.J))}]: (ft.,B.V*[{(a, ,B:g)}]) (ind. hyp.) 

= O[{(o:, op e' :.J)}]: (ft.,B.O*[{(o:, ,B:g)}]). (Lemma 6.13(12)) 

Again, the proof is also valid for g and g. 
Case 3: e = new(c). 

O*[{(a, new(c):g)}] 

= ft.er.{(er', O*[{(a, ,8 :g), (,B, s;E)}]>} 
(Lemma 6.13(13), with s, er', and ,B as usual) 

= ft.er.{(er', O*[{(,B, s;E}}] II O*[{(a, ,B:g)}])} (Lemma 6.11) 

= ft.er.{(u', O*[{(,B, s;E)}] II (O[{(a, ,B:.J)}TI: (A.,8'.V*[{(a, ,B':g)}])))} 

(Case 1) 

= A.er.{(u', (O*[{(B, s;E)}] 110[{(a, ,B:.J)}]): (A,B'.O*[{(o:, ,B':g)}]))} 

(Lemma 6.18(5)) 

= A.u.{(u', V*[{(,B, s;E)}] II O[{(a, ,B:.J)}])}: (A,B'.O*[{(a, ,B':g)m 

(Definition 6.16) 

= ft.er.{(u', O[{(,B, s;E), (o:, ,B:.J)}])}: (A.,B'.V*[{(o:, ,B':g)}]) 

= O[{(a, new(c):.J)}]: (A.,B'.O*[{(a, ,B':g)}]). 

Once again, the proof is also valid for g and g. 

(Lemma 6.20) 

(Lemma 6.13(13)) 

Now we can prove part (2) by induction on the complexity of s. Again some 

typical cases: 
Case 4: s = x := e (so s = s ). 

O*[{(a,x:=e;r)}] 

= O*[{(a, e:Az.(x := z;r))}] (Lemma 6.13(2)) 

= O[ {(a, e:.J)}TI: (ft.,B.O*[ {(a, ,B :A.z.(x := z; r))}]) (part ( 1)) 

= O[{(a, e:.J)}]: (ft.,B.O*[{(a, x := ,B;r)}]) (Lemma 6.13(10)) 

= O[{(a, e:.J)}TI: (ft.,B.Au.{(er', O'*[{(a, r)}])}) (Lemma 6.13(1), er' as usual) 

= O[{(a, e:.J)}TI: (ft.,B.Aer.{(u', O[{(o:, .J)}]: O'*[{(a, r)}])}) 

(because O[{(a, .J)}] =<.J, p0) and (.J, Po): q = Pollq = q) 

= O[{(a, e:.J)}]: (ft.,B.ft.er.{(er', O[{(a, ./)}])}: O*[{(a, r)}]) 
(Definition 6.16) 



Equivalent semantic models for process creation 169 

= V[{(a, e:J)}]: (A{3.0[{(a, x := ,B;J)}]: O*[{(a, r)}]) (Lemma 6.13(1)) 

= V[{(a, e:V)}]: (A/3.0[{(a, ,B:Az.(x := z;J))}]: O*[{(a, r)}]) 
(Lemma 6.13(10)) 

= (O[{(a, e:J)}Il: (A/3.0[{(a, {3:Az.(x := z;J))}Il)): O*[{(a, r)}E 

= O[{(a, e:Az.(x := z;J))}]: O*[{(a, r)}] 

= O[{ (a, x := e;V) }] : O*[ {(a, r) }]. 

For r or r instead of r the proof runs exactly the same. 

Case 5: s = e?x (so s = s). 

O*[{(a, e?x;r)}] 

= O*[{(a, e:Az.(z?x;r))}] 

= O[{(a, e:J)}Il: (A/3.0*[{(a, {3:Az.(z?x;r))}]) 

= O[{(a, e:J)}]: (A/3.0*[{(a, ,B?x;r)}]) 

(Lemma 6.18(4)) 

(part (1)) 

(Lemma 6.13(2)) 

(Lemma 6.13(6)) 

(part ( 1)) 

(Lemma 6.13(10)) 

= V[{(a, e:J)}]: (A/3.AO".{ (a, .B ?x, O*[{(a, r)}])}) (Lemma 6.13(7)) 

= V[{(a, e:V)}]: (A/3.AO".{(a, /3 ?x, O[{(a, V)}]: O'*[{(a, r)}TI)}) 
(see above) 

= V[ {(a, e:J)}]: (A,8.AO".{ (a, /3 ?x, O[ {(a, V>}])}: O*[ {(a, r) }]) 
(Definition 6.16) 

= V[{(a, e:J)}]: (A,B.O[{(a, {3:Az.(z?x;J))}]: O*[{(a, r)}]) 
(Lemma6.13(7, 10)) 

= (V[{(a, e:J)}]: (A,B.e:l'[{(a, ,B:Az.(z?x;J))}])): O*[{(a, r)}] 

= O[{(a, e:Az.(z?x;V))}]: O*[{(a, r)}] 

= O[{(a, e?x;J)}]: O*[{(a, r)}]. 

(Lemma 6.18(4)) 

(part ( 1)) 

(Lemma 6.13(6)) 

Case 6: s = µv[s']. Without loss of generality we can assume that v e { v1 , ••• , vd. 
lfwe defines'= s'[s;/ V;]7=1' then we haves= µv[s']. Now we first prove, by induction 

on n, that for any a and r (and also for i'), 

O*[{(a, s~<" 1 ;r)}] = O[{(a, s~<" 1 ;J)}]: O*[{(a, r)}]. (6.3) 

For n = 0, we get s~(O) = skip and 

O*[{(a, skip;r)}] 



170 P. America, J. De Bakker 

= Au.{(a, O'*[{(cx, r)}])} (definition of skip) 

= Aa.{(a, O[{(a, ,/)}]: O'*[{(a, r)m} (see above) 

= Aa.{(a, O[{(cx, ,/)}])}: O'*[{(a, r)}] (Definition 6.16) 

= O[{(cx, skip;J)}TI: O'*[{(cx, r)}] (definition of skip). 

Now let us assume ( 6.3) for certain n; then we can apply the outer induction 
. f I • h d -1(n) If d fi A1(n) -1[-1(11)/ J hypothesis ors, wit Vk+ 1 =v an sk+i=Sv . we e ne Sv =s Sv v = 

s'[s;/ V;] 7:-11, this gives us 

(6.4) 

Now we can calculate 

O*[{(a, s~1 "+ 1 \r)}] 

= O*[{(a, (skip;s~,<">);r)}] 

= O*[{(a, skip;(S~<" 1 ;r))}] (Lemma 6.13(3)) 

= Aa.{(a, O*[{(a, s~<"\r)}])} (definition of skip) 

= Aa.{(a, O[{(cx, s~(nl;J)}]: ('.)*[{(a, r)H)} (by (6.4)) 

=,.\a.{(a, O[{(a, s~,lnl;J)}])}:O*[{(a, r)}] (Definition 6.16) 

= V[ {(a, skip;(S~1 ">;,/))}]: (')'*[ {(a, r)}Il (definition of skip) 

= V[{(a, (skip; s~(n));,/)}]: O*[{(a, r)}] (Lemma 6.13(3)) 

= V[{(a, s~(n+IJ;J)}]: O*[{(a, r)] 

which gives us ( 6.3) for n + 1. 

Finally, we can compute as follows: 

O'*[{(a, µ.v[s'];r)}] 

= lim,, O*[{(a, s~< 11 >;r)}TI (Lemma 6.13(5)) 

=lim,,(O[{(a, s~1 ");,/)}]:0*[{(a, r)}]) (by (6.3)) 

= (lim,, O[{(a, s~<nl;J)}]): o'*[{(a, r)}] (Lemma 6.18(1)) 

= O[{(a, µ.v[s'];,/)H: O*[{(a, r)}TI (Lemma 6.13(5)). 0 

In order to prove Theorem 6.14, in addition to the reasoning encountered earlier, 

there is one extra step necessary to deal with the possible recursion in declarations 

such as c{= ... new(c) .... This step involves the second component 1'12l of an 

environment y. For simplicity's sake we again drop the indices. 



Equivalent semantic models for process creation 171 

6.22. Lemma. Let t be a fixed program. If 'YE r satisfies 

y(c) = Aa.O*[{(a, s;E)}] (6.5) 

for c<F=s in t, then we have the following: 
(1) For any e E Exp, y Er, a E AObj, and f E Obj ~ P we have 

~[e]yaf = O[{(a, e:.J)}]:f 

(2) Lets E Y'nud (not necessarily closed) and assume that the free statement variables 
ins are all in {v1, ... , vd and let s1 , ••• , sk be closed. Puts= s[sJ vi]~=t and define 

cp; = Aa.Ap.(O[{(a, S; ;.J)}]:p) (i = 1, ... , k) 

and let y = y{cp;/ v;}7=i· Then we have, for any a and p, 

0l[s]fap = O[{(a, s;.J)}]:p. 

Proof. The proof follows the same line of argument as in Sections 4 and 5. It runs 
by induction on the complexity of e and s. We make use of Lemmas 6.13, 6.18, 
6.20, and 6.21 and we need the assumption (6.5) to deal with the case e = new(c). 

We shall deal with some typical cases here, starting with part (1). 
Case 1: e = {3. 

~[.Bhaf = f( ,8) (Definition 6.9) 

=pollf({3) (Definition6.17) 

= (.B, Po):f (Definition 6.16) 

= O[{(a, {3:.J)}]:f (Definition 6.19). 

Case 2: e =op e'. 

~[op e'haf 

= 'lb'[e']ya(A,B./(op.0 m {3)) (Definition 6.9) 

= 'IC[ e']ya (A,B.0[ {(a, OPsem .B: .J)}]:f) (Case 1 for OPsem ,8) 

= ~[e']ya(A{3.0[{(a, ,B:Az.(op z :.J))}]:f) (Lemma 6.13(11, 10)) 

= O[{(a, e':.J)}]: (A,B.O[{(a, ,B:Az.(op z :.J))}TI:f) (ind. hyp.) 

= ( 6[ {(a, e':.J)}]: (A,B.0[ {(a, ,B :Az.(op z: .J))}]) ):/ (Lemma 6.18(4)) 

= 6[ {(a, e':Az.(op z: .J))}]:/ (Lemma 6.21) 

= O[{(a, op e': .J)}]:f (Lemma 6.13( 12)) 

Case 3: e = new(c). 



172 P. America, J. De Bakker 

'lb'[ new( c)] yaf 

= ,\a-.{(u', y( c )( /3) !If( f3 )) } (Definition 6.9, with a-' and f3 as usual) 

= ,\a-.{(u', y(c)(/3) II (6;[{(a, ,B:J)}]:f))} (see Case 1) 

=,\a-.{(u', (y(c)(/3) II O[{(a, ,B:J)m:f)} 

= ,\u.{ (u', ( y( c)( f3) II O[ {(a, f3 :J) }] )) }:f 

=Au.{ (u', ( V*[ { < /3, s; E) }] II eJ[ {(a, /3 :J) m> }:f 

= Au.{(u', O[{(,B, s;E), (a, ,B:J)}])}:f 

= O[ {(a, new(c):J)}]:f 

And now part (2). Again we deal with a few typical cases. 

Case 4: s = x := e, so s = s. 

fiLl[x := e]yap 

(Lemma 6.18(5)) 

(Definition 6.16) 

(by (6.5)) 

(Lemma 6.21) 

(Lemma 6.13(13)) 

= 'lb'[e]ya(,\f3.,\u.{(a-', p)}) (Definition 6.9, with a' as usual) 

= 'iB[e]ya(A/3.0[{(a, ,B:Az.(x := z;J))}]:p) 

(see proof of Lemma 6.21, Case 4) 

= O[ {(a, e:J) }] : (A/3.0'[ {(a, /3 :Az.(x := z;J)) }]:p) 

= (O[{(a, e:J)}]: (A/3.0[{(a, f3:Az.(x:= z;J))}])):p 

== O[{(a, e:Az.(x:= z;J))}]:p 

= V[{(a, x := e;J)}]:p. 

(part(l)) 

(Lemma 6.18(4)) 

(Lemma 6.21) 

(Lemma 6.13(2)) 

Case 5: s = µ.v[s']. Let us assume again that v e { v1 , ••• , vd, so that, if we define 

s' = s'[s;/ V;] 7=1' then we haves= µ.v[s']. Now, on the one hand, we have, by Lemma 

6.13(5) and Lemma 6.18(1), that 

( 6.6) 

On the other hand, Definition 6.9 says that 

( 6.7) 

where rf!o can be chosen arbitrarily, and 

lf!,,+ 1 = ,\a.,\p.Au.{(o-, §J[s']y{rf!,,/v}ap)}. 

Now we make a definite choice for if;0 , namely 

and we prove, by induction on n, that 

lf!n = Aa.Ap.(O[{(a, s~(n>;J)}]:p). (6.8) 



Equivalent semantic models for process creation 173 

For n = 0 this is obvious, so assume (6.8) for some n; then we can apply the outer 

induction hypothesis to S 1 With Vk+l = V and Sk+l = S~<nl, SO OUr inner induction 

hypothesis ( 6.8) says that 'Pk+! =If;,,. We then get (because s'[sJ V;] 7=-:-11 = s'[s~.1 " 1 Iv]) 

(6.9) 

and we calculate 

lfin+1(a)(p) = AO'.{(O', ffi[s'TIHl/111 /v}ap)} (definition of l/J,,+1) 

= AO'.{(O', O[{(a, s'[s~(n)/v];.J)}lp)} (by (6.9)) 

= AO'.{(O', O[{(a, s'[s~(n)/v];.J)}Il)}:p (Definition 6.16) 

(definition of skip) 

(Lemma 6.13(3)) 

= O[{(a, skip;(s'[s:.<" 1/v];.J))}lp 

= O[{(a, (skip;s'[s~< 11 l/v]);..,/)}TI:p 

= 6'[{(a, s~1,,+1);.J)}lp (definition of s~(n+l)). 

Finally, ( 6.8) tells us that in ( 6.6) and ( 6. 7) we are taking the limit of the same 

sequence, so their respective left-hand sides are equal. D 

One more step is necessary before we reach the desired conclusion. 

6.23. Lemma. Let 'Yr be as in Definition 6.9(3 ). Then we have that '}'1 satisfies ( 6.5). 

Proof. Choose any 1' satisfying (6.5). Then, by the definition of 1Jr, (in Definition 

6.9(3)), we have, for c~s in t, 

1JI',( 1)(c) = Aa.ffi[sTI( 1)(a)(po) 

= Aa.(O[{(a, s;.J)}lp0 ) (Lemma 6.22) 

= Aa.(O[{(a, s;.J)}TI: O[{(a, E)}Il) (Definition 6.19) 

= Aa.O*[{(a, s:E)}TI (Lemma 6.21) 

=1' (by(6.5)). 

If we have furthermore that 1(c) = Aa.p0 for c not declared in t, then we have that 

1' is a fixed point of 1JI',, so that JI= 'Yr· D 

Now we can prove Theorem 6.14: 

Proof of Theorem 6.14. For part (1), we calculate as follows: 

O*[ {(a, e:g)}TI = O[{(a, e:.J)}TI: (A,B.O*[{(a, ,B:g)}Il) (Lemma 6.21) 



174 P America, J. De Bakker 

= <jg[e]y,a(A.f:l.i'.J'*[{(a, {:l:g)H) (Lemma 6.22) 

where the application of Lemma 6.22 is allowed by Lemma 6.23. 

Now for part (2), we have 

O*[{(a, s;r?}TI = O[{(a, s;.J)}]: O'*[{(a, r)}TI (Lemma 6.21) 

= 22J[s]y,a(i'.J'*[{(a, r)}]) (Lemma 6.22) 

where s = s and f, = y, because s is closed. Here, again, Lemma 6.23 justifies the 

application of Lemma 6.22. 0 

6.24. Corollary. For any t E 2nuci. O*[ t] = 0![ t]. 

Proof. Let t = (c;{=s;)~= 1 ; then we have 

V*[t] = (l)'*[{((c,, 1), s1 ;E)}] 

= f!ii[s 1TI( y,)((c,, 1))(0'*[{((c1 , 1), E)}]) 

= flii[s 1]( y,)((c 1 , l))(po) 

= f!ii[t] 

(Definition 6.10(4)) 

(Theorem 6.14(2)) 

(Definition 6.10(3)) 

(Definition 6.9(4)). 0 

With Corollary 6.24, we have obtained the ultimate goal of our paper: to establish 

the equivalence of an operational and a denotational semantics for a nonuniform 

language with process creation. 

Acknowledgment 

Discusssions with Jeffery Zucker led to a considerably improved way ofincorporat· 

ing syntactic continuations for the uniform case. Moreover, Definition 4.4 is due to 

him. We are also indebted to Dr. Zucker for pointing out several minor and some 

major flaws in a draft of this paper which we (hope to) have corrected in the present 

version. 

The contributions of Joost Kok and Jan Rutten to the design of the POOL 

semantics as reported in (6, 7] were absolutely essential for the present investigation. 

The idea of assembling transition sequence information into a process is due to 

Joost Kok. We acknowledge fruitful discussions on our work in the Amsterdam 

concurrency group, including Frank de Boer, Joost Kok, John-Jules Meyer, Jan 

Rutten and Erik de Vink. 

Finally, we express our thanks to Marisa Venturini Zilli for the opportunity 

extended to the second author to lecture on the material of this paper in the Advanced 



Equivalent semantic models for process creation 175 

School on Mathematical Models for the Semantics of Parallelism, Rome, September 
1986. 

References 

[1] The Programming Language Ada Reference Manual, American National Standards Institute, 
ANSI/MIL-STD-1815A-1983 (also published as: Lecture Notes in Computer Science 155 (Springer, 
Berlin, 1983)). 

[2] G. Agha, Semantic considerations in the Actor paradigm of concurrent computations, in: S.D. 
Brookes, A.W. Roscoe and G. Winskel, eds., Proc. Seminar on Concurrency, Carnegie-Mellon 
University, Pittsburgh, PA, July 9-11, 1984, Lecture Notes in Computer Science 197 (Springer, 
Berlin, 1984) 151-179. 

[3] P. America, Definition of the programming language POOL-T, ESPRIT Project 415, Doc. No. 91, 
Philips Research Laboratories, Eindhoven, The Netherlands, September 1985. 

[ 4] P. America, Rationale for the design of POOL, ESPRIT Project 415, Doc. No. 53, Philips Research 
Laboratories, Eindhoven, The Netherlands, January 1986. 

(5) P. America, Objected-oriented programming: a theoretician's introduction, EA TCS Bull. 29 (June 
1986) 69-84. 

(6) P. America, J.W. De Bakker, J.N. Kok and J.J.M.M. Rutten, Operational semantics of a parallel 
object-oriented language, in: Conf. Ree. 13th Symp. on Principles of Programming Languages, St. 
Petersburg, FL (January 13-15, 1986) 194-208. 

[7] P. America, J.W. De Bakker, J.N. Kok and J.J.M.M. Rutten, A denotational semantics ofa parallel 
object-oriented language, Report CS-R8626, Centre for Mathematics and Computer Science, 
Amsterdam, The Netherlands, August 1986. 

[8] P. America and J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete 
metric spaces, in: Proc. Third Workshop on Mathematica/ Foundations of Programming Language 
Semantics, New Orleans, LA, April 8-10, 1987, Lecture Notes in Computer Science 298 (Springer, 
Berlin, 1988) 254-288. 

[9] K.R. Apt, Recursive assertions and parallel programs, Acta Inform. 15 (1981) 219-232. 
[10] K.R. Apt, Formal justification of a proof system for communicating sequential processes, J. ACM 

30(1) (1983) 197-216. 
[11] J.W. De Bakker, J.A. Bergstra, J.W. Klop and J.-J.Ch. Meyer, Linear time and branching time 

semantics for recursion with merge, Theoret. Comput. Sci. 34 (1984) 135-156. 
(12) J.W. De Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog and J.l. Zucker, Contrasting themes in 

the semantics of imperative concurrency, in: J.W. De Bakker, W.-P. De Roever and G. Rozenberg, 
eds., Current Trends in Concurrency: Overviews and Tutorials, Lecture Notes in Computer Science 
224 (Springer, Berlin, 1986) 51-121. 

[13] J.W. De Bakker and J.-J.Ch. Meyer, Order and metric in the stream semantics of elemental 
concurrency, Acta Inform. 24 (1987) 491-511. 

[14] J.W. De Bakker, J.-J.Ch. Meyer and E.-R. Olderog, Infinite streams and finite observations in the 
semantics of uniform concurrency, Theoret. Comput. Sci. 49(2, 3) ( 1987) 87-112. 

[15] J.W. De Bakker, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker, Transition systems, infinitary 
languages and the semantics of uniform concurrency, in: Proc. J7th ACM Symp. on the Theory of 
Computing, Providence, Rl (1985) 252-262. 

[16] J.W. De Bakker, J.-J.Ch. Meyer, E.-R. Olderog and J.I. Zucker, Transition systems, metric spaces 
and ready sets in the semantics of uniform concurrency (full version of [15)), J. Comput. System 

Sci. 36 (1988) 158-224 .. 
[17) J.W. De Bakker and J.l. Zucker, Processes and the denotational semantics of concurrency, Inform. 

and Control 54 (1982) 70-120. 
(18] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Inform. and Control 

60 (1984) 109-137. 



176 P. America, 1. De Bakker 

[19] F.S. De Boer, A proof rule for process creation, in: M. Wirsing, ed., Formal Description of 
Programming Concepts III, Proc. Third IFIP WO 2.2 Working Conf, GI. Avermes, Ebberup, Denmark, 
August 25-28, 1986 (North-Holland, Amsterdam, 1987) 23-50. 

[20] M. Broy, Fixed point theory for communication and concurrency, in: D. Bj~rner, ed., Formal 
Description of Programming Concepts II (North-Holland, Amsterdam, 1983) 125-146. 

[21] M. Broy, Applicative real-time programming, in: R.E.A. Mason, ed., Information Processing '83: 
Proc. JFJP Conference (North-Holland, Amsterdam, 1983) 259-264. 

[22] A. De Bruin and A.P.W. Bohm, The denotational semantics of dynamic networks of processes, 
ACM Trans. Programming Languages and Systems 7(4) (1985) 656-679. 

[23] W.D. Clinger, Foundations of actor semantics, Technical Report No. 633, Artificial Intelligence 
Laboratory, Massachusetts Institute of Technology, May 1981. 

[24] 0.-J. Dahl, B. Myhrhaug and K. Nygaard, SIMULA67, Common Base Language, Norwegian 
Computing Center, Forskningsvn. lb., Oslo, Norway, 1967. 

[25] J. Dugundji, Topology (Allyn & Bacon, Newton, MA, 1966). 
[26] R. Engelking, General Topology (Polish Scientific Publishers, Warsaw, 1977). 
(27] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, A Compendium of 

Continuous Lattices (Springer, Berlin, 1980). 
(28] H. Hahn, Ree/le Funktionen (Chelsea, New York, 1948). 
(29] M. Hennessy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in: 

J. Becvar, ed., Proc. 8th Symp. on Mathematical Foundations of Computer Science, Lecture Notes in 
Computer Science 74 (Springer, Berlin, 1979) 108-120. 

(30] C. Hewitt, Viewing control structures as patterns of passing messages, Artificial Intelligence 8 ( 1977) 
323-364. 

[31] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21(8) (1978) 666-677. 
[32] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985). 
(33] J.-J.Ch. Meyer, Merging regular processes by means of fixed point theory, Theoret. Comput. Sci. 45 

(1986) 193-260. 
(34] J.-J.Ch. Meyer and E.P. de Vink, Applications of compactness in the Smyth powerdomain of 

streams, in: Proc. TAPSOFT '87, Vol. 1, Pisa, Italy, March 23-27, 1987, Lecture Notes in Computer 
Science 249 (Springer, Berlin, 1987) 241-255. 

[35] M. Nivat, Infinite words, infinite trees, infinite computations, in: Foundations of Computer Science 
/11.2, Mathematical Centre Tracts 109 (1979) 3-52. 

[36] D. Niwinski, Fixed point semantics for algebraic (tree) grammars, in: M. Nielsen and E.M. Schmidt, 
eds., Proc. 9th Internal. Coll. on Automata, Languages and Programming, Lecture Notes in Computer 
Science 140 (Springer, Berlin, 1982) 384-396. 

[37] G.D. Plotkin, A powerdomain construction, SIAM 1. Comput. 5(3) (1976) 452-487. 
[38] G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer 

Science Department, Aarhus University, September 1981. 
[39] G.D. Plotkin, An operational semantics for CSP, in: D. Bj1<1rner, ed., Formal Description of Program­

ming Concepts II (North-Holland, Amsterdam, 1983) 199-223. 
[ 40] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: W. 

Brauer, ed., Proc. 12th Internal. Coll. on Automata, Languages and Programming, Nafplion, Greece, 
July 15-19, 1985, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985) 15-32. 

[ 41] W.C. Rounds, On the relationship between Scott domains, synchronization trees and metric spaces, 
Report CRL-TR-25-83, University of Michigan, 1983. 

[ 42] V.A. Saraswat, The concurrent logic programming language CP: definition and operational seman­
tics, in: Conf Ree. 14th Symp. on Principles of Programming Languages, M iinchen, Fed. Rep. Germany 
(January 21-23, 1987) 49-62. 

[43] S.A. Smolka and R.E. Strom, A CCS semantics for NIL, in: M. Wirsing, ed., Formal Description 
of Programming Concepts III, Proc. Third IFIP WO 2.2 Working Conf, GI. Averna:s, Ebberup, 
Denmark, August 25-28, 1986 (North-Holland, Amsterdam, 1987) 347-373. 


