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This book is devoted to a simplified version of denotational 

semantics, also known as n~u~ ~ e ~ o ~ o ~  ~ m ~ c S  (NDS), where 

sets are used in the place of Scott's reflexive domains and where 

jumps are described without continuations. The first public 

announcement of this approach dates back to [Blikle 82] and in a more 

complete version to [Blikle, Tarlecki 83]. Since then several 

experiments were undertaken in order to estimate the adequacy of NDS 

for applications. One group of experiments concerned the construction 

of models for typical software mechanisms such as procedures with 

parameters, blocks with local objects, jumps, escapes, exception 

handlers, pointers, user-defined types, error-handling mechanisms, 

concurrency. Another group was devoted to the construction of models 

for some typical software systems such as Pascal-like languages, 

Lisp-like languages, OCcAMTM-Iike languages, word processors, 

operating systems or data-base management systems. 

The mentioned experiments have proved that naive denotational 

semantics can be conveniently and rigorously used in applications. 

They also have led to the establishment of a kernel of a definitional 

metalanguaEe and of a general methodology of using denotatlonal 

techniques in software design. 

Our book is devoted to the former subject and consists of two parts. 

Part One starts from a general theory of chain-complete partially 

ordered sets (cpo's), continuous functions and their least fixed 

points. This theory provides a general mathematical framework for the 

recursive definitions of denotations, of their domains, of syntax and 

of the functions of semantics. Next we describe several calculi based 

on the cpo's of relations, functions, formal languages and domains, 
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and we introduce a corresponding notation. Since the denotational 

definitions of software should serve not only the purpose of software 

specification, but also as a ground where one can prove the 

properties of software, we devote two sections to the introduction of 

appropriate logical tools. We introduce, and motivate, a calculus of 

three-valued predicates and then we discuss the derivation of Hoare's 

logic proof rules on that ground. 

In Part two we show how to use the introduced mathematical tools in 

constructing a denotatlonal definition of an existing programming 

language. We also show how to formulate and prove typical properties 

of the defined language and how to develop a corresponding 

program--correctness logic. 

As a programming language in our example we have chosen Pascal. Since 

the size of the book does not permit to give a full definition of 

that language, we have restricted ourselves to its subset which 

contains basic commands and expressions and a (nearly) complete 

mechanism of arrays, records and pointers. On that ground we discuss 

the issue of user-definable types in programming languages and we 

show how to model them in NDS. We also point out how inadequate are 

the informal definitions of these mechanisms in the report of Pascal 

[Jensen, Wirth 78] and in the IS0 standard of that language. 

For the already mentioned sake of brevity we have excluded f/om our 

example both procedures and jumps - two software mechanisms-which 

have stimulated the development of the so called ~ d ~  

~e~o~G~t~o~ ~em~cS (see Introduction). Readers interested in the 

description of these mechanisms within NDS, i.e. without the use of 

reflexive domains and continuations, should refer to [Blikle, 

Tarlecki 83]. We also omit methodological considerations which can be 

found in [Blikle 87]. It is argued there that in the process of 

software design one should develop denotations in the first place and 

then should derive syntax from them. 

In the present form the notation introduced in Part One of our book 

can only be used in "handwritten" applications, i.e. without any 

specialized computer support. Although such applications also make 

sense - e.g. a formal definition of ADA (cf.[Bj~rner,Oest 80]), 

which has later served in the development of ADA compiler in Dansk 

Datamatik Center, has been developed in that way - they require a 



sufficiently enthusiastic and well--trained team. Any broader use of 

denotational techniques in an industrial environment must be preceded 

by the development of a computer--support system consisting of a 

specialized editor, type checker, data-base facilities, rapid 

prototypinE facilities and the like. This in turn requires the 

construction of a fully formalized definitional metalanEuaEe with a 

sufficiently strong typinE system, modularization techniques, proof 

support, etc. For the realization of that Eoal a five--year project 

MetaSoft has been initiated in Fall 1985 in the Institute of 

Computer Science of the Polish Academy of Science in Warsaw and 

Gdadsk. Part One of our book contains, therefore, the description 

of the semantic kernel of the future metalanEuage of MetaSoft. 

Our book is addressed to readers interested in the applications of 

denotational semantics: researchers who are developing projects 

similar to MetaSoft, software engineers interested in the formal 

methods of software specification, students of computer science 

departments. We hope that the book may also be used as a 

supplementary readinE for university courses on applied denotational 

semantics and VDM. For that purpose a list of exercises has been 

included in Part One. The only prerequisites for the readers are the 

elementary set theory and loEic, the elements of formal languaEe 

theory and the ability of readinE Pascal programs. A familiarity with 

standard denotational semantics, or with VDM, may help in 

appreciatinE our motivations but is not necessary. 

At the end a few remarks about how to read this book. Since Part One 

introduces many mathematical constructions, not all of which are used 

in Part Two, readers interested primarily in applications may only 

Elimpse through Part One in the first readinE and return to it later. 

In that case in the first reading they may skip Sec.3, Sec.9 and 

Sec. 10. 
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INTRODUCTION 

The method of denotational semantics has been developed at the 

beginning of the decade 7970-80 as a mathematical technique of 

writing implementation- -independent definitions of software. 

Conceptually it has its roots in mathematical logic, where the 

meaning of an expression is a function and the meaning of a whole is 

a combination of the meanings of its parts. Technically, however, it 

has to deal with much more complicated mechanisms. 

The pioneers of denotational semantics have felt particularly 

challenged by the problem of describing the mathematically most 

unnatural features of ALGOL-60: the self-applicability of procedures 

(a procedure may take itself as a parameter) and jumps nested in 

structured programs. The former problem has led to a model of 

reflexive domains [Scott 77] and [Scott 76], the latter to a 

technique of continuations [Strachey, Wadsworth 7974]. Their 

combination gave a powerful definitional method known today as 

standard denotational semantics (SDS). A full definition of 

ALGOL-60 in the SDS style was given in [Mosses 74]. 

Standard denotational semantics quickly became known and appreciated 

in the academic community. Its most important contribution to the 

formal specification of software consists in providing the first 

mathematical model for a compositional (i.e. inductively defined) 

semantics of complex programming languages and in stimulating broad 

research aimed at the applications of mathematics in software design. 

Unfortunately the applications of (pure) SDS have remained rather 

limited. Although SDS formally provides an adequate ground where to 

define (old) and design (new) software, none of widely used 



X 

programming languages has been designed in using SDS and only very 

few have been given SDS definitions later. 

The discrepancy between the potential advantages of SDS and its 

actual applications has not been caused by the lack of interest of 

software engineers in formal methods. The main obstacles of broader 

applications of SDS have always been of a rather technical nature: 

- the lack of a convenient notation (metalanguage) for real-life 

applications, 

- the conceptual and technical complexity of reflexive domains 

and continuations. 

The first major breakthrough in this situation was offered by Vienna 

Development Method (VDM) [Bj~rner, Jones 78]. That method has 

provided a metalanguage, called META-IV, suitable for large 

denotational definitions and offering a technique of defining jumps 

without continuations [Jones 78]. The authors of VDM also decided to 

treat the Scott model of reflexive domains informally by assuming 

that for a practical purpose reflexive domains may be "regarded" as 

sets. At that point they were later supported by other authors who 

popularized denotational semantics, such as M.Gordon [Gordon 79] or 

J.Stoy [Stoy 80]. 

The philosophy and techniques of VDM proved to be useful in many 

applications. Formal definitions of PL/~, ALGOL-60, Standard Pascal, 

Pascal R, Pascal Plus, Modula-2, Edison, CHILL, Prolog and Ada have 

been written in the VDM style (see [Bj~rner, Phren 83] for 

references). This resulted in a better understandinE of these systems 

and in finding many ambiguities and inconsistencies in them. Some of 

these definitions, e.E. of Pascal Plus, Edison, CHILL and Ada, have 

been used later in the development of compilers. Several data-base 

systems (or their parts) were formally defined, e.g. the P L / 1  

programmers" interface to full concurrent System/R, System 2000 and 

CODASYL/DBTG. Some aspects of operating systems, office automation 

systems and the like have been defined in VDM style and were partly 

used later in implementations. All these examples have convinced many 

practitioners that denotational semantics may be a handy tool in 

real--life applications. Many universities started to offer regular 

courses on VDM. Some industrial institutions decided to consider VDM 

as their standard for software specification. 
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The vulgarization of Scott's model in VDM has very well paid in the 

applications where a formal definition of software is used only as a 

formalized reference--manual for human readers. It seems, however, 

questionable whether such a vulgarization can provide an adequate 

framework for proving the correctness of software or for the 

development of systems that support code generation. Besides, it is 

rather inconsistent to proclaim and advocate mathematical style and 

at the same time to agree for the violation of mathematical rules at 

the most critical point of the model. This may also lead to technical 

inconsistencies since reflexive domains and sets behave differently 

(form essentially different algebras), especially if fixed-point 

equations are concerned. Moreover, some domain constructors used in 

VDM, such as e.g. A - B, A ~ B or A ~ B are not definable for 

reflexive domains. 

The theoreticians of VDM (cf.[Stoy 80]) suEEest several technical 

remedies to these problems. In order to make the alEebra of reflexive 

domains closer to the alEebra of sets, some operations, like 

products, must be redesiEned and some others, like subtraction~ must 

be forbidden. One also has to forget about the difference between 

partial functions, total functions and mappings and represent all of 

them by continuous functions between cpo's. 

All these technical restrictions are not very convenient in 

applications and therefore are not very rigidly observed by VDM 

users. For instance, one frequently relies on the fact that mappings 

are finite-domain functions and therefore a test whether an element 

belongs to the domain of a mapping is computable. 

The discrepancy between the theory and practice of VDM puts a formal 

question-mark on the consistency of VDM definitions. On the other 

hand, when readinE such definitions one usually has a stronE 

impression that they are not inconsistent. In fact these definitions 

can most frequently be Eiven consistent interpretations since in the 

majority of software systems one does not deal with 

self-applicability and therefore all semantic domains may be regarded 

as sets. This is obviously true for most operatinE systems, 

communication protocols, data--base manaEement systems, spread-sheets, 

word processors, etc. This is also true for nearly all modern 

proEramminE lanEuaEes includinE Pascal, Modula, Ada, OCCAM and many 

others. 



×II 

Self-applicability in programmin~ languages appears essentially in 

only two standard situations: 

7) if procedural recursion is elaborated dynamically, like in 

Lisp; 

2) if a procedure may be directly or indirectly passed to itself 

as an actual parameter, like in Algol--60. 

A glance on proEramming languages which were designed after 7970 

shows a clear tendency to avoiding both these mechanisms. Static 

bindinE has been considered safer than dynamic binding and procedures 

are usually restricted in a way which protects them against 

self-applicability. For all such languages semantic domains may be 

just sets~ 

As was already mentioned in the Foreword, in this book we describe a 

kernel of a metalanguage for a set-theory based denotational 

semantics. We define and discuss several mathematical tools which are 

useful in constructing the denotatlonal models of software in that 

style. The notation which we propose has been strongly influenced by 

META-IV. However, in contrast to the former, our metalanguage is 

going to be a pure functional language. The major extensions with 

respect to META-IV are binary relations, languages with infinite 

words, McCarthy's three-valued predicates and program-correctness 

statements. 
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