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Preface  

On September 29 through October 1, 1986, a workshop on graph reduction was held in 
Santa Fe, New Mexico, USA, sponsored by the Los Alamos National Laboratory of the 
University of California and Microelectronics and Computer Technology Corporation 
(MCC). 66 researchers from the United States, Canada, the United Kingdom, Sweden, 
Finland, the Netherlands, France, West Germany, and Australia participated in the 
workshop, which consisted of 28 presentations, combined with much informal discussion. 
The papers in the present volume are based on the presentations, and because the final 
versions were prepared after the workshop, they reflect some of the discussions, as welt. 

Histor ica l  C o m m e n t  

The term graph reduction, referring to an evaluation model for functional languages, was 
probably first used in the dissertation of Christopher Wadsworth (Oxford, 1971). Similar 
ideas had earlier been discussed in a thesis at M.I.T. (Suhas S. Patil, M.S. Thesis, An abstract 
parallel processing system, 1967). That numerous investigations of this concept have  
sprung forth attests to the concept's elegance and seductiveness. Witness the present 
collection of papers, which represents contributions from a sizeable, but incomplete, subset 
of the workers in this community. 

R a t i o n a l e  

Some of the benefits of graph reduction can be found in the following traits: 

• A mathematically elegant denotational semantics 

• Lazy evaluation, which avoids recomputation and makes programming with 
infinite data structures (such as streams) possible. 

• A natural tasking model for fine-to-medium grain parallelism (see Keller, 
Lindstrom, and Patil, A loosely-coupled applicative multiprocessing system, 
Proc. NCC I979). 

Brief In troduct ion  to Graph Reduct ion  

The concept of graph reduction can be illustrated by considering a functional expression, 
such as 

((a + b) / (c * d)) - ((c * d) / (e + f)), 

the graphical equivalent of which is shown in Figure 1. 
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Figure I 

In the figure, the leaves a, b, c, d, e, f are assumed to represent values. This graph can be 
reduced by selecting any evaluable operator node; here, the evaluable nodes are those 
whose inputs are leaves. There are three such operators in the Figure. Reduction of such 
a node is represented by replacing the node with its value, representable symbolically as (a 
+ b), (c * d), and (e + f) for each of the three choices in the Figure. Figure 2 shows the result 
of each of three possible reductions. In practice, only one reduction need be performed at a 
time, but  the independence  of the three reductions is indicative of the potential 
parallelism in the reduction process. Note also that the subgraph for (c *d) is shared, and 
thus need only be reduced once. This is an advantage of graph reduction, as opposed to 
string or tree reduction. 

Figure 3 begins by showing the result of applying all three reductions, and then continues 
by applying other reductions, until the result is a single value, again represented 
symbolically. 

In a practical system, we cannot be content with evaluating fixed graphs; we need to be able 
to build parameterized graphs and reduce them. For example, Figure 4 shows a graph 
representing the product of the integers from m through n. 
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'VII 

Suppose we wish to construct such a graph for given m and n and then reduce it. This 
may be accomplished with a graph grammar production, as shown in Figure 5. The idea 
here is that a node labelled product is to be expanded into a graph before any reduction. 
Again, the computation is viewed as a succession of transformations from one graph to 
another. A production can be applied anywhere in the graph that there is a node 
corresponding to its left-hand side. The application of this production entails replacing 
that node with the corresponding right-hand side, splicing in such a way that argument 
correspondence is preserved. As with reduction, expansion can take place in parallel at 
several sites within the graph, since the graph grammar is essentially "context-free". 
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Figure 5 
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We show in Figure 5 two expansions, conditioned on the relation between m and n, that 
must be known before the corresponding right-hand side can be chosen. However, we can 
achieve the same effect with a single production by introducing a conditional 
(if_then else ) node, as shown in Figure 6. 
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Figure 6 



IX 

We assume that the conditional node is reduced lazily; that is, the then and else parts are 
not evaluated before the node is reduced. The principle of lazy (or demand-driven) 
evaluation is that no reduction or expansion is performed until its value is needed. This 
evaluation scheme has the benefit of avoiding redundant computation, and in particular, 
allows us to use infinite data structures, so long as only finite portions of them are ever 
demanded. For example, Figure 7 shows an expansion rule for the infinite list (or stream) 
of successive integers beginning with n. 
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Figure 7 

Figure 8 shows the configuration of the stream of integers from 0 after the first two 
elements have been demanded. 

Figure 8 
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There is, of course, a connection between graph expansion and beta-reduction in the 
lambda calculus. The production itself corresponds to a lambda expression, and the 
position of the expanded node within the graph corresponds to its arguments, as in the 
following indication of function application: 

(X(formals).body) actuals --> body(with actuals substituted for formals) 

Lazy evaluation of graphs corresponds to normal-order reduction in the lambda calculus, 
but need not suffer from the inefficiency associated with the latter, because multiple 
occurrences of a formal parameter in a lambda abstraction, which result in reevaluation of 
the corresponding actual parameter,  can be represented in the equivalent graph by 
references to a shared subgraph (the actual), which will be evaluated at most once. It is also 
noteworthy that the graph representation eliminates the need for the traditional alpha- 
reduction, as the arcs corresponding to bound variable instances in the lambda calculus are 
anonymous in the graph calculus. 

The connection between graph reduction and lambda calculus needs to be completed by 
mentioning briefly the correspondence to free variables in lambda expressions. These are 
variables that are expected not to get their values from arguments of the immediate 
lambda binding, but rather to inherit them from outside. This correspondence is best 
demonstrated by an ~ternate  representation of the production, using an encapsulated 
body. Instead of a named node, which would have been expanded, we use an apply node,  
which expects an encapsulated body as one of its arguments, and which is defined to have 
a reduction rule resulting in the substitution of the body for the apply node. Figure 9 
shows the original production in part  (a), the result of beta reduction in part (b), and the 
equivalent reduction using an apply node in part (c). 

Now we can use encapsulated bodies to show the equivalent of free variables. These are 
bodies with arc values entering from outside the node, as shown in Figure 10. These 
values are bound before expansion of the apply node, not during. Using this 
representation, techniques of the lambda calculus can be explained (see R.M. Keller, 
Semantics and applications of function graphs, University of Utah 1980). 
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Open Issues 

It is scientifically worthwhile to examine issues such as 

whether graph reduction is the most efficient way to achieve the benefits 
mentioned in the opening paragraphs (e.g. can variants of the SECD model do 
just as well, or should these variants properly be viewed as instances of graph 
reduction) 

• whether some of the benefits (e.g. natural tasking granularity) apply just as 
well to models that are not purely functional 

whether graph reduction can take on a wider meaning than as an evaluation 
model for the lambda-calculus, (e.g. in a computational symbolic algebra, 
where the data are essentially graphs) 

whether the graph reduction model limits the scope of programming model 
that can be used (e.g. can na tura l ly  represent  cont inuat ion-based 
programming ,  on which a wide variety of control structures can be 
represented functionally) 

Contributed Papers 

One can find in the papers contributed to the workshop concern for some of the issues 
mentioned above and related ones. We have grouped the papers into categories, as shown 
in the Table of Contents. In an area where there is significant interplay of concerns 
(efficiency, parallelism, language capability, etc.), no such categorization can be perfect. 
Thus, we have merely attempted a coarse grouping to aid ourselves in introducing the 
topics of concern in each of the papers. 

In the category of models for graph reduction, we find papers exposing various views of 
graph reduction as a means for language implementation. Hans-Georg Oberhauser (On 
the correspondence of lambda style reduction and combinator style reduction) discusses 
the relationship between two styles of graph reduction, one based on beta reduction in the 
lambda calculus and the other based on a combinator calculus. Further connections along 
these lines are exposed by Klaus Berkling (Head order reduction: A graph reduction 
scheme for the operational lambda calculus) and Jon Fairbairn (A simple abstract machine 
to execute supercombinators). Joseph Goguen, Claude Kirchner, and Jos4 Meseguer 
(Concurrent term rewriting as a model of computation) discuss the techniques and 
motiyation underlying their Rewrite-Rule Machine project. 

An important set of issues surrounds the problems of implementing graph reduction on 
existing architectures. Benjamin Goldberg and Paul Hudak  (Alfalfa: Distributed graph 
reduction on a hypercube multiprocessor) present their implementa t ion work for a 
multiprocessor with distributed processors and memory.  Randy Michelson, Lauren 
Smith, Elizabeth Will iams,  and  Bonnie Yantis (Parallel Graph Reduction on a 
Supercomputer: A Status Report) present  related work oriented toward existing 
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supercomputer  implementations. Thomas Johnsson (Target code generation from G- 
machine code) describes a method of functional language compilation using a graph- 
reduction model. 

The graph reduction concept has inspired several architectures specially designed to exploit 
the parallelism it provides. The papers here reflect work as it has proceeded in three 
different countries toward such ends: Michel Castan, Guy Durrieu, Bernard Lecussan, 
Michel Lemaitre, Atlesandro Contessa, Eric Cousin, and Paulino Ng (Toward the design of 
a parallel graph reduction machine: The MaRS project), P.G. Harrison and M.J. Reeve 
(The parallel graph reduction machine, Alice), and Robert M. Keller, Jon W. Slater, and 
Kevin T. Likes (Overview of Rediflow II Development). 

Along with such architectures come issues of how best to allocate physical resources, such 
as processors and memory. Included in this category are papers by M.C.J.D. van Eekelen 
and M.J. Plasmeijer (Specification of reduction strategies in term rewriting systems), F. 
Warren Burton (Controlling reduction partial order in functional parallel programs), 
Ashoke Deb (Parallel garbage collection for graph machines), and Ian Watson and Paul 
Watson (Graph reduction in a parallel virtual memory environment). 

For proposed architectures, it is important to assess performance before constructing 
hardware. The papers by Richard B. Kieburtz (Performance measurement of a G-machine 
implementation) and Steven Tighe, Ken Zink, Richard Brice, and William Alexander (A 
flexible architectural study methodology) present results and approaches in this area. 

One topic that generated particularly lively discussion at the workshop was that of arrays 
in functional languages and their implementation by graph reduction. This discussion 
was inspired by presentations by Paul Hudak on incremental and monolithic array 
operations and by Arvind on I-structures. This discussion motivated Philip Wadler to 
devise a new monolithic array operation and to write a paper about it, which he 
distributed to an electronic mailing list on functional programming. Some further 
discussion on this subject then followed on the mailing list, and the papers by Paul Hudak 
(Arrays, non-determinism, side-effects, and parallelism: A functional perspective), Philip 
Wadler (A new array operation), and Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali (I- 
structures: Data structures for parallel computing) bear some of the fruit of this discussion. 

The final category of papers concerns another area of intense activity with regard to 
language concepts implementable by graph reduction, that of logic programming. These 
are the papers by Bharat Jayaraman and Gopal Gupta (Parallel execution of an equational 
language), Gary Lindstrom (Implementing logical variables on a graph reduction 
architecture), Uday S. Reddy (Functional logic languages, Part/), and John Staples and Peter 
J. Robinson (Unification of quantified terms). 

We hope the reader will find these papers useful both as informative sources of current 
work in the area of graph reduction and as points of departure for future work. 
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