
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

I II IIII

288

Andrzej Blikle

MetaSoft Primer
Towards a Metalanguage for
Applied Denotational Semantics

Springer-Verlag
Berlin Heidelberg NewYork London Paris Tokyo

Editorial Board

D. Barstow W. Brauer E Brinch Hansen D. Gries D. Luckham

C. Moter A. Pnueli G. Seegm~ller J. Stoer N. Wirth

Author

Andrzej Blikle
Institute of Computer Science
Polish Academy of Sciences
PKiN P.O. Box 22, 00-901 Warsaw, Poland

CR Subject Classification (1987): D.3.1, D.2.10, F.3.2-3

ISBN 3-540-18657-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18657-3 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany
Printing and binding; Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

T

This book is devoted to a simplified version of denotational

semantics, also known as n~u~ ~ e ~ o ~ o ~ ~ m ~ c S (NDS), where

sets are used in the place of Scott's reflexive domains and where

jumps are described without continuations. The first public

announcement of this approach dates back to [Blikle 82] and in a more

complete version to [Blikle, Tarlecki 83]. Since then several

experiments were undertaken in order to estimate the adequacy of NDS

for applications. One group of experiments concerned the construction

of models for typical software mechanisms such as procedures with

parameters, blocks with local objects, jumps, escapes, exception

handlers, pointers, user-defined types, error-handling mechanisms,

concurrency. Another group was devoted to the construction of models

for some typical software systems such as Pascal-like languages,

Lisp-like languages, OCcAMTM-Iike languages, word processors,

operating systems or data-base management systems.

The mentioned experiments have proved that naive denotational

semantics can be conveniently and rigorously used in applications.

They also have led to the establishment of a kernel of a definitional

metalanguaEe and of a general methodology of using denotatlonal

techniques in software design.

Our book is devoted to the former subject and consists of two parts.

Part One starts from a general theory of chain-complete partially

ordered sets (cpo's), continuous functions and their least fixed

points. This theory provides a general mathematical framework for the

recursive definitions of denotations, of their domains, of syntax and

of the functions of semantics. Next we describe several calculi based

on the cpo's of relations, functions, formal languages and domains,

IV

and we introduce a corresponding notation. Since the denotational

definitions of software should serve not only the purpose of software

specification, but also as a ground where one can prove the

properties of software, we devote two sections to the introduction of

appropriate logical tools. We introduce, and motivate, a calculus of

three-valued predicates and then we discuss the derivation of Hoare's

logic proof rules on that ground.

In Part two we show how to use the introduced mathematical tools in

constructing a denotatlonal definition of an existing programming

language. We also show how to formulate and prove typical properties

of the defined language and how to develop a corresponding

program--correctness logic.

As a programming language in our example we have chosen Pascal. Since

the size of the book does not permit to give a full definition of

that language, we have restricted ourselves to its subset which

contains basic commands and expressions and a (nearly) complete

mechanism of arrays, records and pointers. On that ground we discuss

the issue of user-definable types in programming languages and we

show how to model them in NDS. We also point out how inadequate are

the informal definitions of these mechanisms in the report of Pascal

[Jensen, Wirth 78] and in the IS0 standard of that language.

For the already mentioned sake of brevity we have excluded f/om our

example both procedures and jumps - two software mechanisms-which

have stimulated the development of the so called ~ d ~

~e~o~G~t~o~ ~em~cS (see Introduction). Readers interested in the

description of these mechanisms within NDS, i.e. without the use of

reflexive domains and continuations, should refer to [Blikle,

Tarlecki 83]. We also omit methodological considerations which can be

found in [Blikle 87]. It is argued there that in the process of

software design one should develop denotations in the first place and

then should derive syntax from them.

In the present form the notation introduced in Part One of our book

can only be used in "handwritten" applications, i.e. without any

specialized computer support. Although such applications also make

sense - e.g. a formal definition of ADA (cf.[Bj~rner,Oest 80]),

which has later served in the development of ADA compiler in Dansk

Datamatik Center, has been developed in that way - they require a

sufficiently enthusiastic and well--trained team. Any broader use of

denotational techniques in an industrial environment must be preceded

by the development of a computer--support system consisting of a

specialized editor, type checker, data-base facilities, rapid

prototypinE facilities and the like. This in turn requires the

construction of a fully formalized definitional metalanEuaEe with a

sufficiently strong typinE system, modularization techniques, proof

support, etc. For the realization of that Eoal a five--year project

MetaSoft has been initiated in Fall 1985 in the Institute of

Computer Science of the Polish Academy of Science in Warsaw and

Gdadsk. Part One of our book contains, therefore, the description

of the semantic kernel of the future metalanEuage of MetaSoft.

Our book is addressed to readers interested in the applications of

denotational semantics: researchers who are developing projects

similar to MetaSoft, software engineers interested in the formal

methods of software specification, students of computer science

departments. We hope that the book may also be used as a

supplementary readinE for university courses on applied denotational

semantics and VDM. For that purpose a list of exercises has been

included in Part One. The only prerequisites for the readers are the

elementary set theory and loEic, the elements of formal languaEe

theory and the ability of readinE Pascal programs. A familiarity with

standard denotational semantics, or with VDM, may help in

appreciatinE our motivations but is not necessary.

At the end a few remarks about how to read this book. Since Part One

introduces many mathematical constructions, not all of which are used

in Part Two, readers interested primarily in applications may only

Elimpse through Part One in the first readinE and return to it later.

In that case in the first reading they may skip Sec.3, Sec.9 and

Sec. 10.

ACKNOWLEDGMENTS

My interest in applied denotational semantics started in Spring 1980

during a visit in Dines Bj~rner's group at the Technical University

of Denmark in Lyngby. Discussions about VDM and its applications

inspired my research on a VDM-like denotational semantics. That work

was continued in May/March 1987 at the University of Linkoeping in

Sweden where I had the first opportunity of lecturing and discussing

a continuatlon-free denotational semantics [Blikle 87b]. The ideas

developed there and combined with a set-theoretic approach to domains

were presented in June 7982 at an IFIP's W.G.2.2 group meeting in

Garmisch-Partenklrchen. Andrzej Tarlecki contributed to them later

which resulted in a common paper [Blikle, Tarlecki 83] presented as

an invited lecture at the 1983 IFIP Congress in Paris.

The first draft of the present book was written in May 1983 during a

visit in the Istituto di Scienze dell'Informazione of the University

of Turin. Large parts of the material were discussed there in a

series of seminars. Andrea Maggiolo-Schettini contributed to an

(unpublished) exercise where a small database--management language was

defined in the NDS framework. The manuscript prepared in Turin was

revised and completed in August 1983 during my visit at the

Departmen t of Computer Science of the University of Manchester.

Discussions with Cliff Jones and Derek Andrews substantially

contributed to both the theoretical part of the book and to the

example. This material was printed as [Blikle 83] in Pica with the

support of CNR Projetto P7 Cnet and was later used as class notes

for two of my courses: a course offered to a Special Interest Group

for Formal Methods of Software Engineering of the Polish Computer

Society in Warsaw in 1984, and another course Eiven to students in

the Institute of DataloEy of the University of Copenhagen in Winter

VIII

1985. The listeners of both courses have communicated to me many

relevant remarks. I also especially appreciated the discussions which

I had with Niel Jones in Copenhagen.

The present version of Part One of the book was completed partly

during my visit at the University of Pisa in September 1985 and

partly in March/May 7986 when I was visiting again Dines Bj~rner's

group in.Lyngby. Sec.9 on three-valued predicates was also discussed

in seminars in Dansk Datamatik Center with the members of project

RAISE.

To all the institutions mentioned above I wish to express my

~ratitude for excellent conditions and atmosphere which they have

created for my work. Special thanks are also addressed to the

listeners of my seminars and courses for many stimulating discussions

and remarks.

Although the major part of the book has been written when I was

working outside Poland, large parts of the material were thoroughly

discussed with my Polish colleagues. Here special thanks should be

addressed to Stefan Soko~owski and Andrzej Tarlecki, today both in

the MetaSoft group, who have read and discussed with me some early

versions of this book. Also Marek Lao, Marek Ry~ko and Ida

Szafra6ska have communicated interesting remarks. No need to say

that the responsibility for all mistakes which remain in the book is

entirely of the author.

The list of acknowledEments would have been incomplete if I did not

mention excellent books [Gordon 79] and [Stoy 77] which have

introduced me into the realm of denotations. Last but certainly not

least, the inspiring influence of Dana Scott's famous works on fixed

points, domains and lambda-calculus models cannot be overestimated.

Warsaw in August ~987 Andrzej Blikle

INTRODUCTION

The method of denotational semantics has been developed at the

beginning of the decade 7970-80 as a mathematical technique of

writing implementation- -independent definitions of software.

Conceptually it has its roots in mathematical logic, where the

meaning of an expression is a function and the meaning of a whole is

a combination of the meanings of its parts. Technically, however, it

has to deal with much more complicated mechanisms.

The pioneers of denotational semantics have felt particularly

challenged by the problem of describing the mathematically most

unnatural features of ALGOL-60: the self-applicability of procedures

(a procedure may take itself as a parameter) and jumps nested in

structured programs. The former problem has led to a model of

reflexive domains [Scott 77] and [Scott 76], the latter to a

technique of continuations [Strachey, Wadsworth 7974]. Their

combination gave a powerful definitional method known today as

standard denotational semantics (SDS). A full definition of

ALGOL-60 in the SDS style was given in [Mosses 74].

Standard denotational semantics quickly became known and appreciated

in the academic community. Its most important contribution to the

formal specification of software consists in providing the first

mathematical model for a compositional (i.e. inductively defined)

semantics of complex programming languages and in stimulating broad

research aimed at the applications of mathematics in software design.

Unfortunately the applications of (pure) SDS have remained rather

limited. Although SDS formally provides an adequate ground where to

define (old) and design (new) software, none of widely used

X

programming languages has been designed in using SDS and only very

few have been given SDS definitions later.

The discrepancy between the potential advantages of SDS and its

actual applications has not been caused by the lack of interest of

software engineers in formal methods. The main obstacles of broader

applications of SDS have always been of a rather technical nature:

- the lack of a convenient notation (metalanguage) for real-life

applications,

- the conceptual and technical complexity of reflexive domains

and continuations.

The first major breakthrough in this situation was offered by Vienna

Development Method (VDM) [Bj~rner, Jones 78]. That method has

provided a metalanguage, called META-IV, suitable for large

denotational definitions and offering a technique of defining jumps

without continuations [Jones 78]. The authors of VDM also decided to

treat the Scott model of reflexive domains informally by assuming

that for a practical purpose reflexive domains may be "regarded" as

sets. At that point they were later supported by other authors who

popularized denotational semantics, such as M.Gordon [Gordon 79] or

J.Stoy [Stoy 80].

The philosophy and techniques of VDM proved to be useful in many

applications. Formal definitions of PL/~, ALGOL-60, Standard Pascal,

Pascal R, Pascal Plus, Modula-2, Edison, CHILL, Prolog and Ada have

been written in the VDM style (see [Bj~rner, Phren 83] for

references). This resulted in a better understandinE of these systems

and in finding many ambiguities and inconsistencies in them. Some of

these definitions, e.E. of Pascal Plus, Edison, CHILL and Ada, have

been used later in the development of compilers. Several data-base

systems (or their parts) were formally defined, e.g. the P L / 1

programmers" interface to full concurrent System/R, System 2000 and

CODASYL/DBTG. Some aspects of operating systems, office automation

systems and the like have been defined in VDM style and were partly

used later in implementations. All these examples have convinced many

practitioners that denotational semantics may be a handy tool in

real--life applications. Many universities started to offer regular

courses on VDM. Some industrial institutions decided to consider VDM

as their standard for software specification.

XI

The vulgarization of Scott's model in VDM has very well paid in the

applications where a formal definition of software is used only as a

formalized reference--manual for human readers. It seems, however,

questionable whether such a vulgarization can provide an adequate

framework for proving the correctness of software or for the

development of systems that support code generation. Besides, it is

rather inconsistent to proclaim and advocate mathematical style and

at the same time to agree for the violation of mathematical rules at

the most critical point of the model. This may also lead to technical

inconsistencies since reflexive domains and sets behave differently

(form essentially different algebras), especially if fixed-point

equations are concerned. Moreover, some domain constructors used in

VDM, such as e.g. A - B, A ~ B or A ~ B are not definable for

reflexive domains.

The theoreticians of VDM (cf.[Stoy 80]) suEEest several technical

remedies to these problems. In order to make the alEebra of reflexive

domains closer to the alEebra of sets, some operations, like

products, must be redesiEned and some others, like subtraction~ must

be forbidden. One also has to forget about the difference between

partial functions, total functions and mappings and represent all of

them by continuous functions between cpo's.

All these technical restrictions are not very convenient in

applications and therefore are not very rigidly observed by VDM

users. For instance, one frequently relies on the fact that mappings

are finite-domain functions and therefore a test whether an element

belongs to the domain of a mapping is computable.

The discrepancy between the theory and practice of VDM puts a formal

question-mark on the consistency of VDM definitions. On the other

hand, when readinE such definitions one usually has a stronE

impression that they are not inconsistent. In fact these definitions

can most frequently be Eiven consistent interpretations since in the

majority of software systems one does not deal with

self-applicability and therefore all semantic domains may be regarded

as sets. This is obviously true for most operatinE systems,

communication protocols, data--base manaEement systems, spread-sheets,

word processors, etc. This is also true for nearly all modern

proEramminE lanEuaEes includinE Pascal, Modula, Ada, OCCAM and many

others.

×II

Self-applicability in programmin~ languages appears essentially in

only two standard situations:

7) if procedural recursion is elaborated dynamically, like in

Lisp;

2) if a procedure may be directly or indirectly passed to itself

as an actual parameter, like in Algol--60.

A glance on proEramming languages which were designed after 7970

shows a clear tendency to avoiding both these mechanisms. Static

bindinE has been considered safer than dynamic binding and procedures

are usually restricted in a way which protects them against

self-applicability. For all such languages semantic domains may be

just sets~

As was already mentioned in the Foreword, in this book we describe a

kernel of a metalanguage for a set-theory based denotational

semantics. We define and discuss several mathematical tools which are

useful in constructing the denotatlonal models of software in that

style. The notation which we propose has been strongly influenced by

META-IV. However, in contrast to the former, our metalanguage is

going to be a pure functional language. The major extensions with

respect to META-IV are binary relations, languages with infinite

words, McCarthy's three-valued predicates and program-correctness

statements.

C O N T E N T S

FOREWORD
ACKNOWLEDGMENTS
INTRODUCTION

PART ONE: Denotational Constructors

7. Introduction
2. Fixed-point equations and the theory of cpo's
3. Binary relations
4. Functions

5. The definitions of functions with formal parameters
6. Tuples, strings and Cartesian operations
7. Formal languages
8. Domains
9. Three-valued predicates
70. Input-output correctness statements
77. Bibliographic remarks
72. Exercises

PART TWO: An Example Definition of a Subset of Pascal

7. Introduction
2. An informal description of our subset of Pascal
3. Abstract syntax
4. Semantic domains

4.~ Static domains
4.2 Dynamic domains
4.3 The algebra of data

5. Well-formed states
5.~ Auxiliary functions
5.2 Well-formedness predicates

6. Denotations
6.7 Programs
6.2 Type expressions
6.3 Type definitions
6.4 Variable declarations
6.5 The correctness properties of type definitions and

variable declarations
6.6 Expressions

6.6.7 The type of an expression
6.6.2 Left expressions
6.6.3 Right expressions

6.7 The type-correctness of expressions
6.8 Conunands
6.9 The correctness properties of commands

7. The derivation of program-correctness proof rules

7
2

72
19
27
36
40
43
49
66
77
8O

83
89
9O
93
93
94
95
98
99
100
706
707
708
170
772

'114
7T9
I I 9
721
122
123
725
729
131

REFERENCES 736

