
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

279

Joseph H. Fasel Robert M. Keller (Eds.)

Graph Reduction
Proceedings of a Workshop
Santa F6, New Mexico, USA
September 29-October 1, 1986

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo

Editorial Board
D. Barstow W. Brauer P. Brinch Hansen D. Cries D. Luckham
C. Moler A. Pnueli G. SeegmOller J. Stoer N. Wirth

Editors

Joseph H. Fasel
University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 8?545, USA

Robert M. Keller
Quintus Computer Systems, Inc.
1310 Villa Street
Mountain View, California 94041, USA

This volume was edited under the auspices of the U.S. Department of Energy.

CR Subject Classification (1987): F.1.1, E4.1, C.1, D.t.1, D.3.4

ISBN 3-540-18420-1 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18420-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 198'7
Printed in Germany
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-548210

Preface

On September 29 through October 1, 1986, a workshop on graph reduction was held in
Santa Fe, New Mexico, USA, sponsored by the Los Alamos National Laboratory of the
University of California and Microelectronics and Computer Technology Corporation
(MCC). 66 researchers from the United States, Canada, the United Kingdom, Sweden,
Finland, the Netherlands, France, West Germany, and Australia participated in the
workshop, which consisted of 28 presentations, combined with much informal discussion.
The papers in the present volume are based on the presentations, and because the final
versions were prepared after the workshop, they reflect some of the discussions, as welt.

Histor ica l C o m m e n t

The term graph reduction, referring to an evaluation model for functional languages, was
probably first used in the dissertation of Christopher Wadsworth (Oxford, 1971). Similar
ideas had earlier been discussed in a thesis at M.I.T. (Suhas S. Patil, M.S. Thesis, An abstract
parallel processing system, 1967). That numerous investigations of this concept have
sprung forth attests to the concept's elegance and seductiveness. Witness the present
collection of papers, which represents contributions from a sizeable, but incomplete, subset
of the workers in this community.

R a t i o n a l e

Some of the benefits of graph reduction can be found in the following traits:

• A mathematically elegant denotational semantics

• Lazy evaluation, which avoids recomputation and makes programming with
infinite data structures (such as streams) possible.

• A natural tasking model for fine-to-medium grain parallelism (see Keller,
Lindstrom, and Patil, A loosely-coupled applicative multiprocessing system,
Proc. NCC I979).

Brief In troduct ion to Graph Reduct ion

The concept of graph reduction can be illustrated by considering a functional expression,
such as

((a + b) / (c * d)) - ((c * d) / (e + f)),

the graphical equivalent of which is shown in Figure 1.

Iv

a b / \ e f

c d

Figure I

In the figure, the leaves a, b, c, d, e, f are assumed to represent values. This graph can be
reduced by selecting any evaluable operator node; here, the evaluable nodes are those
whose inputs are leaves. There are three such operators in the Figure. Reduction of such
a node is represented by replacing the node with its value, representable symbolically as (a
+ b), (c * d), and (e + f) for each of the three choices in the Figure. Figure 2 shows the result
of each of three possible reductions. In practice, only one reduction need be performed at a
time, but the independence of the three reductions is indicative of the potential
parallelism in the reduction process. Note also that the subgraph for (c *d) is shared, and
thus need only be reduced once. This is an advantage of graph reduction, as opposed to
string or tree reduction.

Figure 3 begins by showing the result of applying all three reductions, and then continues
by applying other reductions, until the result is a single value, again represented
symbolically.

In a practical system, we cannot be content with evaluating fixed graphs; we need to be able
to build parameterized graphs and reduce them. For example, Figure 4 shows a graph
representing the product of the integers from m through n.

5~

Jr

v~

CD

+

v

÷
 v~

Q
~

Q
I

v

÷

v

s~

÷

v v~

÷

v

÷

v

'VII

Suppose we wish to construct such a graph for given m and n and then reduce it. This
may be accomplished with a graph grammar production, as shown in Figure 5. The idea
here is that a node labelled product is to be expanded into a graph before any reduction.
Again, the computation is viewed as a succession of transformations from one graph to
another. A production can be applied anywhere in the graph that there is a node
corresponding to its left-hand side. The application of this production entails replacing
that node with the corresponding right-hand side, splicing in such a way that argument
correspondence is preserved. As with reduction, expansion can take place in parallel at
several sites within the graph, since the graph grammar is essentially "context-free".

t
IP roduct]

m n

,, J
(if m >: n) m

(if m < n)

I0roOoo, i I0 o °o, I

m

Figure 5

Vltl

We show in Figure 5 two expansions, conditioned on the relation between m and n, that
must be known before the corresponding right-hand side can be chosen. However, we can
achieve the same effect with a single production by introducing a conditional
(if_then else) node, as shown in Figure 6.

T
I0,o0uo, I c,, ,hen o,se_

m n r /

product

m

Figure 6

IX

We assume that the conditional node is reduced lazily; that is, the then and else parts are
not evaluated before the node is reduced. The principle of lazy (or demand-driven)
evaluation is that no reduction or expansion is performed until its value is needed. This
evaluation scheme has the benefit of avoiding redundant computation, and in particular,
allows us to use infinite data structures, so long as only finite portions of them are ever
demanded. For example, Figure 7 shows an expansion rule for the infinite list (or stream)
of successive integers beginning with n.

n

I
rl

J

,)

2

Figure 7

Figure 8 shows the configuration of the stream of integers from 0 after the first two
elements have been demanded.

Figure 8

X

There is, of course, a connection between graph expansion and beta-reduction in the
lambda calculus. The production itself corresponds to a lambda expression, and the
position of the expanded node within the graph corresponds to its arguments, as in the
following indication of function application:

(X(formals).body) actuals --> body(with actuals substituted for formals)

Lazy evaluation of graphs corresponds to normal-order reduction in the lambda calculus,
but need not suffer from the inefficiency associated with the latter, because multiple
occurrences of a formal parameter in a lambda abstraction, which result in reevaluation of
the corresponding actual parameter, can be represented in the equivalent graph by
references to a shared subgraph (the actual), which will be evaluated at most once. It is also
noteworthy that the graph representation eliminates the need for the traditional alpha-
reduction, as the arcs corresponding to bound variable instances in the lambda calculus are
anonymous in the graph calculus.

The connection between graph reduction and lambda calculus needs to be completed by
mentioning briefly the correspondence to free variables in lambda expressions. These are
variables that are expected not to get their values from arguments of the immediate
lambda binding, but rather to inherit them from outside. This correspondence is best
demonstrated by an ~ternate representation of the production, using an encapsulated
body. Instead of a named node, which would have been expanded, we use an apply node,
which expects an encapsulated body as one of its arguments, and which is defined to have
a reduction rule resulting in the substitution of the body for the apply node. Figure 9
shows the original production in part (a), the result of beta reduction in part (b), and the
equivalent reduction using an apply node in part (c).

Now we can use encapsulated bodies to show the equivalent of free variables. These are
bodies with arc values entering from outside the node, as shown in Figure 10. These
values are bound before expansion of the apply node, not during. Using this
representation, techniques of the lambda calculus can be explained (see R.M. Keller,
Semantics and applications of function graphs, University of Utah 1980).

Xl

(a)

l

(b)

C)

(c)

Figure 9

Figure 10

×It

Open Issues

It is scientifically worthwhile to examine issues such as

whether graph reduction is the most efficient way to achieve the benefits
mentioned in the opening paragraphs (e.g. can variants of the SECD model do
just as well, or should these variants properly be viewed as instances of graph
reduction)

• whether some of the benefits (e.g. natural tasking granularity) apply just as
well to models that are not purely functional

whether graph reduction can take on a wider meaning than as an evaluation
model for the lambda-calculus, (e.g. in a computational symbolic algebra,
where the data are essentially graphs)

whether the graph reduction model limits the scope of programming model
that can be used (e.g. can na tura l ly represent cont inuat ion-based
programming , on which a wide variety of control structures can be
represented functionally)

Contributed Papers

One can find in the papers contributed to the workshop concern for some of the issues
mentioned above and related ones. We have grouped the papers into categories, as shown
in the Table of Contents. In an area where there is significant interplay of concerns
(efficiency, parallelism, language capability, etc.), no such categorization can be perfect.
Thus, we have merely attempted a coarse grouping to aid ourselves in introducing the
topics of concern in each of the papers.

In the category of models for graph reduction, we find papers exposing various views of
graph reduction as a means for language implementation. Hans-Georg Oberhauser (On
the correspondence of lambda style reduction and combinator style reduction) discusses
the relationship between two styles of graph reduction, one based on beta reduction in the
lambda calculus and the other based on a combinator calculus. Further connections along
these lines are exposed by Klaus Berkling (Head order reduction: A graph reduction
scheme for the operational lambda calculus) and Jon Fairbairn (A simple abstract machine
to execute supercombinators). Joseph Goguen, Claude Kirchner, and Jos4 Meseguer
(Concurrent term rewriting as a model of computation) discuss the techniques and
motiyation underlying their Rewrite-Rule Machine project.

An important set of issues surrounds the problems of implementing graph reduction on
existing architectures. Benjamin Goldberg and Paul Hudak (Alfalfa: Distributed graph
reduction on a hypercube multiprocessor) present their implementa t ion work for a
multiprocessor with distributed processors and memory. Randy Michelson, Lauren
Smith, Elizabeth Will iams, and Bonnie Yantis (Parallel Graph Reduction on a
Supercomputer: A Status Report) present related work oriented toward existing

Xlll

supercomputer implementations. Thomas Johnsson (Target code generation from G-
machine code) describes a method of functional language compilation using a graph-
reduction model.

The graph reduction concept has inspired several architectures specially designed to exploit
the parallelism it provides. The papers here reflect work as it has proceeded in three
different countries toward such ends: Michel Castan, Guy Durrieu, Bernard Lecussan,
Michel Lemaitre, Atlesandro Contessa, Eric Cousin, and Paulino Ng (Toward the design of
a parallel graph reduction machine: The MaRS project), P.G. Harrison and M.J. Reeve
(The parallel graph reduction machine, Alice), and Robert M. Keller, Jon W. Slater, and
Kevin T. Likes (Overview of Rediflow II Development).

Along with such architectures come issues of how best to allocate physical resources, such
as processors and memory. Included in this category are papers by M.C.J.D. van Eekelen
and M.J. Plasmeijer (Specification of reduction strategies in term rewriting systems), F.
Warren Burton (Controlling reduction partial order in functional parallel programs),
Ashoke Deb (Parallel garbage collection for graph machines), and Ian Watson and Paul
Watson (Graph reduction in a parallel virtual memory environment).

For proposed architectures, it is important to assess performance before constructing
hardware. The papers by Richard B. Kieburtz (Performance measurement of a G-machine
implementation) and Steven Tighe, Ken Zink, Richard Brice, and William Alexander (A
flexible architectural study methodology) present results and approaches in this area.

One topic that generated particularly lively discussion at the workshop was that of arrays
in functional languages and their implementation by graph reduction. This discussion
was inspired by presentations by Paul Hudak on incremental and monolithic array
operations and by Arvind on I-structures. This discussion motivated Philip Wadler to
devise a new monolithic array operation and to write a paper about it, which he
distributed to an electronic mailing list on functional programming. Some further
discussion on this subject then followed on the mailing list, and the papers by Paul Hudak
(Arrays, non-determinism, side-effects, and parallelism: A functional perspective), Philip
Wadler (A new array operation), and Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali (I-
structures: Data structures for parallel computing) bear some of the fruit of this discussion.

The final category of papers concerns another area of intense activity with regard to
language concepts implementable by graph reduction, that of logic programming. These
are the papers by Bharat Jayaraman and Gopal Gupta (Parallel execution of an equational
language), Gary Lindstrom (Implementing logical variables on a graph reduction
architecture), Uday S. Reddy (Functional logic languages, Part/), and John Staples and Peter
J. Robinson (Unification of quantified terms).

We hope the reader will find these papers useful both as informative sources of current
work in the area of graph reduction and as points of departure for future work.

×IV

Acknowledgements

The workshop was originally suggested by Alfred Hartmann of MCC, and was to be
sponsored by Los Alamos, MCC, and the Burroughs Austin Research Center.
Unfortunately, not long after planning for the workshop began, BARC was closed.

In addition to the committee members listed below, three others participated in the early
phases of organizing the workshop: Henry Tirri, of the University of Helsinki and MCC,
and Carl Pixley and Hamilton Richards, then with BARC and now with MCC and the
University of Texas at Austin, respectively.

The committee are grateful for assistance and encouragement from several individuals
and organizations in Europe. In particular, we thank Ronan Sleep, University of East
Anglia; Simon Peyton Jones, University College London; the Alvey Directorate, London,
Brian Oakley, Head; and the Division of Software Technology and Advanced Information
Processing, Commission of the European Communities, Brussels, John Elmore, Head.

The editors are grateful to Patricia Fasel, Los Alamos National Laboratory, for her generous
assistance in the editing and preparation of this volume.

Los Alamos's contribution to the funding of the workshop was provided by the U.S.
Department of Energy, Office of Energy Research.

Robert M. Keller
Mountain View, California

Joseph H. Fasel
Los Alamos, New Mexico

June, 1987

Graph Reduction Workshop Organizing Committee:

Joseph Easel, Los Alamos, General Chairman
Robert Keller, Quintus Computer Systems, Inc., Program Chairman
Randy Michelsen, Los Alamos, Local Arrangements Chairman
Wayne Anderson, Los Alamos
Richard Brice, MCC
Scott Danforth, MCC
Alfred Hartmann, MCC
Steven Tighe, MCC
Ken Zink, MCC

Table of Contents

Models for Graph Reduction

On the correspondence of lambda style reduction and combinator style reduction
H.-G. Oberhauser .. 1

Head order reduction: A graph reduction scheme for the operational lambda
calculus
K. Berkling .. 26

A simple abstract machine to execute supercombinators
J. Fairbairn ... 49

Concurrent term rewriting as a model of computation
J. Goguen, C. Kirchner, and J. Meseguer ... 53

Graph Reduction on Existing Architectures

Alfalfa: Distributed graph reduction on a hypercube multiprocessor
B. Goldberg and P. Hudak ... 94

Parallel Graph Reduction on a Supercomputer: A Status Report
IL Michelson, L. Smith, E. Williams, and B. Yantis ... 114

Target code generation from G-machine code
T. Johnsson .. 119

Graph Reduction Architectures

Toward the design of a parallel graph reduction machine: The MaRS project
M. Castan, G. Durrieu, B. Lecussan, M. Lemattre, A. Contessa, E. Cousin,
and P. Ng ... 160

The parallel graph reduction machine, Alice
P. G. Harrison and M. J. Reeve .. 181

Overview of Rediflow II Development
R. M. Keller, J. W. Slater, and K. T. Likes .. 203

Resource Control Issues

Specification of reduction strategies in term rewriting systems
M. C. J. D. van Eekelen and M. J. Plasmeijer .. 215

Controlling reduction partial order in functional parallel p rograms
F. W. Burton ... 240

Parallel garbage collection for graph machines
A. Deb .. 252

Graph reduction in a parallel virtual memory environment
I. Watson and P. Watson .. 265

xvI

Performance Modelling and Simulation

Performance measurement of a G-machine implementat ion
R. B. Kieburtz .. 275

A flexible architectural s tudy methodology
S. Tighe, K. Zink, R. Brice, and W. Alexander ... 297

A r r a y s

Arrays, non-determinism, side-effects, and parallelism: A functional perspective
P. Hudak ... 312

A new array operation
P. Wadler .. 328

I-structures: Data structures for parallel comput ing
Arvind, R. S. Nikhil, and K. K. Pingali ... 336

Relationship to Logic Programming

Parallel execution of an equational language
B. Jayaraman and G. Gupta .. 370

Implementing logical variables on a graph reduction architecture
G. Lindstrom ... 382

Functional logic languages, Part I
U. S. Reddy ... 401

Unification of quantified terms
J. Staples and P. J. Robinson ... 426

