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PREFACE

This book is the second of two volume$ that present the main results having emerged from the project CIP -
Computer-Aided, Intuition-Guided Programming - at the Technical University of Munich. The central theme of
this project is program development by transformation, a methodology which is felt to become more and more
important.

Whereas Volume I contains the description and formal specification of a wide spectrum language CIP-L
particularly tailored to the needs of transformational programming, the present Volume II contains the
description, formal specification, and transformational development of a system CIP-S, that is to assist a
programmer in this methodology.

This work originated from two rather different motivations: On the one hand, it is to be seen as an attempt
to gain methodical experience with non-toy, medium-size software projects and, in this way, to demonstrate
the feasibility of the CIP approach as a software engineering discipline. On the other hand, the system is
intended to incorporate recent ideas as well as experience with our own prototype system and other people's
systems. Thus, in the very end, it is to constitute the basis for a practicable software development tool
usable by other people either in gaining experience themselves or in producing software.

Part I deals with general issues such as "Why to use an implemented system to assist in transformational
programming?” and "What are the interesting aspects with respect to transformation systems?". It also
gives a brief summary of the ruming CIP prototype transformation system and an informal overview of the
system to be dealt with in all subsequent parts. A short account of the global requirements and their
jmplications for the organization of the system project is given and some aspects of an appropriate user
environment conclude this part.

In Part II a calculus of program transformations (including induction) is presented as a theoretical basis
for the entire transformation system project.

Part III starts with a more detailed and in particular more user-oriented informal collection of technical
requirements for the transformation system. In its main part a formal, algebraic specification (including
all design decisions) for the language-independent core of such a system can be found, whereas
language-dependent. aspects and issues of an appropriate user environment are deferred to Part VI. Part 1II
closes with a kind of validation of the forma! specification and a summary of experiences made in writing
the formal specification.

Part IV takes Part III as a basis and demonstrates for selected system functions how running programs can
be derived from the respective specifications by means of transformations. The main criterion for selection
was the probable interest of the derivations. Therefore obvious or less interesting developments
deliberately have been left out. As to the derivations selected, although actually done in very small steps
by using the prototype system, particular emphasis has been Taid on expressing the essential Tines of
thought rather than particular concrete rules. However, these rationales of design also have been
supplemented with enough technical information such that an interested reader should be able to redo the
detailed developments himself. The essential purpose of giving these selected developments in Part 1V is to
demonstrate that they can be done with an implemented transformation system. Many further developments of
functions specified in Part III have been carried out with the prototype. They can be found in full detail
in [Ehler et al. 871, out of which Part IV has actually been selected. Like Part III, Part IV closes with a
summary of the experiences gained when doing the actual developments.
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Part V is a collection of transformation rules used in Part IV. According to the philosophy of the language
CIP-L used for specification and development these rules are differentiated into rules for the scheme
language, riles for particular data types, and rules connected to particular computation structures.

Part VI is intended to give the main hints on how to extend the system core as specified in Part III to a
running system exemplified with a sublanguage of CIP-L. In particular this part contains some more
information on the language-dependent types {that have been left "open" in Part I1II), on converters between
external and internal program representations, about the way of treating context conditions, semantic
relations, and meta-predicates.

The report also contains an index of sorts, objects, and operations introduced, where the given page number
refers to the defining occurrence in the specification. Cross-references within one part are given by
section numbers only; references to other parts are made by prefixing the respective section numbers with
the (roman) part numbers.

We would like to express our thanks to the Deutsche Forschungsgemeinschaft who has sponsored this research
within the Sonderforschungsbereich 49 "Programmiertechnik” for ten years. Also, we gratefully acknowledge
valuable criticism by the members of IFIP Working Grow 2.1, notably by R. Bird, P. King, C.H. Lindsey,
L.G.L.T. Meertens, S.A. Schuman, and, above all, M. Sintzoff. Moreover, we would Tike to thank H. Remus
and D.E. Shough from the Santa Teresa Laboratory of IBM for their continuing support. Last, but by no
means Tleast, we gratefully acknowledge many helpful remarks by our (present or former) colleagues R.
Berghammer, C. Delgado Kloos, F. Erhard, U. Hill-Samelson, R. Obermeier, H.-0. Riethmayer, G. Schmidt, R.
Steirbriiggen, M. Wirsing, and H. WOssner as well as the speedy and competent assistance by M. Glashauser
in doing the developments on the prototype system and in preparing the typescript.

Muriich, October 1987

The CIP System Group
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