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Abstract
In this paper, we summarize and extend some recent results about the properties of NP com-

plete sets and related results about the structure of feasible computations.

Introduction

In the early seventies; the work of Cook, Karp and Levin established the importance of the
complexity classes P, NP and PSPACE by showing that a variety of important natural computa-
tional problems were complete for these classes. This initiated an intensive study of these complexity
classes and created a veritable gold-rush fever in the search for complete problems. In particular,
NP complete problems were found in many different areas of computer science, operations research,
pure mathematics and other sciences. Today, many hundreds of natural NP complete problems are
known as well as a wide collection of P and PSPACE complete problems, firmly establishing the
dominant importance of these classes to computer science. At the same time, many questions :;bout
these classes have not been answered, effort not withstanding. It is quite surprising that the whole
awesome, intellectual arsenal of mathematics seems to have no results or tools with which to attack

the separation problem:

P = ¢ NP =¢ PSPACE.

In particular, the P and NP separation problem has to be viewed today as one of the most
important open problems in theoretical computer science and possibly in all of mathematics. This

problem is really a question about the quantitative computational difference between the difficulty of

This research has been supported in part by National Science Foundation Grant CCR 8520597.
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finding a proof for a theorem and checking the correctness of a given proof. Therefore, it is indeed a

fundamental question about the quantitative nature of mathematics.

During the last decade, a variety of new, more or less natural, complexity classes below
EXPSPACE have been defined and investigated. Some of these classes are defined to model the
complexity of probabilistic computations and others to investigate the complexity of parallel compu-
tations. The composite computational complexity world described by the many new complexity
classes reveals an intricate, interlocking world of unexpectedly rich fine structure below
EXPSPACE and, particularly below PSPACE. At the same time, these new complexity classes
have added a bewildering set of questions about the properties of and relations between these classes

. for which so far few solutions have been found.

The purpose of this paper is to summarize and extend some of the recent results about the pro-
perties of NP complete sets and related results about the structure of the feasible computations

mentioned above.

Many-One Complete Sets

We assume that the reader is familiar with the basic ideas and results of computational com-
plexity theory as, for example, presented in [GJ 79, HU 79]. For the sake of completeness and to

establish notation, we summarize the basic concepts of our discours.

Let P and NP denote, respectively, the families of languages accepted by deterministic and
nondeterministic polynomial time bounded Turing machines. PSPACE is the'family of languages
accepted by polynomial space bounded Turing machines. EXPTIME and NEXPTIME are, simi-
larly, the families of languages accepted by deterministic and nondeterministic,
T(n)=2°", ¢ > 1, bounded Turing machines.

The polynomial time hierarchy, PH, is defined inductively:

£l = NP, IIf = CoNP

P
Zia

f = NP NI =co Sffork > 1.
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A language A in NP is many-one complete for NP iff for any B in NP there exists a poly-

nomial time computable function f (i.e. f/ in PF') such that:

z €B iff f(z) €A,

we write A <I B.
A language A is Turing complete for NP ift NP C P4, we write A <%t B.
The completeness for other families of languages is defined similarly.

Two languages A and B are polynomial time isomorphic (p-isomorphic) iff there exists a bijec-
tion, £, such that f and f ! are in PF and

z €A iff f(z)€e B,

we write A =, B.

Clearly, these concepts are modeled on the corresponding, earlier developed, ideas from recur-
sive function theory, where recursiveness corresponds to polynomial time computability and recursive
enumerability corresponds to NP-ness. Quite surprisingly, the research on feasible computations
seems to show that the awesomely powerful computations used in recursive function theory (i.e.,
recursive reductions and recursive isomorphisms) have created a far less complex world by suppress-
ing the fine structure which we believe exists when we limit the computational power to dvefine com-

plexity classes and the corresponding reductions.

It is well known from recursive function theory [Ro 67] that all recursively enumerable com-
plete sets as well as all the complete sets in each level of the Keene Hierarchy are, respectively,
recursively isomorphic. Analogously, on closer inspection, all the natural NP complete sets show
great structural similarities. The comparison and study of the known NP complete sets led to the

following formalization which captures the above observed similarity between NP complete sets.

A set A, A C T’ has (polynomial time) padding functions iff there exist D(, )and S( )

in PF such that:

WV (z,y €Z°) [D(z,y) € A iff z €A]
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Y (z,y € T°) [SeD(z,y)=y]
It can easily be shown that the well known NP complete problems all have padding functions.
For example, this is quickly verified for SAT, the set of satisfiable Boolean formulas in conjunctiv;e
normal form. Using padding functions, we are led to the following characterization of NP complete

sets p-isomorphic to SAT [BH 77].

Theorem: An NP complete set A is p-isomorphic to SAT iff A has padding functions.

Since all the known NP complete sets had padding functions and since all r.e. complete sets
are isomorphic, there were strong indications that all NP complete sets may be p-isomorphic and
thus the belief that there is basically only one isomorphism type of NP complete sets. These con-
siderations led in 1976 to the following conjecture [BH 77):

Isomorphism Conjecture: All NP complete sets are p-isomorphic.

This conjecture has also been referred to in the literature as the Berman-Hartmanis Conjecture
[Mah 80, Mah 82, Bet 78, Kur 83]. Note that, P = NP implies that there exist NP complete sets
that are not p-isomorphic and therefore the above conjecture implies that P £ NP, indicating
that the conjecture may be very hard to resolve.

The isomorphism conjecture implies several subconjectures. We know that sets of strongly dif-
ferent densities cannot be p-isomorphic. To make this precise, we say that A, A C £’ is sparse

iff there exists a k& such that for all n:

A n T < nt + k.
The isomorphism conjecture implies that no sparse set can be NP complete and, in particular, that

no set A over a unary alphabet, A C a°, can be NP complete.

The last conjecture was proven by P. Berman [BE 78]:

Theorem: 1If SAT is < P-reducible to A, A C 4°, then P = NP.

Berman'’s proof elegantly exploits the self-reducibility of SAT to prune the tree of all possible

functions obtained from F' by partially assigned variables, to a polynomial size subtree by means of
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the reductions of formulas in the tree to A C a°, thus, placing SAT in P.

By a considerably subtler argument, partially inspired by the techniques in [KL 80|, Mahaney

in his Ph.D. dissertation showed that no sparse set could be NP complete [Mah 80|.

Théorem: If A is sparse and SAT <P A then P = NP. Therefore, if P % NP there are no
sparse < £-complete NP languages.

This result is invitively very satisfying, in that it asserts that if P 3¢ NP, then NP problems
cannot be solved with “small amounts of information”, i.e., there is no polynomial in n size look up

table to solve satisfiability for formulas up to size n.

This also showed that if P 5% NP then the isomorphism conjecture will not be disproved by
a simple density argument.

If P #% NP, then we know that any sparse set in NP is an incomplete set. The existence of
incomplete sets in NP — P, if P £ NP, was shown by Ladner [La 75] by using the earlier
developed delayed diagonalization technique. At the same time, the Ladner incomplete sets have not
been shown to be sparse and it is known that in some relativized worlds, they cannot be sparse [Kur
85, HIS 85|.

The existence of sparse and therefore incomplete sets in NP — P was resolved in [HIS 85, Har

83a| by linking their existence to higher computational complexity classes.

Theorem: Sparse sets exist in NP - P iff EXPTIME 5% NEXPTIME.

For related results about tally sets, see [Bo 74]. A nice summary of the study of sparse sets in

structural complexity theory can be found in [Mah 86].

The above result has been extended |Li 85| to show that if computably arbitrary sparse sets
exist in NP — P then the corresponding deterministic and nondeterministic complexity classes are .

different, i.e.:

9 TIME [T(n)*] 5 Y, NTIME [T(n)*],
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for all real-time computable T'(n) >n.

Clearly, from the Tracktenbrot-Borodin Gap theorem, we know that there exist computable

(but not real-time computable) monotonically increasing functions, F'(n) > n, such that:
U TIME [F(n)*] = u NTIME[F(n)*].
E>1 E>1

This extension of the above theorem has interesting proof theoretic implications about separating P
from NP. Any proof separating P from NP by a "generalized diagonalization” that can be slowed
down to separate P from NP by arbitrarily sparse sets, yields a proof that all higher deterministic
and nondeterministic classes are separated (provided the above result can be formulized in the sys-

tem). For further discussion of related proof techniques see [Koz 80, Re 86].

The consequences of the existence of two non-isomorphic NP complete sets have been investi-

gated by Mahaney in [Mah 83].

Theorem: If A and B are NP complete and A ¢p B, then there exist infinitely many pair wise

non-isomorphic NP complete sets.

The proof constructs from A and B and a new complete set C' for NP such that C is not p-
isomorphic to A and B, by an ingenious scheme of composing C' from alternating segments of A

and B.

The structure of the degrees of NP complete sets, assuming that there exist non-isomorphic

complete sets, is studied in [MY 85).

If there exists an NP complete set A which is not p-isomorphic to SAT, then we know that
A does not have polynomial time padding functions. Several possible such NP complete sets have
been suggested in the literature; see for example [JY 85, Har 83b]. A natural, possibly NP complete

set, not isomorphic to SA T, is suggested by generalized Kolmogorov complexity [Har 83b).

Let M, be a standard universal Turing machine. Define:

1 1
K[n?, n®l={z|(y)[lyl <lz|® and M, (y) = z in|zP steps|}.
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1
Clearly, K[n2, n®] is in NP, it does not seem to be in P and it could be NP complete.

Quite ;surprisingly, relativization suggests that this may not be easy to prove (as shown recently by
the author).

L 1
Theorem: There exist oracles A and B such that K*[n 2, n®]is NP complete and K? [n?, n?

is not NP complete.

Doubts About the Isomorphism Conjecture

Though the proof that sparse sets can not be S,ﬁ - complete for NP, provided P # NP,
proved the weaker versions of the isomorphism conjecture, some serious doubts have been expressed
about this conjecture.

Stuart Kurtz constructed an oracle A such that P4 3£ NP and for which there exist non
isomorphic S,f - complete sets in NP [Kur 83]. A related construction of non-isomorphic sets will
be discussed later in the connection with the Joseph and Young One-Way conjecture. At the same
time, it has been observed that the construction of an oracle which supports the isomorphism conjec-
ture seems much harder (and has not yet been fully achieved). For very recent work on this topic
see [GJ 86).

Joseph and Young have raised very serious objections to the isomorphism conjecture [JY 85].
Their objections to the conjecture seem to stem from a careful analysis why the proof that all r.e.
complete sets are recursively isomorphic can not be extended to the NP complete sets [Ro 67]. They
conclude that the existence of non-isomorphic NP complete sets is linked to the existence of one-way

functions.

One-Way Conjecture: There exist non isomorphic NP complete sets iff there exist one-way

functions.

A one-way-function is a one-to-one, polynomially honest function f in PF whose inverse is not

in PF.
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A function f is polynomially honest iff there exists a k such that

1
k

Y @)z "< 11 (2)] < |z F+5].
The existence of one-way functions is of great interest to cryptography and it has been linked
to the properties of the complexity class UP defined by Valiant.
An NP-machine N is categorical iff for all z there exists at most one accepting path for
N(z).
UP = {L(N;) | N; is categorical}.
The link between UP and one-way-functions, as observed by several authors, including [SG

84], is given by the following.

Theorem: There exist one-way-functions iff P £ UP.

The class UP is little understood; for example, it is not known whether there exists a UP com-
plete language. In [HH 86a] it was shown that there exist oracless A and B such that
PA 5£ UPA 5£ NPA, PP 5£ UP? 5£ NPP and that there exist complete languages in UP4 and
there are no complete languages in UP5. Furthermore, it was shown that if UP has compete

languages then there exists a set U in P such that U contains only Boolean formulas which have at
most one satisfying assignment and
UNnSAT s UP complete.
For related results, see [Sip 82, HI 85].
We now show that there is a reasonable oracle A (i.e., P# 3£ NP4) for which the One-way
Conjecture is contradicted. As corollaries, we show that there are relativized worlds, A, in which
there are NPA-complete sets that are not pA-isomorphic and, indeed, are not isomorphic even

under tremendously powerful isomorphisms.

To achieve our goal we first construct a special oracle. For detailed proofs see [HH 87].

Theorem: Thereis aset A = PSPACE & B such that



1. P4 = UPA%NP4, and

2. B has only strings of lengths from the widely spaced set E.

‘i-1

E = U,'ZOC.', €o = 1010, e, = 22 for 1 >0.

Proof outline: The proof exploits the techniques of [BGS 75|, of [Rac 82|, of Cai and
Hemachandra’s relativizations of Lthe counting hierarchy [CH 86], and of Hartmanis and
Hemachandra’s proof that there is an oracle for which P 52 UP 5£ NP yet UP has complete
languages [HH 86a). |

The construction of the desired, very sparse B which separates P4 from NP# will not be
given here in detail since it is a reasonably straight forward construction.

The proof that P4 = UP4 is more interesting and we outline a method following [Rac 82].
We will show that for any categorical N,~A , L(N,A) is in PA. Use PSPACE to find if for some
valid value of B ' there is an accepting computation of N/SPACESE (z); if not, reject z. Use
PSPACE to get the path, say path,. Query all elements in the path, let S, be all elements queried )
on the path, and let W, be the elements on which the path was wrong (disagreed with B). 1If the
path was never wrong, we h;ave a true accepting path, so accept z.

Similarly, use PSPACE to find if, for some valid value of B ! consistent with our knowledge
about the elements of S,, there is an accepting computation of N/SFPACESF (z); if not, reject z.
Use PSPACE to get the path, say path;. Query all elements in the path, let S 1 be all elements
queried on the path, and let W, be the elements on which the path was wrong (disagreed with B).

If the path was never wrong, we have a true accepting path, so accept z.

Keep repeating this. The process finishes quickly. Why? Each path, must conflict with each
of the paths pathO, pathly ..., path;_,, since we were robustly categorical over all valid extensions.
Note that (5, ! with j 5% 1) [W, n W, = @], since no mistake is made twice. Thus, path,
must conflict with pathy on some element that is both in Wy of pathy and S; - W} of path,.

Similarly, it conflicts with path, on some element that is both in W, of path, and in S; - W} of
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path, and so on. But since the W,'s are disjoint, we take up k — 1 spaces of S, — W just to
disagree- with the previdus paths. Thus, the process goes on at most until we examine | z I‘ + ¢
paths. At that point, we either have eliminated all paths (so N/(z ) rejects) or we have found a path
consistent with our oracle (so N/(z) accepts). Thus, we have accepted an arbitrary UP# language
in P4, s0 PA = UPA,

We have shown P4 = UP# % NPA.

We now use this result to show the following:

Theorem: There is an oracle A that is:
1.  reasonable, ie., PA £ NP4,

2. allows no one-way functions, i.e., P4 = UP# and
3.  contradicts the Isomorphism Conjecture, i.e., there are S,’,’,'A -complete sets for NP4 that are
A . .
not p“ -isomorphic.

Proof Outline: The canonical complete set for A, Univ,, described below, is quite dense. We
construct a second complete set, U,, that has huge stretches over which it contains no strings.
From this, it follows that the two sets can not be pA -isomorphic.

Let A be the set constructed in the previous Theorem. Thus P4 = UPA % NP4 and A
has the special form described in the Theorem. Let:

Unsv, = {1#z#N,;# padding | NA(z) accepts in at most | padding | steps} U {O#yly e *}.
Universal set Univ, is canonical complete set for A .

Our second complete set U, will, at lengths ! "near” an element of E, code all strings of
Univ, of length less than [. At lengths ! "far” from an element of E, U, will contain no eiements.
We say a length ! is “near” an element of E if for some z € E we have:

l € [log z, 2%].
Claim I: It can now be shown without too much difficulty that U, and Unisv, are not p*-

isomorphic.
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Claim 2. U, is <2 -complete for NP4. Clearly, U, € NP*, since Univ, € NP* and Uy
just codes in Univ, strings at certain lengths. Let L € NP4. We show L <PA Uy. Given z
we must reduce "z € L?”' to a question of membership in U, . Simply put, if z is close to an €
we can reduce to a nice universal string coded into Uy, and if z is not close to any e;, we can dis-
cover by brute force all relevant strings of B and then use PPSPACE — NpPSPACE détermine if

z € L. We leave the details given in [HH 87] to the reader.
From the above results, we can easily derive the following:

Corollary: There is an oracle A for which there are S,’,’,'A-complete sets for NP# that are not pA- )
isomorphic. As a matter of fact, these sets are not isomorphic by any primitive recursive isomor-
phism.

Very recently, Kurtz, Mahaney and Royer [KMR 86| have obtained some exciting results about
the structure of complete sets in EXPTIME. Clearly, in EXPTIME one has enough computational
power to diagonalize over all p-time reductions and p-isomorphisms and so one can expect that one
can construct special complete languages. Quite surprisingly, this is not easy to show and was finally
achieved in [KMR 86].

An m-degree is a collection of sets equivalent under <P -reductions. An m-degree is collapsing

iff its members are p-isomorphic.

Thus, the Isomorphism Conjecture can be restated that the NP complete sets form a coilaps-

ing m-degree.

By beautifully subtle diagonalization arguments, the following is shown:

Theorem: EXPTIME has complete sets whose:
1.  m-degree contains infinitely many 1-degrees
2.' m-degree collapses.
For proofs and a complete summary of related work, see [KMR 86]. These results show that

the structure of EXPTIME is quite complex. Similarly, though not yYet proven, we now have to

expect that the structure of NP and in general, the structure of the feasible computations (say,
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below EXPSPACE) is very complex and little understood at this time. It is the realization which
motivates and inspires the work in structural complexity.

It is ironic to reflect that recursive function theory, which has inspired and guided much of the
work in computational complexity, had revealed a far simpler structure about r.e. complete sets and
related concepts. It seem; as if by using the most powerful reductions and isomorphisms recursive
function theory has eliminated the fine structure which we are now finding in the world of the feasi- .
ble computations. It is still only a partially understood field of research, but o:i; that promises new

challenges, many surprises and which we must understand.

On Turing Complete Sets

So far, we have seen that the existence of sparse S,I:-complete‘sets for NP implies that
P =NP and these results can be shown to hold for all relativizations of NP. The situation is quite
different when we consider < F-complete or hard sets for NP.

First of all, there exist an oracle A such that P4 % NP# and NP4 has sparse S;—

complete sets, as shown by Mahaney.

Theorem: There exists a sparse set B,B C (0 + 1)°, such that for A = PSPACE®B,

P4 % NP4

and the sparse set:

Pr(By={z|z =2z #*, 2 isaprefixof z in Band|z | =]z #41)

is Turing complete for NP4 .

Proof. By a straight forward [BGS 75| diagonalization argument, we can construct a sparse set B
such that for A = PSPACPE®B
PA £ NP4,
It is easily seen that for a sparse set B, Pr(B) is a sparse set. Furthermore,

NPA — PA@"!‘ (B)
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To see this, we just have to observe that fore any NP machine, N g running in time nt + k and
any z, a deterministic polynomial time machine with oracle A@Pr(B) can determine by binary )
search, all possible strings in B up to length nt + k. After that, with the relevant strings of B
known, with one deterministic query to PSPACE it can be determined if z is accepted by NA,
Thus, NP4 has a sparse < ;-complete language.

As for most problems (but clearly not all [Haz 85]), that can be diagonalized in two contradic-
tory ways, the above result suggests that it may be very difficult to show that the existence of a
sparse < ;-complete set for NP implies that P = NP.

At the same time, it is known that the existence of sparse S;—hard or complete sets would
have very dramatic consequences by collapsing the Polynomial Time Hierarchy, PH .

First, we point out an interesting connection between sparse oracles for NP and polynomial
size circuits.

We say that a language A, A C (0 + 1)°, has polynomial size circuits if there exist a k and
a sequence of circuits C';, C,, C3, - - such C; has ¢ input lines, one output line and:

VYV (i,2) [IGI < i* +k and [lzl=¢ = [Ci(z)=1 z € 4]].
The following result has been observed by A. Meyer and reported in [BH 77].

Theorem: A has polynomial size circuits iff A € PS fora sparse S.

Karp, Lipton and Sipser showed that if NP has a sparse oracle S, NP C PS, then PH is

finite [KL 80].
Theorem: If S is sparse and NP C P then PH C of =1/t

Theorem: If S is sparse and EXPTIME C PS then EXPTIME =£f # P.

Stronger results have been obtained by Mahaney if S is in NP.

Theorem: If a sparse set S isin NP and NP C PS5, then:

PH C PS.
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This result can be established by determining by binary search, in polynomially many queries
in n all the strings in S up to length n. Clearly, once the relevant strfngs of S are known, in poly-

nomially time, we can accept any set in PH by successive elimination of qualifiers using S .

The above result seemed to be optimal, since polynomially many queries to S are needed to

-obtain all the strings in S up to length n, in order to solve the problems in PH.

Quite surprisingly, far fewer queries to a sparse S are sufficient to solve all problems in PH.
The best, and very likely the optimal result in this area, was obtained very recently by J. Kadin
[Kad 86a and 86b].

Let PAll9n] denote the family of languages accepted by deterministic polynomial time

machines that for an input of length n make at most ¢ o log n queries to the oracle A .

Theorem: If for a sparse set S in NP

NP C PS5,
then
PH C pSATls ],
This result is proven by the very subtle observation that for input z,|z| = n, in c logn
queries we can determine the «census of S up to size nt + k, e,

IS n BV | = og(nt + k).

Once the relevant census is known, only one more query to SAT is required to determine if a
nondeterministic machine V;, guessing Cg(n" + k) strings of S and verifying that it has guessed

the correct strings, will accept z.-

Very recently, Kadin has shown that there are relativized worlds where his result is indeed
optimal. That is, for a base oracle A (not indicated here), P 5% NP and if NP C PS5, then

PH C pSAT lles CS(")], but PH ¢ PSAT [F(®)] for any F(n) such that:

limsup = F(n = 0.
n—oo log Cs(n)

In other words, we need enough queries to determine the census function of S to capture PH .



-15-

Complete Sets for Sparse Seia in NP

We know that there exist sparse sets in NP-P iff EXPTIME 5 NEXPTIME and, furth-
ermore, that if there exists a sparse < g-complete set for NP then P = NP, a Si-complete
pSA T[log n].

sparse set implies that PH C

At the same time, intuitively we feel that sparse sets in NP should not be as hard to recognize
as SAT, since they cannot be <Z-complete (if P # NP) and that they ”contain less informa-
tion”.

The following result gives a precise technical meaning to these intuitive ideas [Har 83b).

Let M, be a sfandard universal Turing Machine and define:

K [logn, n?] = {z| @y) lyl < log |z| and M,(y) = z in |22 steps}.

In [HY 84] it was shown that K'[log n, n%]n SAT is <ZF-complete for all sparse sets in NP.

Theorem: {S | S in NP and S is sparse } C PSATnKl[log n, nd,

It is not known whether any S,,’:-complete sets exist for all sparse sets in NP.

The above result shows that sparse sets in NP can be recognized in polynomial time with an
oracle consisting of the easily compressable” formulas in SAT. Furthermore, the results discussed
earlier imply that if for the Kolmogorov simple formulas (ie., I € K[log n, n2]) it is easy to
decide whether they are satisfiable then EXPTIME = NEXPTIME.

It is also interesting to observe that by means of generalized Kolmogorov complexity, we can

characterize all the sparse sets that separate P from NP [HH 86b].

Theorem: If PA =NP4 and S is sparse, then:

PA@S' —_ NPA%

iff for some c,

S C K*[clogn + ¢, n° + c].
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Clearly, if we could characterize all the sets which separate P from NP then we would have

solved the P =fNP problem.

The limitations of sparse oracles is investigated in [BBL *84).

Theorem:

1.  PH is finite iff there exists a sparse S such that PHS is finite.

o1

2.  PH 5 PSPACE iff there exists a sparse oracle S such that PHS £ PSPACES.

The proofs of these results are based on the observation that the higher levels of the polynomial
time hierarchy, just as in PSPACE, we have enough computing power to "pull-down” S and print all
relevant strings of S on tape. Thus, the power of the sparse oracle is the same for PH and
PSPACE and they can differ iff they differ in the unrelativized case. Clearly, if

PH £ PSPACE then they are different for S = @, which is sparse.
This result complements nicely [Yao 85].

Finally, very recently, to explore the full logical freedom of relativization, the author has con-
structed an oracle A such that NP4 £ coNP4 but:

PHA = [PAINP*Y — pspaCEA,

A (1
where PP W denotes the family of languages accepted in polynomial time with one oracle query to

NP4,

Conclusion

The results reviewed in this paper indicate a surprisingly rich structure of the complexity
classes of feasible computations and raise many new questions about the quantitative nature of com-
putations. These problems seem to be mathematically very hard and their solution, leading to a
deeper understanding of the computational comaplexity of feasible computations and the computa-

tional nature of mathematics itself, is a major challenge to computer science and mathematics.
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I believe that none of us who started the systematic study of computational complexity in the

early sixties, fully realized the richness and magnitude of the research area we had entered. Nor do I

believe that any of us expected to run into so many hard problems so soon. At the same time, we

now fully realize the importance of these problems and see them as central to the full understanding

of the quantitative nature of computing and mathematics.
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