LA-UR -87-673 Z}(—-"”)F' K o () }i) / (

Los Alamos National Laboratory 1S operated by the University of Caufornis for the United States Depart.nent of Energy under contract W-7405-ENG-36

LA-UR--87-673
DEB7 006066

TITLE: PARALLEL. GRAPH REDUCTION ON A SUPERCOMPUTER:
A STATUS REPORT

AUTHOR(S): Randy Michelsen, C-10
Lauren Smith, C-8
Elizabeth Williams, C-8
Bormie Yantis, C-10

suemiTTeD To: To appear in ''Proceedings of Santa Fe Graph Reduction
Workshop.' Springer-Verlag

DISCLAIMER

This repurt was prepared as un account of work sponsored by un agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employces, makes any warranty, cxpress or implied, or assumes any lcgal liability or responsi-
hility for the uccuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights Refer-
ence herein to any specific commercial product, process, or service hy trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Guovernment or any agency thercol. The views
und opinions of authors expressed hercin do not necessarily state or reflect thse of the
nited States Guvernment or any agency thercof.

By acceptance ol 1nis article. the publisher recognizes that the U S Gavernment retair. s & nonexclusive, royalty-free license to publish of reproduce
the published form af this cantribulion of to allow othars to do 80, for US Government nurposes

Tha Los Alamns Natonal L aboratlory raquasts thal the publisher uienuily this article as work performed under \he suspices of the U § Departmant of | nergy

A S Los Alamos National Laborator
L@S A l@m@)g Los Alamos,New Mexico 8754%
G pactER L |

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Parallel Graph Reduction on a Supercomputer:
A Status Report

Randy Michelsen

Lauren Smith !
Elizabeth Williams
Bonnie Yantis

Computing and Communications Division?
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

We describe an ongoing effort to develop a parallel graph reduction run-time system hosted on a mul-
tiprocessor supercomputer. This run-time system is presently augmented by the functional language
compiler of the ALFALFA system. Admittedly, parallel graph reduction is hardly a novel idea. The
interesting notion is the provision of a parallel execution environment sufficiently powerful to sup-
port development of large prototypical scientific and symbolic codes in a functional language. This
will allow the investigation of the functional programming paradigm within these application domains
in an empirical fashion. In this paper, we discuss the motivation for the effort, describe the basic ele-
ments of the implementation, and provide some preliminary insight distilled from our experience with
an initial version of the run-time system.

1. INTRODUCTION

The continuing demand for increased computational power, especially in the realm of scientific
computing, has spurred interest in parallel computation. Today, most application development for
computationally intensive algorithms intended for high-performance computers is done in Fortran.
Hence, there exists a considerable bocy of knowledge regarding its use and performance in such
domains. We are interested in collecting similar data relating to use of the functional (or applicative)
paradigm.

Toward this end, we are currently developing a purallel graph reduction run-time system for a
supercomputer incorporating four high-speed processors. The code generation is perfoimed by an
existing functional language compiler resident on a traditional uniprocessor. Initially, the focus of the
cffort was the conversion, with minimal change, of a run-time system originally developed for a dis-
tributed memory multiprocessor to a shared memory muitiprocessor. This strategy enabled s, in the
near term, to rely upon an existing compiler and concentrate our energy instead on the development
of the reduction run-time system. Subsequently, the emphasis will shift to performance tuning of the
run-time System and the investigation of related compilation and scheduling issues.

Our motivation for undertaking this task was essentially twofold. A common complaint f{rom
potential users of functional languages outside of the language research community is the pragmatic
impossibility of developing programs of a "realistic” size simply due to performance-related issucs.
The definition of realistic is of course open to interpretation, but it is "vorthy of note that typical pro-
duction programs at L.os Alamos National Laboratory (hercafter, the Laboratory) consist of 100,000

currently at Department of Defense, 9800 Savage Road, Fort Meade, MD 2075S, electronic mail address:
lls@mimsy.umd.edu

2 This work was performed *nder the auspices of the Department of Energy.

or more lines of Fortran. The purformance deficiencies usually associated with functional languages
may be attributed in part to the fact that most implementations currently available are intended for
language research and lack the maturity (and implied fine tuning) of production compilers. Further-
more, the implementations generally exist on machines lacking the requisite processing and memory
capacity for large-scale scientific computations. Our effort is particularly apropos given thc latter cir-
cumstance.

We were also interested in exploring the performance ramifications of a large physical memory
shared by cooperating reduction "engines.” There have been graph reduction systems implemented on
distributed memory machines or networks of machines, including several discussed in this volume.
Yet, given the usual logical view of a graph space global to all reduction activity, a large shared
memory architecture seems particularly well suited to parallel graph reduction.

As a result of these interests and practical concerns such as machine availability, we chose the
CRAY X-MP computer as the current implementation target. This architecture combines a small
number of high-performance processors with a large shared memory.

Section 2 contains background information and a brief discussion of the CRAY X-MP architec-
ture. [2) Section 3 describes the design of the initial run-time system. Section 4 discusses early
expericnce with the system and a recently initiated follow-up development effort. A summary is
presented in Section §.

2. BACKGROUND

2.1. The ALFALFA System

The work described here is closely related to the work on ALFALFA by Benjamin Goldberg
and Paul Hudak of Yale University. We shall present a very brief description of the ALFALFA sys-
tem, but the interested reader is referred to B. Goldberg's paper in this volume for a more complete
treatment of the subject. ALFALFA consists of a compiler for the functional language ALFL (3] and
an associated perallel graph reduction system resident on an Intel iPSC multiprocessor. A source pro-
gram is parsed into an intermediate graph form called LIF (Lambda Intermediate Form). This graph
is then annotated as a result of extensive type, sharing, and strictness analysis. The annotated graph
is converted into a serial combinator [4] prograin graph. Finally, C procedures are generated from this
graph for the combinators. This C program is then compiled and linked with the graph reduction sys-
tem resident on the processing nodes of iPSC.

2.2. The CRAY X-MP

The CRAY X-MP is a multiprocessor derivative of the earlicr CRAY-1 family of supercomput-
¢rs. The basic architecture consists of an interleaved, multiport memory and input/output subsystems
shared by several identical high-performance vector processors. Each processor has a major cycle
time of 8.5 nanoseconds. Pipec-lining is utilized in the scalar and vector functional units, with parallel
activity possible among the independen: functional units, A parallel program has available to it
shared registers - cight data registeis, eight address registers, and 32 single-bit semaphore registers.
A blocking test-and-set instruction can be performed on each semaphore register. Unlike some of its
counterparts, the X-MP does not support virtual memory, but rather uses a contiguous allocation
scheme for memory managcment. The X-MP is available in a variety of configurations, currently
with up to four processors and sixteen million 64-bit words of main memory.

The primary use of modemn supercomputers as "number crunchers” is retlected in the software
cnvironment of the Criay. The most mature and heavily used compiler available at the Laboratory is
the vectorizing Fortran compiler developed by Cray Research Inc. Fortunately, a locally supported ¢
compiler is also available. The C language was clearly more attractive in our development beciuse
of portability concerns and the availability of Lunguage features such as dynamically allocatable data
structures.

The processors of a CRAY X-MP have traditionally been used to support multiple, independent
job streams. However, a set of routines has been developed at the Laboratory to enable user program
initiation and control of parallel tasks. These multitasking routines [1], written in Fortran and Cray
assembly language, provide constructs for task creation, termination, and various styles of coopera-
tion among asynchronous tasks. Among the latter are analogues of traditional syachronization
mechanisms such as generalized counting semaphores, fetch/add instructions, locks, events, barriers,
forks, and joins. Because of the real memory organization of the X-MP, the multitasking routines
rely upon memory management utilities developed and in use at the Laboratory.

3. THE CRAY GRAPH REDUCTION RUN-TIME SYSTEM

Since one of our intentions was to provide access to Cray-class computational power for func-
tional language programs in a timely fashion, the initial version of the Cray reduction system is a
variant of the ALFALFA system developed for the Intel iPSC. Of course, given the disparate target
architectures of the two efforts, there are considerable differences to accommodate. We are currently
using the compiler from the ALFALFA system as the code generator for this reduction system. The
C source code produced by the compiler undergoes source-to-source transformations to produce the
appropriate Cray-compatible code. At this point, the source code is loaded onto the Cray. These
combinator definitions are compiled and linked with the resident run-time system.

An alternative design for the run-time system 'was considered, but eventually rejected in favor of
the design presented in this section. A primary goal in this initial implementation was tc produce a
run-time system highly compatible with the original ALi"ALFA compilation system, with sorie con-
sideration given to performance factors. The candidate design was to associate with each node being
reduced a separate reduction run-time system, with scheduling of these tasks performed by the host’s
operating system. This design was rejected because of the high overhead of task management relative
to the actual work associated with the reduction activity.

In the selected design (refer to Figure 1), each physical processor executes a reduction task that
is the run-time system. The term "task” is used in this context to designate an executing program
image on the Cray host. The program graph and a queue of ready nodes, i.e., graph nodes that are
candidates for immediate reduction, reside in shared memory. The common node queue is accessed
hy the reduction tasks whenever new work is desired. Access to this queue and the aodes of the pro-
gram graph is controlled through the use of synchronization variables. Error handling and normal ter-
mination of the run-time system are accomplished via the notion of "synchronized meetings” pro-
vided by the multitasking routines. This construct allows a set of parallel tasks to synchronize on a
single variable, denoted us the "mecting flag.” After all the tasks meet at this synchronization point, a
single task execcutes a sequentia' section of coce. Upon the completion of this zction of code, all
tasks resume parallel execution. A variant of this design uses a fixed number of reduction tasks,
which is strictly greater than the number of processors. When one reduction task must wait to gain
access to a lock, another task may be able to reduce a node if one is on the ready queue; thus, all pro-
cessors are executing if nodes are ready.

As indicated earlier, the run-time system is written primarily in C. Because of the nzed to inter-
face the Fortran multitasking routines and the vun-time system, a Fortran main program actually ini-
tiates the bootstrap routine for the run-time system. The C bootstrap routine initializes the ready node
queue, the various synchronization variables, and constructs the initial program graph. When the in:-
tialization is complete, four parallel reduction tasks are created. One of the reduction tasks deter-
mines that it is the root (using a shared variable) and initiates the graph reduction. The tasks continue
sclecting nodes from the ready queue, mutating the program graph, and placing nodes on the ready
queue until the graph is reduced to normal form or there is an abnorme! termination.

I/0), because of its sequential nature, is accomplished through the use of a software "lock™ on
the I/0 module, When one of the reduction tasks needs to perform 1/0), it attempts to gain possession
of the VO lock. [f the lock is unaviilable (i.e., already possessed by another task), the requesting task
witits until it is available. Memory allocation and deallocation are handled in a similar fashion.

Error handling is accomplished by & synchronized mecting. If a serious error is detected by one
of the reduction tasks, the task sets the synchronization variable and initiates a meeting, The other

Processor 1 Processor 2

Main Memory
S
Ready Node Queue
Reduction
Tasks
Graph
Space
Processor 3 Processor 4

Figure 1. The Cray run-time system.

reducers will synchronize and the initiatiry task will execute the appropriate error handling. To
ensuze correct behavior in the advent of a meeting requested as a result of a fatal error, the tasks of
the run-time system periodically inspect the meeting flags associated with this event. This inspection
is critical in order to avoid potential deadlock as a result of tasks waiting for locks retained by abnor-
mally terminated tasks. The occurrence of a fatal error will cause logging of state information, foi-
lowed by the termination of the reduction tasks.

4. EARLY EXPERIENCE

At this point, the reduction system has been applied to simple ALFL programs. Several perfor-
mance obstacles have been identified on the hasis of our limited experience with the Cray environ-
ment, including the multitasking routines. The granu'arity of computation is far too small to be prac-
tical given the raw performance characteristics of the Cray processor. For example, the overhead
associated with a procedure call is approximately 40 major cycles. This indicates a need to increase
the granularity of the combinators generated by the compiler, as well as a need to significantly res-
tructure the reduction system itself to reduce the cumulative performance impact of procedure invo-
cation. Another obvious candidate for further scrutiny is synchronizaiion. The tactic in this instance
must be to reduce points of synchronization and to minimize the overhead associated with cach syn-
chronization.

These issues, among others, have been addressed i.. a subsequent development project targeted
toward enhanced performance. In particular, the reductior system was redesigned to benefit more
fully from the shared memory model, to more accurately ieflect the performance characteristics of the
Cray architecture, and to support measurement of performance and workload characteristics.
Through carcful design and utilization of a different mechanism, the minimum overhead incurred
control access to shared objects such as the ready node queue has been reduced by a factor of 7 to 15.
FFinally, an alternative scheme for internal data representation has been employed that is more amen-
able to possible future optimizations. ‘This scheme supports memory allocation in a manner such that
clfective utilization of the Cray vector hardware is possible where appropriate.

5. SUMMARY

We briefly discussed the status of a parallel graph reduction system for the CRAY X-MP mul-
tiprocessor. A large portion of the initial effort was devoted to, out of sheer necessity, deciphering
the interactions of several disparate sofiware systems (e.g., memory management utilities). This
effort will be fully appreciated by those acquainted with the rather meager software development sup-
port tools traditionally available on supercomputers.

The poor performance of the initial version of the run-time system prompted the development of
a second redesigned system. This system is presently undergoing integration testing. This version has
been tailored for increased performance on the host architecture. In particular, synchronization and
other operational overheads have been significantly reduced.

In the future, we anticipate performing characterization studies of prototypical applications and
additional performance tuning of the run-time system. The former should provide important data for
the investigation of issues such as task granularity and scheduling. Finally, the entire question of vec-
torization has been ignored but must be addressed in any truly viable high-performance system.

6. REFERENCES

(1) Bobrowicz, F., "The Los Alamos Multitasking Control Library.” Los Alamos National Labora-
tory unclassified release (in preparation).

(2) Cray Research, Inc., CRAY X-MP Series Mainframe Reference Manual, HR-0032 (1982), Cray
Research, Inc.

(3) Hudek, P.,, "ALFL Reference Manual and Programmer’s Guide," Research report
YALEU/DCS/RR-322, 2nd ed., Computer Science Department, Yale University, October 1984.

(4) Hudak, P., and Goldberg, B., "Distributed executiorn of fun:tional programs usiiig 5¢rial combi-

nators,” +.or. 1985 International Conference on Parallel Processing, August 1985, pp. 831-
839.

