Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

292

The Munich Project CIP

Volume [I: The Program Transformation System CIP-S

By the CIP System Group:
F.L. Bauer, H. Ehler, A. Horsch, B. Maller,
H. Partsch, O. Paukner, and P. Pepper

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

Editorial Board
D. Barstow W.Brauer P. Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmdiller J. Stoer N. Wirth

Authors

F.L. Bauer

H. Ehler

B. Moller

Institut fir Informatik der Technischen Universitat Minchen
Postfach 202420, 8000 Miinchen 2, Federal Republic of Germany

A. Horsch

Q. Paukner

Klinikum rechts der Isar, Rechenzentrum Block A
Ismaninger StraBe 22, 8000 Miinchen 80
Federal Republic of Germany

H. Partsch
Department of Informatics VI, Catholic University of Nijmegen
Toernooiveld 1, 8525 ED Nijmegen, The Netherlands

P. Pepper
Fachbereich 20 Informatik, Technische Universitat Berlin
FrankiinstraRe 28/29, 1000 Berlin 10 (West)

CR Subject Classification (1987): D.1.0, D.2.1-2, D.24, D.2.6-7,D.2.9~10,
F3.1,1.1.3,1.2.2-3,K.6.1, K.6.3-4

ISBN 3-540-18779-0 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18779-0 Springer-Verlag New York Berlfin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of franslation, reprinting, re-use of ilustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

PREFACE

This book is the second of two volume$ that present the main results having emerged from the project CIP -
Computer-Aided, Intuition-Guided Programming - at the Technical University of Munich. The central theme of
this project is program development by transformation, a methodology which is felt to become more and more
important.

Whereas Volume I contains the description and formal specification of a wide spectrum language CIP-L
particularly tailored to the needs of transformational programming, the present Volume II contains the
description, formal specification, and transformational development of a system CIP-S, that is to assist a
programmer in this methodology.

This work originated from two rather different motivations: On the one hand, it is to be seen as an attempt
to gain methodical experience with non-toy, medium-size software projects and, in this way, to demonstrate
the feasibility of the CIP approach as a software engineering discipline. On the other hand, the system is
intended to incorporate recent ideas as well as experience with our own prototype system and other people's
systems. Thus, in the very end, it is to constitute the basis for a practicable software development tool
usable by other people either in gaining experience themselves or in producing software.

Part I deals with general issues such as "Why to use an implemented system to assist in transformational
programming?” and "What are the interesting aspects with respect to transformation systems?". It also
gives a brief summary of the ruming CIP prototype transformation system and an informal overview of the
system to be dealt with in all subsequent parts. A short account of the global requirements and their
jmplications for the organization of the system project is given and some aspects of an appropriate user
environment conclude this part.

In Part II a calculus of program transformations (including induction) is presented as a theoretical basis
for the entire transformation system project.

Part III starts with a more detailed and in particular more user-oriented informal collection of technical
requirements for the transformation system. In its main part a formal, algebraic specification (including
all design decisions) for the language-independent core of such a system can be found, whereas
language-dependent. aspects and issues of an appropriate user environment are deferred to Part VI. Part 1II
closes with a kind of validation of the forma! specification and a summary of experiences made in writing
the formal specification.

Part IV takes Part III as a basis and demonstrates for selected system functions how running programs can
be derived from the respective specifications by means of transformations. The main criterion for selection
was the probable interest of the derivations. Therefore obvious or less interesting developments
deliberately have been left out. As to the derivations selected, although actually done in very small steps
by using the prototype system, particular emphasis has been Taid on expressing the essential Tines of
thought rather than particular concrete rules. However, these rationales of design also have been
supplemented with enough technical information such that an interested reader should be able to redo the
detailed developments himself. The essential purpose of giving these selected developments in Part 1V is to
demonstrate that they can be done with an implemented transformation system. Many further developments of
functions specified in Part III have been carried out with the prototype. They can be found in full detail
in [Ehler et al. 871, out of which Part IV has actually been selected. Like Part III, Part IV closes with a
summary of the experiences gained when doing the actual developments.

v

Part V is a collection of transformation rules used in Part IV. According to the philosophy of the language
CIP-L used for specification and development these rules are differentiated into rules for the scheme
language, riles for particular data types, and rules connected to particular computation structures.

Part VI is intended to give the main hints on how to extend the system core as specified in Part III to a
running system exemplified with a sublanguage of CIP-L. In particular this part contains some more
information on the language-dependent types {that have been left "open" in Part I1II), on converters between
external and internal program representations, about the way of treating context conditions, semantic
relations, and meta-predicates.

The report also contains an index of sorts, objects, and operations introduced, where the given page number
refers to the defining occurrence in the specification. Cross-references within one part are given by
section numbers only; references to other parts are made by prefixing the respective section numbers with
the (roman) part numbers.

We would like to express our thanks to the Deutsche Forschungsgemeinschaft who has sponsored this research
within the Sonderforschungsbereich 49 "Programmiertechnik” for ten years. Also, we gratefully acknowledge
valuable criticism by the members of IFIP Working Grow 2.1, notably by R. Bird, P. King, C.H. Lindsey,
L.G.L.T. Meertens, S.A. Schuman, and, above all, M. Sintzoff. Moreover, we would Tike to thank H. Remus
and D.E. Shough from the Santa Teresa Laboratory of IBM for their continuing support. Last, but by no
means Tleast, we gratefully acknowledge many helpful remarks by our (present or former) colleagues R.
Berghammer, C. Delgado Kloos, F. Erhard, U. Hill-Samelson, R. Obermeier, H.-0. Riethmayer, G. Schmidt, R.
Steirbriiggen, M. Wirsing, and H. WOssner as well as the speedy and competent assistance by M. Glashauser
in doing the developments on the prototype system and in preparing the typescript.

Muriich, October 1987

The CIP System Group

TABLE OF CONTENTS

PART 1 : INTRODUCTION

1. Transformational progranming assisted by an implemented system
2. Issues of transformation systems

3. The CIP prototype system

4. Informal overview of CIP-S

5. Global requirements

6. Same aspects of an appropriate user environment

PART II : THE TRANSFORMATION CALCULUS

1. Introduction
2. Definition of the calculus
2.1. An algebraic view of programs and transformations
2.1.1. Signatures and terms
2.1.2. Fomulas
2.2. Clauses
2.3. The calculus of inferences
2.3.1. Meta-deductions
2.3.2. Meta~inferences
2.3.3. About higher-level rules
2.3.4. Relationship to further proof principles
2.4. Derived meta-inferences
2.4.1. Language-independent derived meta-inferences
2.4,2. lLanguage~dependent derived meta-inferences
2.5. The role of free variables
3. Representation of transformation tasks in the calculus
3.1. Genuine transformation steps
3.2. Compactification of development histories
3.3. Verification of applicability conditions
3.4. Reduction of applicability conditions {goal reduction)
3.5. "Claims"
4. Induction rules
4.1, Computational induction
4.1.1. Scott induction
4.1.2. Recursion induction
4.1.3. "Transformational" induction
4.1.4. Fixpoint induction
4.2. Structural induction
4.2,1. Term induction
4.2.2. Decomposition induction
5. Discussion

NOY O e woWw

-
—

BREBEEEHES

B8 ELUYBRERBUEEEIRRIS

Vi

PART III : FORMAL SPECIFICATION

1. Informal requirements

1.1 Technical requirements
1.1.1. Programs and program schemes
1.1.2.
1.1.3.
1.1.4.
1.1.5.
1.1.6. Record of a goal reduction
1.1.7.
1.1.8. User envirorment

1.2,

2.1.
2.1.1.
2.1.2.

2.2.
2.2.1.
2.2.2.

2.3.

2.4,
2.5.

2.6.
2.7.

2.8.

2.9.

Transformation rules and their application

Verification of applicability conditions (goal reduction)
Development of types and computational structures
Documentation of a development

Further adwinistrative tasks of the system

Exanple: A fictitious session with the system
2. Formal specification of the system core
Fundamental design decisions
General design decisions
Technical design decisions
Preliminary remarks on the formal specification
Structure of the specification
Remarks on notation

The system core

EFFECT, SYSTEM-CORE

GEN-COM
NEUTR-COM
DERIV-COM
DEVIREE-C(M
MOVE-COM
RED-COM
CAT-COM

The state

The catalog-base
CATALOG-BASE
CATALDG
MAP
3.0y
GROUP

Reductions

Derivations
DERIVATION
MIERM
DEVIREE
REL-COWP
INFO

Inferences
INFERENCE
CLAUSE
FORMLLA
PRED-SY'B

Terms
INSTANCE

45
45
45

H5&&ES &

47
47
47
52

SRR G

61

CeR8BVBIIBTIXN

107

110
112
115
117
122
127
13
134
135
137
145
147
149
151
153

2.10.

3.

4

3.1.
3.2.
3.3.

4.1.
4.2.

TERM
P08
LANGUAGE
OPERATOR
SORT
Basic types
SEQU
PRIMSET
SET
Validation of the specification: Example revisited
General remarks
The sanple session in terms of system functions
Technical detailization of the system functions used in the sample session
Experiences
Experiences in using a formal specification
Technical experiences with algebraic specifications

PART IV : FORVAL DEVELOPMENT OF SELECTED SYSTEM FUNCTIONS

1. Preliminaries
1.1, Survey
1.2 From algebraic types to computation structures
1.2.1. Structures and algebras

2

3

4

5

1.2.2. Implementation of types by structures

1.2.3. The transition from two-valued to three-valued logic
1.2.4. Nondeterminate structures as inplementations

1.2.5. Implementation of standard recursions

1.2.6. Inplementation of descriptive operations

1.2.7. Implementation of modes with equality predicates

1.3.
1.4,

2.1.
2.2,
2.3.

3.5
3.2
3.3

4.1.
4.2.
4.3.

5.1.
5.2.
5.3.

From computation structures to modules
Technical remarks

DEVTREE
Devel opments
Description of additional functions and modules
Specific rules

INFERENCE, CLAUSE, and FORMULA
Description of auxiliary functions
Developments of functions
Developments of selected theorems

TERM
Informal description of the match functions
Specification of auxiliary functions
Developments

Experiences
Methodological experiences with transformational developments
Experiences in using the CIP prototype system

Overall remarks in retrospect

vii

158
168
169
in1
174
176

FEERBRREES

g

ERBREBBE88

217
29
219

218

ERBBREEEHERT

Vil

PART V : TRANSFORMATION RULES

1. Remarks about rules
2. Rules for constructs of the scheme-language
2.1, Boolean expressions
2.2, Conditionals and guards
2.3. Applicative Tevel
2.4, Pre-algorithmic constructs
2.5, Procedural level

3. Rules for data types and computation structures
3.1 Maps
3.2, Sets

3.3. Natural numbers
3.4. Conditional join operations

3.5. DEVTREE
3.6. CLAUSE
3.7 FORMULA
3.8, TERM
3.9, INSTANCE
3.10. OPERATOR
4. Technical transformation rules

4.1. Abstraction rules

4.2. Equalities

4.3. Change of recursion

4.4, Unfold, fold, and renaming

PART VI : A SAMPLE INSTANTIATION OF THE SYSTEM FCR A CONCRETE LANGUAGE

1. The basic cbjects and operations of the language

2. Abstract syntax: The type LANGUAGE

3. Conversion between external and internal form: Parser and unparser
4, Syntactic and semantic predicates

5. Generating the context conditions

6. Computing environment information

7. Inferences for propagating definedness information

8. Two sample transformation rules

REFERENCES

APPENDIX : BIBLIOGRAPHY OF THE PROJECT CIP (OONT.)

INDEX I : KEY NOTIONS
INDEX IT : TYPES, SORTS, OPERATIONS
INDEX III : TRANSFORMATION RILES

391
393

fRE8

410
413
413
414
418

433

435

451
452
452
454
455
458

SE§

478
479
481

& &

493

503

520

