
EXTENDING FUNCTIONAL PROGRAMMING TOWARDS RELATIONS

Remi Legrand

LITP - CNRS UA 248, Universit6 P. et M. Curie - Paris 6

2 place Jussieu, 75252 Pads Cedex 5, FRANCE
uucp : !mcvax!inda!litp!rl

Abstract : This article describes the relational programming paradigm. Because a function is a particular

case of relation, we can consider the computation of points-to-set processes (relations) instead of

points-to-point processes (functions). Relations are useful for parallel, non-deterministic or multi-valued

algorithms. The first section presents the main features of the proposed language and it is shown how

relations make programs more flexible and natural. Then, we present an efficient implementation of the

language on a classical architecture.

1 - INTRODUCTION

In this section, the main principles of the relational programming concept are developed.

Functions and Relations : A computable function is a points-to-point process since it associates at most
one value to its arguments, A n-ary function fcan be defined by the n+l-ary relation R such that :

R = {(xl,x2,....xn,y) / y=f(xl,...xn)}

Relations are a generalization of functions in the sense that they associate a possibly infinite set of values

to their arguments [Nguyen 85, Eilenberg 70]. For instance, the n+l-ary relation R(xl,..,xn,y) defines

the points-to-set function f such that : f(xl,..,xn) = {y / R(xl,..,xn,y)}

Computable Relations : The automatic treatment of all mathematical relations is impossible so we must

deal only with computable relations [Cufland 80]. The relations that we consider are defined by

computable programs written in the language GREL given in the next section. The programs in GREL

are constructed by combining smaller programs until we reach some primitives which are ordinary

functions. Special operators are designed in order to turn several functions into a single relation with a

finite number of results. And recursivity allows to construct relations with an infinite but nevertheless

semi-computable set of results.

R¢lotions and Continuations : The result of a relational program is a finite or infinite set of values. These
values are returned one at a time and are used by the continuation of the relation which can be any kind

of process, a function or an other relation. The overall program consisting of a relation followed by its
continuation acts as a pipe where the relation provides input values and the continuation processes them.
A special set of control operators allows to break the pipe or capture values.

207

Multisets of Results : The same value may occur many times in a relation. Because a value is transmitted

to the continuation as soon as it is computed, no trace is kept of it and it is not possible to remove its

further occurrences. Although this case is rare and issued from computation organization, it is better to

talk about points-to-multiset relations than points-to-set relations. Moreover, the elements of these

multisets are computed sequentially and we must consider that they are ordered by their times of
appearance.

.Control of Relations : Therefore, a relation applied to some arguments becomes a value generator which
can be controlled and used with appropriate tools provided by the language. For instance, the

programmer can choose between different strategies which determine the order of appearance of the

values.

Running vs. Susvended : As in most functional languages where programs are objects, the result of

applying a relation can be considered as an object of the language as soon as it is created and captured.
The object relation can be treated as any other object and looks like a suspended process. For instance,

we can duplicate it, kill it or activate it in order to get the next value. Thus a relation may have two states,

running or suspended. A running relation partakes of the current process whereas a suspended relation
may be temporarily runned as an oracle providing values.

Use of Relation : The usefulness of relations in the design of algorithms appears when programs are non
deterministic, parallel or multi-valued. For instance we can construct a class of values by giving parallel

inductive rules of construction which can be applied non-deterministicaly. The class of numbers
P(x,y) = { xP * yq, p,q e N} can be defined by :

P(x,y) = {1} U {x * k ,k e P(x,y)} U {y * k, k e P(x,y)}

Relations can also be used for streams generation because a stream is a particular case of relation where

any value is given by a function of its predecessor. Finally, it will be shown that relations are efficiently
and flexibly usable in programs where functions have multiple results.

Host Laneua~e for Relations : Since early 60% a lot of functional languages have been designed but
none of them have been extended so as to support the computation of relations. The main reason seems

to be the presence of variables since almost all these languages are lambda-languages. As a matter of fact,

variables compel the implementation to do a very complex environment management which seems
unrealistic in the general case of relations. That is why the variableless programming language GRAAL

[BeUot 86a, Bellot 86b] has been chosen as the host language for the relational calculus.

Principle of Implementation : It is important to see that a relation will not only be a kind of function with
multi-values. In order to accept all recursive relations with eventualy an infinite set of results, partial

results must be immediately transmitted and not "put in wait". It is implemented by a pipe-oriented
mecanism. Because all resulting values of a relation are transmitted to its continuation, the same

computation occurs as many times as there are such values. That is to say that the unfoldings of these

computations in the stack are done every time although they are roughly identical one to each other. The
main principle of the implementation is to preserve the first unfolding in the stack so that it can be used
without being constructed by further computations. This is realized through an original system of caches

onto the reduction stack. With this method of implementation, the average loss of GREL compared to
GRAAL is only 10% so that Relational GRAAL is still among the fastest applicative languages.

208

The plan of the article is the following. The first section is a brief introduction to the programming

language GRAAL and its principles. The second section describes the new operators required in order to

support the relational concept. The third section shows how relations can be used in the design of

algorithms. Finally, the last section describes the implementation of relations as an extension to the

GRAAL reduction machine described in [Bellot 86a].

2 - GRAAL, the Host Language

We present a short digest of the language GRAAL. A complete presentation of GRAAL and its

issues is in [Bellot 86b], and its theorical support is given in [Bellot 87]. GRAAL is a functional
programming language without variable. It is based on the notions of functional forms and uncurryfied

combinators. The functions are polyadic. The application of a function f to the arguments al , . . . ,an is

denoted (f : al. . .an). Applications are reduced using call-by-value. The notation E ~ F stands for "E
reduces (or evaluates) to F". The objects are numbers, symbols,lists or functional forms. Lists, used as

data, are denoted by brackets instead of parenthesis. Examples : <>, < a b < 1 c 2 > >.

The primitive functions are issued from Lisp systems [Chailloux 84]. Semantic of functions is

described by reduction rules. Examples :

c a r : < a . b > ~ a
c d r : < a . b > m b

c o n s : a b m < a . b >

null : <> ~- true

add: 2 3 ~ 5

true : al.. .an ~ true

e q : a b m-true i f a = b

c a r : < > m~ <>
cdr : <> ~ <>

n u l l : a ~ <> i f a ~ < >
sub1 : 5 m- 4

false : al...an ~ <>

i d : a ~ a

Arguments of a function are implicitly numbered starting from one. If k > 0, #k applied to n

arguments with k < n, reduces to the argument whose rank is k. Example :

3 : a b c d e f ~- c # 5 : a b c ~- error
The reader in acquaintance with functional programming may complete by himself the set of

primitive functions and their reduction rules.

More complex functions are built with functional forms which are combinations of functions. A

functional form realizes a functional operation occurring frequently in programs. The primary syntax is
(opf p l ...pn) where opf is the name and p l ,p2 , . . .pn are the parameters. Despite of appearance,
(opf p l ...pn) is not a list. Functional behaviour of forms is described by reduction rules. The set of

functional forms is not fixed. Only a few of them will be considered in this ar~cle.

Composition : the name of the composition form is eomp. It accepts any number of parameters greater

than two. Its reduction rule is :
g i : a l . . . an ~ b i , 1 _ < i <_p

(comp f gl gp) : al.. .an ~- f : b l ...bp

209

For sake of readibility, the syntactic analyser of GIL~AL ~11 recognize the following notations :

1) f o g stands for (comp fg)

2) {f gl...gn} stands for (comp f gl...gn)
3) (f gl...gn)stands for (comp f gl...gn) if f is not a combinator but is defined.

Conditional : the name of this form is if and it accepts three parameters. Its rules of reduction are:

p : al ...an ~ <>

(if p f g) : a l ...an D- g : al ...an

p : a l . . . a n ~ x , x ¢ < >

(i f p f g) : a l . . . a n ~- f : a l ...an

Constant : in order to program a constant function, we must use the one-parameter form whose name is

cste. Its reduction rule is : (cste c) : al ...an ,~ c

The syntactic analyser of GRAAL recognizes the notation 'e for (este e).

Examples of defined functions : the definition of a function f is given by the evaluation of the expression

(de : f b), where f is a symbol (the name) and b is a function (the body). So, we have the examples :

(de : caddr car o cdr o cdr)

(de : last (if null o cdr car last o cdr))

(de : append

(if null o #1
#2

{cons car o #1 {append cdr o #1 #2} }))

The reader may find a lot of programming examples in [BeUot 861o] and the scheme of implementation is
given in [Bellot 86a].

3 - R E L A T I O N A L GRAAL

The relational GRAAL is also called GREL (acronym of Graal RELationnel). It is a development

of GRAAL towards the relations. All the primitive functions and forms in GRAAL are still used in

GREL. The evaluation of a function is almost the same. But, in GREL we add special forms and
functions in order to built "non-functional" relations.

Notation : when the application of a relation f to the arguments a l , . . . an gives a multiset of results
b l ,b2 , we denote the reduction (evaluation) by : (f : al...an) ~ bl b2 b3...

210

3.1 - Union form

The most important form used for the construction of relations is union. No restrictions of use are

made for this form. For instance, recursivity and an infinite number of results are allowed. In case of an

infinite number of results, there are computed one at a time, and are given at once to the continuation of

the relation. In a first step, we do not consider the order of the results given by the evaluation of a

relation. It will be studied in the next section. The union form is defined by the reduction rule :

f i : a l . . . a n =~ yi l yipi , l _ < i < n

(union f l ...fn) : al. . .an ~ y l l y l p l y21....y2p2....ynpn

Examples :

(de foo : (union (union add1 sub1)

(union id '3 '4)))

(foo:45) =~ 46 44 45 3 4

(de : integer (union '0 add1 o integer))

(integer :) =~ 0 1 2 3

(de : even {mul '2 integer})

(even :) I - 0 2 4 6.. .

3.2 - O rde r of computations results

A relation gives the results in a specific order which is described as follows. The choice of the

order is very important in case of infinite results or infinite loops. In a first step, we describe how to

define the order of results in a relation. Then, we explain the variable strategies which order all the

relational computations.

a) Union tree

The order of results is defined from the un ion tree joined to each relation applied to the
arguments. Each leaf corresponds to a result of the application, and each node corresponds to a union.

The union tree joined to the application (f : al . . .an) is recursively defined by :

1) If f is a primitive function, then the nee is only reduced to the leaf labelled by the value obtained by the

reduction of the application (f : al...an).
2) If f = (union f l ...fp), then the union tree of (f : al.. .an) is a tree with p subtrees constitued

of the union tree of all the (fi : al...an) :

t r t~(f l :~ l . .Jm) tr~Q(~:al...Jm) tr~effl~:~,l...~]

211

3) If f = (este x), then ease 1 applies.

4) If f = g o h, then the union tree of (f : a l . . .an) is the union tree of (h : a l . . .an) in which each

leafy is replaced by the union tree of (g : y). Example :

t t ~ z t ~ree of (h : 1,1. . .~)

I t 'b . Z

,)

u.mo~, tree of (g o ~. : ~t l . . .~}

~ (g : ~) ~r~(g : 1,1 try<S" : z)

5) If f = (if p q r), then the tree of (f : al..oan) is the union tree of (p : a l . . .an) in which each

leaf y is replaced by :

i) The union tree of (q : a l . . .an) if y ~ <>

ii) The union tree of (r : a l . . .an) else.

6) All other cases could be translated in one of the precedent cases, because all the considered forms may
be only defined with the four forms union, cste, if and binary comp. The reader may also complete by
himself the similar cases corresponding to the other forms.

Examp_~ :

1) The union tree joined to the application (foo : 45) is :

45 44 45 3 4

2) The union tree joined to the application (integer :) is :

1

,.o

b) The control of relations

The order of results is characterized by the route (or strategy) chosen through the union tree. The

reduction machine of the relational GRAAL contains a basic route used for all the relations. This route,
called limited-depth-first, is complete (each result is fred in a finite time) with no multi-computation of

same partial results, which is not the case with the "Depth-First Iterative-Deepening" in [Korf 85].

Depth-first route : The rule bound to this strategy is to choose the subtree of a node before the other
subtrees of last node encountered. The depth-first route of the union tree is the most efficient and easily

implemented strategy. Nevertheless, it is not a complete strategy : some of the results are possibly not
computed if there exists a infinite sub-tree. Therefore, we have used a l i rui ted-depth-first strategy

which is complete and may be almost as efficient as depth-first strategy. This strategy is described as
fotlows :

212

L i m i t e d ~ f i r s t r0ute : It is a depth first route whose depth is limited by a given value. At the

beginning, the considered node is the mot and we go over the tree with respect to the depth-ftrst mute,
memorizing all the encountered nodes in which all the subtrees have not been go over. When we reach

the maximal depth, we suspend and restart the mute from the memorized node which is the nearest to the

root. The route stops when there is no more memorized subtree.

It is a complete strategy because the maximal difference between two memorized nodes is lower

than the maximal depth. Moreover, it is a efficient strategy when we choose a great maximal depth,

because it will be almost a depth first strategy. The accessible parameter for the user is the maximal

depth. In case of depth limited to one, it is a breadth first strategy. In case of infinite limit, it is a depth

f~rst strategy. Therefore lim&ed depth strategy is a generalization of these two classical strategies.

So far, we know how to construct relation, that is to say that we are able to generate an infinite

number of results using the union form. Now, we are faced to the problem of managing these results.

3.3 - Management of results

In some cases, we do not want to find or compute all the results of a relation but only a few of

them. Thus, we define a lot of functions or forms which stop or do not execute the computations of

unwanted results.

a) The cut

According to the portion of unwanted results, we use different "cut" as for example :

1) The function euldesac only cuts the current subtree of the union tree, Example :

((union '1 '2 o culdesac '3) :) ~ 1 3
2) The function stop cuts all the subtrees of the union tree joined to the relation, Example :

((union '1 ' 2os top '3):) ~ 1
4) The form exit included in the form tag (with the same joined function) only cuts the subtrees

appeared in the form tag.The second parameter of the form exit gives the last result of the form tag.

Example :
((union '1 (tag end (union '2 '3 o (exit end '4) '5)) '6) ~ 1 2 4 6

b) The first form

In order to obtain only the n first results of a relation, we use the first form. The reduction rules

a r e :

f : al...ap m- r l . . . r q , q < n f : at...ap ~ r l ...rq n < q

(first n f) : al...ap ~ r l ...rq (first n f) : al...ap ~ r l ...m

Example: ((ftrst 10 integer) :) o- 0 1 2 3 4 5 6 7 8 9

213

c) T h e se t f o r m

Results of a relation do not make a set because the same value may occur many times. With the set

form, we built a set of values instead of a multiset. The form set is a filter which captures the results

already computed and memorized in a list. This form is defined by the reduction rule :

(f : a l . . an) mlp rl ~2 rp , U (ri) = (s l , s2 sq}
1 ~i~]~

(setI) : a l . . . a n ~ s l s2 sq

3 .4 - P r o c e s s e s

The computation of results requires particular mecanisms which look like the control of processes

in a parallel language. So, we can easily use the relations as processes without the need of a modification

of the GREL reduction (evaluation) machine. A relation, seen as a process is an object, which can be

handle with appropriate functions. A process is self modified each time it is activated, in order to give a

new result of the relation at each new activation. Processes are useful to control the stream of

computations results. They may be include in a relation or in an other process.

Creation : A relation is constructed as a process with the create function. Its reduction rule is :

create : fx l . . . xn ~ (process fx l . . .xn)

The form (process f xl . . .xn) is a GREL object, which is interpreted as a suspended process,

corresponding to the application of the relation f to xl.. . .xn.

Activation : The activation of this process is given by the function next. This function computes the next

result of the relation.

1) If (f : xl . . .xn) ~- y l y2 then we have (next : (process f xl . . .xn)) ~ y l , and

the process self modifies to a process (process g zl . . .zm) such that we have the reduction

(g: z l . . .zn) ~ y2 y3 ...

2) t f (f : x l . . .xn) has no result, then (next : (process f xl . . .xn)) ~ e r ror .

With this form, we can compute all the results of a relation by repeating the function next. Example :

(de : foo (union next foo))

(foo o create : f x l ...xn) ~ y l y2

Peck : It is not possible to know if there exists other results without activating the process. But we can

know if no more activations of the process may be done. The peek function applied to a process reduces

to t rue if other activations are possible, else reduces to nil.

kil__2 : In order to relieve the memory and the stack management, the kill function applied to a process

deletes it, and frees memory space.

Duplicate : A process may be duplicated in order to compute the same results of a relation several times.

Since GREL is a pure relational language, no partial memory copying is required. The dupl ica te

function, applied to a process, does not copy the process but only keeps a continuation address.

214

4 - E X A M P L E S

Because GREL is an extension of GRAAL, all functional problems may be very efficiently written
in GREL. But, this language is particularly interesting when many results are required. In that case, it

shows its full efficiency and flexibility. We give three examples of such programs.

4.1 - The powers of two and three

We want to compute all the numbers of the set P(2,3) = { 2P * 3 q , p,q e N}. In order to have a
constructive definition of P(2,3), we transform the definition in :

P(2,3) = {1} U { 2 ' k, k e P(2,3)} U {3 * k , k e P(2,3)}
So, the definition of the relation pui23 which gives all the powers of 2 and 3 is :

(de : pui23
(union ' 1

{muI '2 pui23}

{mul '3 pui23}))

In accordance with the strategy, the reduction of ((set pui23) :) gives powers of two and three in

different orders :

1) If the limited depth is one
((s e tpu i23) :) ~ 1 2 3 4 6 9 8 1 2

2) If limited depth is three
((set pui23) :) m- 1 2 4 8 16 12 24

3) If limited depth is infinite (i.e. a very large number)
((s e tpu i23) :) ~- 1 2 4 8 1 6 3 2

But, we can also compute the subset of P(2,3) given by :
pn,m(2,3) = { 2P* 3 q, 0 < p < n , 0 < q < m }

We define the relation pui231 computing the elements of this set. The two arguments of pui231 are

respectively the number of power of 2 and 3 allowed.

(de : pui231
(union '1

(if

(if

{eq '0 #1}
culdesac
{mul '2 {pui231 subl o#1 #2} })

{eq '0 #21
culdesac
{mul '3 {pui231 #1 subl o #2}})))

With a limited depth equal to
((set pui231) : 2 1) m~-
((set pui231) : 3 2) i -

one, wehave the re~c f ions :
1 2 3 4 6 1 2
1 2 3 4 6 9 8 1 2 1 8 2 4 3 6 7 2

215

4.2 - Subsets m a n a g e m e n t

Thesubsets of a set : All the subsets are easily given by the relation (set are implemented as lists) :

(de : subsets

(if null

nil

(union {cons car subsets o cdr}

subsets o cdr)))

(subsets : < 1 2 3 >) ~ <1 2 3> <1 2> <1 3> <1> <2 3> <2> <3> <>

The partitions : The partitions of a set are defined by the relation partition :

(de : partition

(if nun
nil

{partitionl car partition o cdr}

The reduction rule of pa r t i t lon l is :

(partitionl : x < I1 12>) m- < < x . t1> 12...> <11 < x . 12> ...>

The relation par t i t ion l is defined by :

(de : partitionl

(if nul lo #2

{cons
(union

{cons #1 nil} nil}

{cons {cons #1 caro#2}

cdr o #2}

{cons car o #2

{partitionl #1 cdro#2} })))

Remark : In case of an infinite limited depth, these two relations need a space in the stack and in the

memory proportional to the number of elements in the set. In case of a pure functional programming of

these two relations, the space is exponential in the number of elements in the set.

4.3 - Same fringe

With the relations used as processes, we are able to solve the same fringe problem defined in

[Durieux 81]. The required algorithm must compare the leaves of two trees. The bad method is to

linearize the two trees before to compare them. The difference may appear at the first leaf, and the two

leaves lists would have been useless. The good solution which we describe here, is to compare the leaves
streams of the two trees.

Representation of a tree : We only consider the binary trees with nodes labelled by a symbol. So, a tree is

a atom (i.e. a leaf) or a list of three elements which are the symbol of the node and the two subtrees.
Examples : <nl <n2 a b> c> c <nd e>

The tree fringe : The fringe of a tree is the ordered list of its leaves. We define the relation fringe which

computes the leaves. If the relation is evaluated with a infinite limited depth, then the order of results wilI
be correct for the relation :

216

(de : fringe

(if atomp
id

(union fringe o cadr

fringe o caddr)))

(fringe : <nl <n2 a b> <n3 <n4 c d> e>>) ~ a b c d e

Sentinel add : In order to mark the end of the fringe, we add two sentinels :

(de:fringe_s (union fringe 'endl (exit end2 true)))
Same fring~ relation. : The relation same fringe reduces to t rue if its two arguments have the same

fringe, else it reduces to <>.

(de : same_fringe

(tag end2 { same_fringe1 {create 'fringe_s #1 }
{create 'fringe_s #2} }))

(de : same_fringel

(if {eq next o #1 next o #2}
{same_fringe1 #1 #2}

nil))
(same_fringe : <n 1 <n2 a b> <n3 <n4 c d> e>> <n a < n b <n c <nd e>>>>) ~" true

(same_fringe : <n i a b > < n b <n c >) ~ <>

5 - I M P L E M E N T A T I O N

The GREL system has been implemented on a VAX 11/780 at the LITP (Laboratoire
d'Informatique Throrique et Programmation). It is based on a execution mecanism called g raph

reduct ion machine [Turner 79]. This machine runs on a classical Von Neumann machine. It is a

extension of the reduction machine of GRAAL, which is described in [Bellot 86b]. We explain the

GREL machine and the dynamic representation of graphs.

5.1 - G R E L machine

The GREL machine reduces graphs describing expressions of the language, until the obtention of

an irreducible expression, which is the result. We suppose that relations are monoadic in order to

simplify the writing. So, we have to describe the graphs bound to GREL expressions, their reduction,

and the strategy of reduction used.

Gr.aph : Since a relation has a class of results, the graph considers classes of element corresponding to

GREL expressions. A graph is represented by :

~ ~ ~,~,~-.~.'~ or
gl g2 g3 gn f

X

217

with gl,...gn graphs, f a relation, x a GREL object, and p an integer called the current depth, which

will indicate when the limited depth is reached. In the first graph, f will have to be applied to the

reduction of each graph gi. In the second graph, f wii1 have to be applied to x. The grey bar indicates

that the reduction have to be delayed. Moreover, this second graph (issued from the form union) is called

"delayed node".

Initially, the graph representing the expression (f" x) is • f/'~, ~

x
Reduction rules : They transform the graphs describing an expression from the initial representing until

an irreducible graph. The reduction rules are classified in four groups.

1) Management results rules :

f x g2 g3 gn

•)

x g2 g3 gn

,,?,,7,,,t.,,?,@ > ...
x hi hn hi hn

2) Primitive rules : Each primitive function behaviour is described with a reduction rule. These rules are
intuitive but are not really graph reduction rules. Example :

<a.b> 3

3) Functional forms rules : We bind to each form a reduction rule. For instance the binary composition is
bound to the rule :

x
4) Union rules : The form union is bind to a rule which is applicable only if p is smaller than the limited
depth. This rule is :

(uuioa f ~
x

x
If p is equal to the limited depth, the reduction rule is :

(union f ~)

x
(union f ~

x

218

Strategy_o_f reduction : The call-by-value and the lirnited-depth-first route indicate in which order the
reductions are done. Graphs Reductions are deterministic (at each step, only one reduction is allowed).
The reductions must correspond to the call-by-value used in GREL. Thus, the reductions previously
described are only allowed when x is a GREL object and not a graph. The limited-depth-first strategy
corresponds to the two principles (the first must be tried before the second) :

1 - Between all the delayed nodes appeared in the graph, since the last reduction with the rule applied in
next case (or since the beginning), we select the left most and depth most node in the graph. Thus, if the
graph is irreducible, we apply the rule to this node:

X X

2 - If the graph is still irreducible, then we apply to the delayed node, which contains the smallest p in all

the graph, the rule :

X X

5.2 - Dynamic representation of graphs

This section describes how the graphs are represented in the memory. We do not entirely examine

it, because it is a generalization of the GRAAL system which is explained in [Bellot 86b]. We just
specify what is modified. In this way, there are two new developments to do : the memorization of
delayed nodes, and the activation of delayed nodes. These two notions appear in the stack management.

Memorization : Only the form union creates delayed nodes in the reduction graph. The delayed nodes are
memorized in the stack, but hiden to the rest of the stack. The correspondence between the graph and the

stack is :

S ~ k
pointer

Stack I
Remark : The creation of a delayed node is very simple : we just have to push in the stack the address of
the form (union f2...fn) and the argument x. This is why GREL is implemented in a functional
language and not in an applicative language. The applicative languages, as the Lisp system, require a
safeguard-restorat ion mecanism to variables management. This is really unefficient, whereas the

functional languages do not need it.

219

Activation : The caches are activated when the second principle is used. The correspondence between
graphs, reductions and the stack is :

Reduc~on f/~
x x

~ack

~mck
l~oin~r

6 - CONCLUSIONS

This work describes a relational programming language without variable, issued from GRAAL
system. This language is as efficient as a functional language and gives more flexibility.

The appearance of relations in programming almost preserves the same efficiency that the
functional language, when they are implemented in a language without variable. This is another element
on account of functional language better than applicative language.

As only functional languages have been developed until now, almost all the classical examples are
functional. But, the class of "multi-results" problems is as important as the class of functional problems.
In point of fact, the "multi-results" problems are implemented in functional languages, using side effects.
They can not be efficiently written in a pure functional language, like the algorithm giving all the
partitions of a set. So, relations avoid inappropriate programming, and allow more flexibility in programs
writing.

One of the most important applications of Relational GRAAL is given by the programming in
logic. The logic languages are declarative one. Relation appears as the procedure corresponding to the
translation of a declarative Horn clause used in logic. Thus, relation is nearest computation than clauses,
and consequently is more efficient. Therefore, logic languages can be naturally implemented in a
relational language. Moreover, We have realized [Legrand 87] a programming language in logic from
GREL. This kind of approach gives an easy and efficient implementation, because the bactracking used
in logic programming is already implemented in the Relational Language. The limited-depth-first is even
a generalization of the PROLOG strategy, and the relations as processes allow implementation of
coroutines and predicate "freeze".

220

The progranmaers used to functional or applicative languages do not have to try to adapt when they
use the relational programming. Relations give flexibility and efficiency to the functional languages
without compensations.

Acknowledgement : I am thankful to P. Bellot and V. Jay for their generous contribution to this paper. I
also thank O. Danvy, A. Belkhir, D. Sarni and C.T. Lieu for interesting discussions. This work has
been supported by the Grtco de Programmation (Bordeaux) under project SPLA.

References

[Bellot 86a] P. Betlot, Graal : a functional programming system with uncurryfied
combinators and its reduction machine, European Symposium on Programming,
(ESOP 86), LNCS 213, Saarbriicken, mar s 1986

[Beilot 86b] P. Bellot, Sur les sentiers du Graal, 6tude, conception et rtalisation d'un langage
de programmation sans variable, Th~se d'ttat, Rapport LITP 86-62, Paris,
octobre 1986

[Bellot 87] P. Bellot, V.Jay, A theory for Natural Modelisation and Implementation of
Functions with Variable Arity, to appear in LNCS, Portland, septembre 1987

[Chaiiloux 84] J. Chailloux, M. Devin, J.M. Hultot, LE_LISP, a portable and efficient LISP
System, Conference Record of the 1984 ACM Symposium on LISP and
functional Programming, p 113-123, Austin, Texas, 1984

[Cutland 80] N.J. Cutland, An introduction to recursive function theory,

[Durieux 81] J.L Durieux, Stmantique des liaisons nom-valeur : application ~t I'impltmentation
des lambda-langages, Th~se d'ttat, Universit6 Paul Sabatier, Toulouse, 1981

[Eilenberg 70] S. Eilenberg, C.C. Elgot, Recursiveness, Academic press, New york, 1970

[Korf 85] R.E. Korf, Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,
Artificial Intelligence, Vo127, p 97-109, 1985

[Legrand 87a] R, Legrand, Le calcul relationnel au service de 1'implantation d'un langage de
programmation en logique, Stminaire de programmation en logique, CNET
Lannion, Ed M.Dincbas, p 333-346, Trtgastel, 1987

[Legrand 87b] R. Legrand, Calcul Relationnel et Programmafion en Logique, Thbse de
l'Universit6 Paris VI, 1987

[Turner 79] D.A. Turner, Another Implementation Technic for applicative Language,
Software Practice and Experience, Vol. 9, 1979

[Nguyen 85] T.T. Nguyen, Algebraic theory of predicate transformers for relational
programming, Research Report No RR 85-12, Louvain, 1985

