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Introduction 

Systems of reductions (or rewrite rules as they are often 

called) enjoy a growing popularity in theoretical computer 

science. They have also become a useful tool in computa- 

tional algebra; these areas are anyway not very well 

separated and have much in common. An important branch of 

this common background is "equational logic". This is, 

strictly speaking, the fragment of predicate logic, where 

equality is the only predicate. In practice, equality logic 

is concerned with a class of problems which are more 

restricted as well as more general. Typical are implications 

of the form 

Z~p 

Here ~ is a universally quantified set of equations; P, 

however, need not to be an equation and not even a formula 

of first order predicate logic. 

An example of the latter type of problems is: 

"Is each algebra in which ~holds finite?" 

or equivalently 

"Is the free algebra defined by ~ finite?" 

The answer one expects in equality logic to such questions 

is an algorithmic one. That means, one does not consider 

single questions but whole classes of questiQns. These may 

arise in different ways: 

i) is fixed and P varies. 

An example is the word problem, where ~ defines the 

algebra and P varies over all equations s = t. 

2) varies and P is fixed. 

An example is the infinity problem for a class of 

algebras (which are defined by the axiom system 

under consideration). 
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3) and P both vary. 

An example is the uniform word problem for a class of 

algebras. 

Algorithmic decision problems arise in computer science 

mainly in the context of abstract data types and automated 

theorem proving. The algorithmic tradition in mathematics, 

in particular in algebra, is much older. A hundred years 

ago, at "the time of Kronecker, solutions to algebraic 

problems were more or less automatically expected to be 

computable. In the first half of the twentieth century 

abstract and non-constructive methods became more dominant. 

There was still an enormous interest in principal aspects of 

computability and decision problems, but constructive me- 

thods did not play such a big role in the every-day-work of 

mathematicians. This has radically changed under the influ- 

ence of the development of computer science. Today construc- 

tive methods are not only regarded as being useful in 

certain applied situations; their main purpose is to provide 

relevant structural and combinatorial insights. 

Among the defining properties of equality reflexivity is the 

only trivial one. The basic idea of a reduction is to give 

up symmetry and allow only replacements of equals by equals 

in one direction. This idea is as old as the word problem 

for groups which was considered by M. Dehn and A.Thue in 

1912-14 and which was one of the first decision problems to 

be formulated. In fact, Dehn's algorithm is the application 

of a specific system of reductions and its properties were 

studied for more than fifty years. Giving up symmetry 

looses, of course, some of the power of equality. The re- 

search on Dehn's algorithm was concerned with the question 

which aspects of full equality are preserved by its 

one-sided use.The idea of regaining part of the power 



provided by symmetry by systematically adding new reductions 

came up much later. This leads to concepts of systems of 

reductions like the Church-Rosser and the weak Church-Rosser 

property (which are known under various names) and the 

finite termination property; in connection with the latter 

there is growing interest in partial and total well-founded 

orderings on the terms. 

The most useful property is certainly completeness, it 

ensures that each term t reduces to a uniquely determined 

irreducible term t#; t # is the canonical form of t. The aim 

of the completion algorithm is to enlarge a given system of 

reductions in order to obtain a complete one. A complete 

system (if it exists) can be regarded as a link between the 

finite system of equations and the algebra defined by these 

equations which is a set-theoretic, often infinite, object. 

There are two main lines of research here. On the one hand 

one studies the completion algorithm and searches for 

criteria which ensure its termination. As the completion 

algorithm in many (one is tempted to say "most") cases fails 

to terminate this leads to the investigation of infinite 

systems. In many cases these can be finitely described and 

are as useful as finite systems. 

The other type of investigations is concerned with the use 

of complete systems. A complete system certainly provides an 

answer to the word problem but unravels much more of the 

structure of the algebra under investigation. This turns out 

to be most apparent in the case of groups. 

Most of the material in these notes was obtained in the 

years after 1978 at the Technische Hochschule Aachen; it is 

partially contained in the dissertations of Hans BOcken, 

Patrick Horster and Susanne Kemmerich; Patrick Horster also 

wrote section IV.2.Very useful for computer experiments was 
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an implementation of the completion algorithm for groups and 

semigroups as well as the forward-backward algorithm. This 

implementation was done by Klaus Dittrich in Pascal on a 

Cyber 175. The last part of these notes was written by 

Friedrich Otto; the material is part of his Habilita- 

tionsschrift at the University of Kaiserslautern. 

The main interest of the authors is in general principles. 

Most concrete applications are in group and semigroup 

theory, however. There are several reasons for this. One is 

that these are familiar structures and one has a better 

feeling for difficulties and importance of results than in 

general universal algebras. Another reason is that in these 

areas computational methods are well established. This gives 

possibilities for interesting connections and comparisons 

and is also useful for a fruitful competition. 

In order to make the volume somewhat self-contained much 

general material is included. The idea was to provide the 

reader with an at least almost complete introduction. Here 

completeness is meant in the sense that suffices for an 

understanding of the rest of the material. It is natural 

that many aspects had to be left out. 

The authors have also been very reluctant with historical 

remarks. On the one hand, many results seem to be obtained 

independently by different authors. On the other hand, the 

situation was not so clear to us that we dared to make 

statements on priority questions. 

There are several people whom the authors are indebted for 

useful help and discussions over the years. Among the former 

students of Aachen we would name Hans BQcken, Klaus 

Dittrich, Petra Zimmermann and Tom Beske. One of the authors 

wants to mention Dallas Lankford in particular; he was also 

early influenced by Woody Bledsoe. Later on useful 
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discussions took place with Mike Ballantyne, Bruno 

Buchberger, Richard G~bel, Deepak Kapur, Wolfgang K~chlin 

and J. Neub~ser. 

All authors are indebted to Mr. v. Hehl and Mrs. Scarlet 

N~kel for the excellent preparation of the manuscript. 

Last not least our thanks are due to the Deutsche 

Forschungsgemeinschaft without their support over the years 

this research would not have been possible. 
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