
LA-UR -87-673

LOSAlamos Nahonal Laboratory IS wWad Lrywt. UnWOfWyof CMWn10 hx IM Unltad SlaCaa-BWnam Of Enargy under con!racI W-7405 .ENG-36

LA-UR--87-673

DE87 006066

TITLEPARALLELGRAPHREDIXXI@lON A ~:

A STATUSREPORT

AUTHOR(S): - Michelsm, C-10
kurm 9rrith, C-8
Elizabeth William, C-8
J3mnie Ymtis, C-10

SUBMITTEDTO To appear in ‘keedings of Santa Fe GraDh Reduction
Workshop . “ Sprirwer-Verlag

D1.!WLAIMER

Thi% report wus~.rcp~rcd usun uwmunl ofworkspmrwcd bylm agcncyorthc {Jniicd Stales

(iovcrnmcnt. Ncitherthc lJnild Sinlcs(;t)vcrnmcnl m)runysgcnc ythcraf. nor unynflhcir

employees, makes nny wurrunty, express or implied, or nmumcn any Icgnl liability or renpmrsi-

hility for the uccurucy, cwmplcleness, or uscrulncss of wry information, upparalurn, prmfucl, or

procc~~ diwlmcd, or rcprcscnls lhHl its use would not infringe privalcly owned rights Rcfcr-

cncc herein 10 uny s~ific commercial prmlucl, prowsc, or wvicc hy trade name, trndcmark,

mnnu(acturer, or olherwicc doc~ not necewarily wnslilulc [jr imply il~ cnd~~r*nlcnL ru~)m-

mcndalimr, or favoring hy lhc (Jniled Slalca (kwcrnmcrrl or wry agency thcrcd Tfrc views

mrd opinions or authors carrresud herein do nol ncuwwily mate or reflect thmc or the

1lnitcd Staic.m (hvcrnmcnt or ❑ny ■gcncy thcrcd,

BY accooltnco nl Ihm imcla, Iha publmhar fUogni#aa IhOt Ih@ U S Govarnmml ralm:, I ● nonoxcluawa royally. fr~ lIc.nM 10 publtah or ramoduca

lhc publmhad !O?M of Ihts Contr!twllon of 10 #now others 10 do 00, 10r IJ s oo~rnmanl ,IIlrPoIaS

lhn I,nq Alamns Nnlmnal I ●bofnlofv rnquasls IhO! IM publlshor IIlanlIfy Ihm ●rllclo ● work pa? fofmad undof Iha •m~lcaa of ma U S DaDnr!mwllf)!I IIm Uy

LoskwnrilosLosAlamos,NewMex,co87,,,
Los Alamos Natior~alLaboratory

?V,qm’’’’i’’’’:,+m~ ~,

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Parallel Graph Reduction on a Supercomputer:
A Status Report

Randy Michelsen
Lauren Smith 1

Elizabeth Williams
Bonnie Yantis

Computing and Communications Division2
Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

We describe an ongoing effon to develop a parallel graph reduction run-time systemhosted on a mul-
tiprocessorsupcomputer. This run-:ime systrm is presently augmented by the functional language
compiler of the ALFALFA system. Admittedly, parallel Braph reduction is hardly a novel idea. The
interesting notion is tk prevision of a parallel execution environment sufficiently powerful la sup-
port development of large prototypical scientific and symbolic codes in a functional language. This
will allow the investigation of the functional programming pamdigm within these application domains
in an empirictil fashion. In this paper, we discuss the motivation for the effo~, describe the bnsicele-
ments of the implementation, and provide some preliminary insight distilled from our experience with
an initial version of the run-time system.

1. INTRODUCTION

The continuing demand for increased computational power, especially in the realm of scientific
computing, has spurred interest in parallel compwdon. Today, most application development for
computationally intensive algorithms intended for high-performance computers is done in Fortrwt.
Hence, there exists a considerable body of knowledge regarding its use and performance in such
domains. We are interested in collecting similar data relating to use of the functional (or applicative)
paradigm,

Toward this end, wc are currently developing a parallel graph reduction run-time system for u
supercomputer incorporating four high-speed processom, The code generation is perfoi med by m
existing functional language compiler resident on a traditional uniprcreessor. Initially, the focus of tile
effort was the conversion, with minimal change, of a run-time system originally developed for a dis-
tributed memo~~ multiprocessor to a shared memory multiprocessor. This strategy enubled ,M,in Ilw
near term, to rely upon an existing compiler and concentrate our energy instead on the dcvcluprncnt
of the reduction run-time system. Subsequently, the emphasis will shift to perfommnce tuning of [hc
I un-tirnc system afid the investigation of relitted compilation and scheduling issues.

Our motivation for undertaking this !ask was essentitiliy twofold. A common comptaint from
potential users of functional languages outside of the hmguitgc re:;earch community is the pragmatic
impossibility of developing programs of a “realistic” size simply due to pcrformunce-related issues.
The definition of realistic is of course open to interpretation, but it is worthy of note that [ypicul pro-

duction progmms fit [AMAhtmos Natiorud I.abortitory (hereafter, [hc 1.abomtory) consist of I(X){)(M)
. ...——-——

1 cumnfly at DcpartrncntIJf Ilcfcnsc, ‘NW SWngC Rod, I:mt Mc:Ittc, M D 20755, cktnmk n):liI il(l(l~*~\:
Ils(dmirmy.urnd.edu

or more lines of Fortran. The performance deficiencies usually associated with functional languages
may be atrnbuted in part to the fact that most implementations currently available are intended for
language research and lack the maturity (and implied fine tuning) of prcxluction compilers. Further-
more, the implementations generally exist on machines lacking the requisite processing and memory
capacity for large-scale scientific computations. Our effofl is particularly apropos given tht latter cir-
cumstance.

We were also interested in exploring the performance ramifications of a large physical memory
shared by cooperating reduction “engines.” There have been graph reduction systems implemented on
distributed memory machines or networks of machines, including several discussed in this volume.
Yet, given the usual logical view of a graph space global to all reduction activity, a large shared
memory architecture seems particularly well suited to parallel graph reduction,

As a result of these interests and practical concerns such as machine availability, we chose the
CRAY X-MP computer as the current implementation target. This architecture combines a small
number of high-performance processors with a !arge shared memory.

Section 2 contains background information and a brief discussion of the CRAY X-MP architec-
ture. [2] Section 3 describes the design of the initial run-time system. Section 4 discusses early
experience with the system and a recently initiated follow-up development effort. A summary is
presented in Section 5.

~. BACKGROUND

2.1. The ALFALFA System

The work described here is closely related to the work on ALF.4LFA by Benjamin Goldberg
and Paul Hudak of Yale University. We shall present a very brief description of the ALFALFA sys-
tem, but the interested reader is refereed to B. Goldberg’s paper in this volume for a more complete
treatment of the subject, ALFALFA consists of a compiler for the functional language ALFL [3] and
an associated parallel graph reduction system resident on an Intel iPSC multiprocessor. A source pro-
gram is parsed into an intermediate graph form called LIF (Lambda Intermediate Form). This graph
is then annotated as a result of extensive type, sharing, and strictness analysis, The annotated graph
is converted into a serial combinator [41 program graph, Finally, C procedures are generated from this
graph for the combinators. This C pogram is then compiled and linked wdh the graph reduction sys-
tem resident on the processing nodes of iPSC.

2,2. The CRAY X-MP

The CRAY X-MP is a multiprocessor derivative of the earlier CRAY- 1 family of supercomput-
crs, The basic architecture consists of an interleaved, multiport memory and input/output subsystems
shared by several identical high-performance vector processors, Eiich processor has a mtijor cycle
time of 8,5 nanoseconds. Pipe-lining is utilized in the scalar und vector functional units, with piiridlcl
itctivity possible among the independent functiorwl uilits, A parallel program has availitble to it
shared registers - eight data rcgiste~s, eight address registers, and 32 single-bit semaphore registers.
A blocking test-and-set instruction can be performed on each semaphore register. (Jnlike some of its
countcrpm-ts, the X-MI’ does not support virtual memory, but ritther uses a contiguous tilloctititm
scheme for memo~ mtm;lgcment, The X-MP is tivailuble in u variety of mmfigurutions, currcn[ly
with up to four processom and sixteen million 64-bit words of muin memory,

‘l%c primary usc of modcm supercomputcrs as “number crunchers” is rctlcctcd in the sofiw;lrc
cnvironrncnt of the Clay, “Hlc most muturc and hcuvily used c(~mpilcr tivuilablc tit [hc 1,ilbot-;lfmyis
Ihc vcct(wizing Fortrwt compiler developed by C’ruyKcsctirch IIIc, l:ortun;ucly, it loc;llly suppt~rlc~f(‘
compiler is tilso avuilublc, ‘I”hcC Iimgutigc wu:; clearly tnt)rc iltfril(’tivc in our dcvcl[)pmcnt 1)~~’ii~]s~’
(JI portability corwcrns tilld IhC i~vuiltibililyof l;lngi~i~gct“~iltu~s SUCh iIS dyll:]tni~-illly illl~~ilt;ll>l~(Iilt;l
structures,

The processors of a CRAY X-NIP have traditionally been used to support multiple, indepcndcn[
job streams. However, a set of routines has been developed at the Laboratory to enable user program
initiation and control of parallel tasks. These multitasking routines [1], written in Forwan and Cray
assembly language, provide constructs for task creation, term; nation, and various styles of cooper&-
tion among asynchronous tasks. Among the latter are analogues of traditional synchronization
mechanisms such as generalized counting semaphores, fetch/add instructions, locks, event.;, barriers,
forks, and joins. Because of the real memory organization of the X-NIP, the multitasking routines
rely upon memory management utilities develo~d and in use at the Laboratory.

3. THE CRAY GRAPH REDUCTION RUN-TIME SYSTEM

Since one of our intentions was to provide access to Cray-class computational power for func-
tional language programs in a timely fashion, the initial version of the Cray reduction system is a
variant of the ALFALFA system developed for the Intel iPSC. Of course, given the disparate target
architectures of the two efforts, there are considerable differences to accommodate. We are cumently
using the compiler from the ALFALFA system as the code generator for this reduction system. The
C source code produced by the compiler undergoes source-to-source transformations to produce the
appropriate Cray-compatible code. At this point, the source code is loaded onto the Cray. These
combinator definitions are compiled and linked with the resident inn-time system.

An alternative design for the run-time system was considered, but eventuall y rejected in favor of
the design presented in this section. A primary goal in this initial implementation was tc produce a
run-time system highly compatible with the original ALA-4LFA compilation system, with Sofiie con-
sideration given to performance factors The candidate design was to associate with each node being
reduced a separate reduction run-time system, with scheduling of these tasks pfonned by the host’s
operating system. This design was rejected because of the high overhead of task management relative
to the actual work associated with the reduction activity,

In the selected design (refer to Figure 1), each physical processor executes a reduction task thiit
is the run-time system. The term “task” is used in this context to designate an executing program,
image on the Cray host. The program graph and a queue of ready nodes, i.e., graph nodes that are
candidates for immediate reduction, reside in shared memory. The common node queue is accessed
by the reduction tasks whenever new work is desired. Access to this queue and th~ nodes of the pro-
g“am graph is controlled through the use of synchronization variables. IMor handling and normal ter-
mination of the run-time system are accomplished via the notion of “synchronized meetings” pro-
vided by the multitasking routines. This construct allows a set of parallel tasks to synchronize on a
single variable, denoted LSthe “meeting flag,” After all the tasks meet at this synchronization point, a
single task executes a sequential section of code. Upon the completion of this sction of code, till
tasks resume parallel execution, A viuian! of this design uses a fixed number of reduction !wks,
which is strictly greater than the number of processom. When one reduction task relist wait to guin
uccess to a lock, another task may be able to reduce a node if one is on the ready queue; thus, itll pro-
CCSSORure executing if nodes me ready,

As indicated earlier, the run-time system is written primarily in C, Because of the n:ed to inter-
face the Fortrtm multitasking routines and the }un.time system, a I%rtran main program uctuir]ly irii-
tiutes [he bcmtstrup routine for the run-time system, The C bootstrap routine initializes the retidy node
queue, the various synchronization variables, and constructs the inifial program gruph. When the ini-
titiliza[ion is complete, four pimllel reduction tasks we cremed. One of the reduction tiisks clcmr-
mincs [htit it is the root (using a shared variable) tind initiates the griiph reduction, The tasks contirruc
sclec[ing nodes from the ready queue, mutating the progrim graph, and placing nodes on the rcudy
queue until the gruph is reduced to nmrutl foml or there is an ubnormn! termination.

N), hecituse of its sequential mtture, is ticcomplishcd through the usc (d’ ti softwmc “lock” (m
the 1/() module, When one of the rrduction tusks needs to perform 1/(), it :mcmpts to gi~in p)swssi(m
(}f the 1/() Imhk. [f the lock is unav;lilittrle (i.e., alrctidy possessed by mmthcr ttisk), the requesting t;l~k
wtiits until it is uvitiltiblc, Memory allocirtion and dcall(~.ution ;Irc hundlcd in u similtir f;ishitm.

Urror htindling is uccomplishcd by a synchnmizcti meeting, If u serious crnw is dcIcc[cd hy tmc
(J!’[hc reduction titsks, the tusk sets the synchronizutl{m Viltiiihlc ilntl ini[io[cs u meeting, “I”hcI) IIIUI

.—

Procassar 1 Processor i?--------

~] MainMemo. JR

-1 L—

l%sdy Node ~UWO

L=Ll I I

Processor 3 Proe.ssor 4

Figure 1. The Cray run-time system.

reducers will synchronize and the initiating task will execute the appropriate error handling. To
ensuse correct behavior in the advent of a meeting requested as a result of a fatal error, the tasks of
the run-time system periodically inspect the meeting flags associated with this event. This inspection
is critical in order to avoid potential deadlock as a result of tasks waiting for locks retained by abnor-
mally terminated tasks. The occurrence of a fatal error wi!l cause logging of state information, fol-
lowed by the termination of the reduction tasks.

4. EARLY EXPERIENCE

At this point, the reduction system has been applied to simple ALFL programs. Several perfor-
mance obstac Ies have been identified on the basis of our limited experience with the Cray environ-
ment, including the multitasking routines. The granut.tity of computation is far too small to be priic-
tical given the raw performance characteristics of the Cray processor. For example, the overheud
usociated with a procedure call is approximately 40 major cycles. This indicates a need to incrcme
the granularity of the combinators generated by the compiler, as well as a need to significantly res-
tructure the reduction system itself to reduce the cumulative performance impact of procedure invo-
cation. Another obvious candidate for further sciutiny is synchronization. The tactic in this instimce
must be to reduce points of synchronization and to minimize the overhead associated with each syn-
chronization,

These issues, umong others, have been addressed i:, iI subsequent development project ttirgctcd
toward enhanced performance. In particu!iu, the reduction system was redesigned to benefit more
fully from [hc shared memory model, to more accurately Ieflect the ~rformance chartictcristics of the
Criiy architecture, und to support measurement of pcrformtincc ilnd workload charnctcristics,
Through careful design imd utiliztition of a different mechanism, the minimum ovcrhcud incunwl io

control access to shared objects such us the rcudy node queue has been reduced by u fuctor of 7 to 15.

I ‘intilly, tin ultcrnativc schcmc for intemid data rcprescntution htis been employed that is more wncn-
tiblc to possible future optimizutions. “I%is schcmc supports memory ull(x’ilti(m in u m:llincr such III;II
cffcct; vc utilization of the Cray vccmr hardwme is possible wl~crc uppropriutc.

5. SUMMARY

We brieflj’ discussed the status of a parallel graph reduction system for the CRAY X-NIP mul-
tiprocessor. A targe potion of the initial effort was devoted to, out of sheer necessity, deciphering
the interactions of several disparate software systems (e.g., memory management utilities). This
effott will be fully appreciated by those acquainted with the rather meager software development sup-
port tools traditionally available on supercomputers.

The poor performance of the initial version of the tun-time system prompted the development of
a second redesigned system. This system is presently undergoing integration testing. This version has
been tailored for increased pefiorrnance on the host architecture. In particular, synchronization and
other operational overheads have been significantly reduced.

In the future, we anticipate performing characterization studies of prototypical applications and
additional performance tuning of the run-time system. The former should provide important data for
the investigation of issues such as task granularity and scheduling. Finally, the entire question of vec-
torization has been ignored but must be addressed in any truly viable high-pfonnance system.

6. REFERENCES

(1)

(2)

(3)

(4)

Bobrowicz, F., “The Los Alamos Multitzwking Control Library,” Los Alamos National Labora-
tory unclassified release (in preparation).
Cray Research, Inc., CRAY X-MP Series Mainframe Reference Manual, I-R-(X)32 (1982), Cray
Research, Inc.
Hud~k, P., “ALFL Reference Manual and Programmer’s Guide.” Research repoti
YALJIJ/DCS/RR-322, 2nd cd., Computer Science Department, Yale Univemity, October 1984.
Hudak, P., and Goldberg, B., “Disaibuted execution of functional programs using xl ial combi-
rmtors,“ t-,w. 1985 International Conference on Parallel Processing, August 1985, pp. 831-
839.

