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Abstract : This article describes the relational programming paradigm. Because a function is a particular 

case of relation, we can consider the computation of points-to-set processes (relations) instead of 

points-to-point processes (functions). Relations are useful for parallel, non-deterministic or multi-valued 

algorithms. The first section presents the main features of the proposed language and it is shown how 

relations make programs more flexible and natural. Then, we present an efficient implementation of the 

language on a classical architecture. 

1 - INTRODUCTION 

In this section, the main principles of the relational programming concept are developed. 

Functions and Relations : A computable function is a points-to-point process since it associates at most 
one value to its arguments, A n-ary function fcan be defined by the n+l-ary relation R such that : 

R = {(xl,x2,....xn,y) / y=f(xl,...xn)} 

Relations are a generalization of functions in the sense that they associate a possibly infinite set of values 

to their arguments [Nguyen 85, Eilenberg 70]. For instance, the n+l-ary relation R(xl,..,xn,y) defines 

the points-to-set function f such that : f(xl,..,xn) = {y / R(xl,..,xn,y)} 

Computable Relations : The automatic treatment of all mathematical relations is impossible so we must 

deal only with computable relations [Cufland 80]. The relations that we consider are defined by 

computable programs written in the language GREL given in the next section. The programs in GREL 

are constructed by combining smaller programs until we reach some primitives which are ordinary 

functions. Special operators are designed in order to turn several functions into a single relation with a 

finite number of results. And recursivity allows to construct relations with an infinite but nevertheless 

semi-computable set of results. 

R¢lotions and Continuations : The result of a relational program is a finite or infinite set of values. These 
values are returned one at a time and are used by the continuation of the relation which can be any kind 

of process, a function or an other relation. The overall program consisting of a relation followed by its 
continuation acts as a pipe where the relation provides input values and the continuation processes them. 
A special set of control operators allows to break the pipe or capture values. 
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Multisets of Results : The same value may occur many times in a relation. Because a value is transmitted 

to the continuation as soon as it is computed, no trace is kept of it and it is not possible to remove its 

further occurrences. Although this case is rare and issued from computation organization, it is better to 

talk about points-to-multiset relations than points-to-set relations. Moreover, the elements of these 

multisets are computed sequentially and we must consider that they are ordered by their times of 
appearance. 

.Control of Relations : Therefore, a relation applied to some arguments becomes a value generator which 
can be controlled and used with appropriate tools provided by the language. For instance, the 

programmer can choose between different strategies which determine the order of appearance of the 

values. 

Running vs. Susvended : As in most functional languages where programs are objects, the result of 

applying a relation can be considered as an object of the language as soon as it is created and captured. 
The object relation can be treated as any other object and looks like a suspended process. For instance, 

we can duplicate it, kill it or activate it in order to get the next value. Thus a relation may have two states, 

running or suspended. A running relation partakes of the current process whereas a suspended relation 
may be temporarily runned as an oracle providing values. 

Use of Relation : The usefulness of relations in the design of algorithms appears when programs are non 
deterministic, parallel or multi-valued. For instance we can construct a class of values by giving parallel 

inductive rules of construction which can be applied non-deterministicaly. The class of numbers 
P(x,y) = { xP * yq, p,q e N} can be defined by : 

P(x,y) = {1} U {x * k ,k  e P(x,y)} U {y * k, k e P(x,y)} 

Relations can also be used for streams generation because a stream is a particular case of relation where 

any value is given by a function of its predecessor. Finally, it will be shown that relations are efficiently 
and flexibly usable in programs where functions have multiple results. 

Host Laneua~e for Relations : Since early 60% a lot of functional languages have been designed but 
none of them have been extended so as to support the computation of relations. The main reason seems 

to be the presence of variables since almost all these languages are lambda-languages. As a matter of fact, 

variables compel the implementation to do a very complex environment management which seems 
unrealistic in the general case of relations. That is why the variableless programming language GRAAL 

[BeUot 86a, Bellot 86b] has been chosen as the host language for the relational calculus. 

Principle of Implementation : It is important to see that a relation will not only be a kind of function with 
multi-values. In order to accept all recursive relations with eventualy an infinite set of results, partial 

results must be immediately transmitted and not "put in wait". It is implemented by a pipe-oriented 
mecanism. Because all resulting values of a relation are transmitted to its continuation, the same 

computation occurs as many times as there are such values. That is to say that the unfoldings of these 

computations in the stack are done every time although they are roughly identical one to each other. The 
main principle of the implementation is to preserve the first unfolding in the stack so that it can be used 
without being constructed by further computations. This is realized through an original system of caches 

onto the reduction stack. With this method of implementation, the average loss of GREL compared to 
GRAAL is only 10% so that Relational GRAAL is still among the fastest applicative languages. 
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The plan of the article is the following. The first section is a brief introduction to the programming 

language GRAAL and its principles. The second section describes the new operators required in order to 

support the relational concept. The third section shows how relations can be used in the design of 

algorithms. Finally, the last section describes the implementation of relations as an extension to the 

GRAAL reduction machine described in [Bellot 86a]. 

2 - GRAAL,  the Host Language 

We present a short digest of the language GRAAL. A complete presentation of GRAAL and its 

issues is in [Bellot 86b], and its theorical support is given in [Bellot 87]. GRAAL is a functional 
programming language without variable. It is based on the notions of functional forms and uncurryfied 

combinators. The functions are polyadic. The application of a function f to the arguments al , . . . ,an is 

denoted (f : al. . .an). Applications are reduced using call-by-value. The notation E ~ F stands for "E 
reduces (or evaluates) to F". The objects are numbers, symbols,lists or functional forms. Lists, used as 

data, are denoted by brackets instead of parenthesis. Examples : <>, < a b < 1 c 2 > >. 

The primitive functions are issued from Lisp systems [Chailloux 84]. Semantic of functions is 

described by reduction rules. Examples : 

c a r : < a . b >  ~ a 
c d r : < a . b >  m b 

c o n s : a  b m < a . b >  

null : <> ~- true 

add:  2 3 ~ 5  

true : al.. .an ~ true 

e q : a b  m-true i f a = b  

c a r : < >  m~ <> 
cdr : <> ~ <> 

n u l l : a ~  <> i f a ~ < >  
sub1 : 5 m- 4 

false : al...an ~ <> 

i d : a  ~ a 

Arguments of a function are implicitly numbered starting from one. If k > 0, #k applied to n 

arguments with k < n, reduces to the argument whose rank is k. Example : 

# 3 : a b c d e f  ~- c # 5 : a b c  ~- error 
The reader in acquaintance with functional programming may complete by himself the set of 

primitive functions and their reduction rules. 

More complex functions are built with functional forms which are combinations of functions. A 

functional form realizes a functional operation occurring frequently in programs. The primary syntax is 
(opf p l  ...pn) where opf  is the name and p l ,p2 , . . .pn  are the parameters. Despite of appearance, 
(opf p l  ...pn) is not a list. Functional behaviour of forms is described by reduction rules. The set of 

functional forms is not fixed. Only a few of them will be considered in this ar~cle. 

Composition : the name of the composition form is eomp. It accepts any number of parameters greater 

than two. Its reduction rule is : 
g i : a l . . . an  ~ b i ,  1 _ < i  <_p 

(comp f gl .... gp) : al.. .an ~- f : b l  ...bp 
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For sake of readibility, the syntactic analyser of GIL~AL ~11 recognize the following notations : 

1) f o  g stands for (comp fg)  

2) {f gl...gn} stands for (comp f gl...gn) 
3) (f gl...gn)stands for (comp f gl...gn) if f is not a combinator but is defined. 

Conditional : the name of this form is if and it accepts three parameters. Its rules of reduction are: 

p : al  ...an ~ <> 

(if p f g) : a l  ...an D- g : al  ...an 

p : a l . . . a n  ~ x , x ¢ < >  

( i f p f g ) : a l . . . a n  ~- f : a l  ...an 

Constant : in order to program a constant function, we must use the one-parameter form whose name is 

cste. Its reduction rule is : (cste c) : al ...an ,~ c 

The syntactic analyser of GRAAL recognizes the notation 'e for (este e). 

Examples of defined functions : the definition of a function f is given by the evaluation of the expression 

(de : f b), where f is a symbol (the name) and b is a function (the body). So, we have the examples : 

(de : caddr car o cdr o cdr) 

(de : last (if null o cdr car last o cdr)) 

(de : append 

(if null o #1 
#2 

{cons car o #1 {append cdr o #1 #2} } )) 

The reader may find a lot of programming examples in [BeUot 861o] and the scheme of implementation is 
given in [Bellot 86a]. 

3 - R E L A T I O N A L  GRAAL 

The relational GRAAL is also called GREL (acronym of Graal RELationnel). It is a development 

of GRAAL towards the relations. All the primitive functions and forms in GRAAL are still used in 

GREL. The evaluation of a function is almost the same. But, in GREL we add special forms and 
functions in order to built "non-functional" relations. 

Notation : when the application of a relation f to the arguments a l , . . . an  gives a multiset of results 
b l ,b2 ,  . . . .  we denote the reduction (evaluation) by : (f : al...an) ~ bl  b2 b3... 
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3.1 - Union  form 

The most important form used for the construction of relations is union. No restrictions of use are 

made for this form. For instance, recursivity and an infinite number of results are allowed. In case of an 

infinite number of results, there are computed one at a time, and are given at once to the continuation of 

the relation. In a first step, we do not consider the order of the results given by the evaluation of a 

relation. It will be studied in the next section. The union form is defined by the reduction rule : 

f i : a l . . . a n  =~ yi l  ..... yipi , l _ < i < n  

(union f l  ...fn) : al. . .an ~ y l l  .... y l p l  y21....y2p2....ynpn 

Examples : 

(de foo : (union (union add1 sub1) 

(union id '3 '4 ))) 

( foo:45)  =~ 46 44 45 3 4 

(de : integer (union '0 add1 o integer)) 

(integer : ) =~ 0 1 2 3 .... 

(de : even {mul '2 integer}) 

( even : )  I -  0 2 4 6.. .  

3.2 - O rde r  of computations results 

A relation gives the results in a specific order which is described as follows. The choice of the 

order is very important in case of infinite results or infinite loops. In a first step, we describe how to 

define the order of results in a relation. Then, we explain the variable strategies which order all the 

relational computations. 

a) Union  tree 

The order of results is defined from the un ion  tree joined to each relation applied to the 
arguments. Each leaf corresponds to a result of  the application, and each node corresponds to a union. 

The union tree joined to the application (f : al . . .an) is recursively defined by : 

1) If f is a primitive function, then the nee is only reduced to the leaf labelled by the value obtained by the 

reduction of the application (f : al...an). 
2) If f = (union f l  ...fp), then the union tree of (f : al.. .an ) is a tree with p subtrees constitued 

of the union tree of all the (fi : al...an ) : 

t r t~( f l :~ l . .Jm) tr~Q(~:al...Jm) ....... tr~effl~:~,l...~] 
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3) If f = (este x), then ease 1 applies. 

4) If f = g o h, then the union tree of (f : a l . . .an ) is the union tree of (h : a l . . .an  ) in which each 

leafy is replaced by the union tree of (g : y). Example : 

t t ~ z t  ~ree of  (h : 1,1. . .~)  

I t  'b . . . . . . . . . . . . . . . . . . . . . .  Z 

, ) 

u.mo~, tree of  (g o ~. : ~t l . . .~}  

~ ( g  : ~) ~r~(g : 1,1 . . . . . . . . . . . . . . .  try<S" : z) 

5) If f = (if p q r), then the tree of (f : al..oan ) is the union tree of (p : a l . . .an)  in which each 

leaf y is replaced by : 

i) The union tree of (q : a l . . .an  ) if y ~ <> 

ii) The union tree of (r : a l . . .an ) else. 

6) All other cases could be translated in one of the precedent cases, because all the considered forms may 
be only defined with the four forms union, cste, if and binary comp. The reader may also complete by 
himself the similar cases corresponding to the other forms. 

Examp_~ : 

1) The union tree joined to the application (foo : 45) is : 

45 44 45 3 4 

2) The union tree joined to the application (integer : ) is : 

1 

,.o 

b) The control of relations 

The order of results is characterized by the route (or strategy) chosen through the union tree. The 

reduction machine of the relational GRAAL contains a basic route used for all the relations. This route, 
called limited-depth-first, is complete (each result is fred in a finite time) with no multi-computation of 

same partial results, which is not the case with the "Depth-First Iterative-Deepening" in [Korf 85]. 

Depth-first route : The rule bound to this strategy is to choose the subtree of a node before the other 
subtrees of last node encountered. The depth-first route of the union tree is the most efficient and easily 

implemented strategy. Nevertheless, it is not a complete strategy : some of the results are possibly not 
computed if there exists a infinite sub-tree. Therefore, we have used a l i rui ted-depth-first  strategy 

which is complete and may be almost as efficient as depth-first strategy. This strategy is described as 
fotlows : 
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L i m i t e d ~ f i r s t  r0ute : It is a depth first route whose depth is limited by a given value. At the 

beginning, the considered node is the mot and we go over the tree with respect to the depth-ftrst mute, 
memorizing all the encountered nodes in which all the subtrees have not been go over. When we reach 

the maximal depth, we suspend and restart the mute from the memorized node which is the nearest to the 

root. The route stops when there is no more memorized subtree. 

It is a complete strategy because the maximal difference between two memorized nodes is lower 

than the maximal depth. Moreover, it is a efficient strategy when we choose a great maximal depth, 

because it will be almost a depth first strategy. The accessible parameter for the user is the maximal 

depth. In case of depth limited to one, it is a breadth first strategy. In case of infinite limit, it is a depth 

f~rst strategy. Therefore lim&ed depth strategy is a generalization of these two classical strategies. 

So far, we know how to construct relation, that is to say that we are able to generate an infinite 

number of results using the union form. Now, we are faced to the problem of managing these results. 

3.3 - Management of results 

In some cases, we do not want to find or compute all the results of a relation but only a few of 

them. Thus, we define a lot of functions or forms which stop or do not execute the computations of 

unwanted results. 

a) The cut 

According to the portion of unwanted results, we use different "cut" as for example : 

1) The function euldesac only cuts the current subtree of the union tree, Example : 

((union '1 '2 o culdesac '3) : ) ~ 1 3 
2) The function stop cuts all the subtrees of the union tree joined to the relation, Example : 

((union '1 ' 2os top  '3):  ) ~ 1  
4) The form exit included in the form tag (with the same joined function) only cuts the subtrees 

appeared in the form tag.The second parameter of the form exit gives the last result of the form tag. 

Example : 
((union '1 (tag end (union '2 '3 o (exit end '4) '5)) '6) ~ 1 2 4 6 

b) The first form 

In order to obtain only the n first results of a relation, we use the first form. The reduction rules 

a r e :  

f :  al...ap m- r l  . . . r q , q < n  f : at...ap ~ r l  ...rq .... n < q 

(first n f) : al...ap ~ r l  ...rq (first n f) :  al...ap ~ r l  ...m 

Example: ((ftrst 10 integer) :)  o- 0 1 2 3 4 5 6 7 8 9 
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c) T h e  se t  f o r m  

Results of  a relation do not make a set because the same value may occur many times. With the set 

form, we built a set of values instead of  a multiset. The form set is a filter which captures the results 

already computed and memorized in a list. This form is defined by the reduction rule : 

( f : a l . .  an) mlp rl  ~2 .... rp , U (ri) = (s l , s2  .. . . .  sq} 
1 ~i~]~ 

(setI )  : a l . . . a n  ~ s l  s2  . . . .  sq 

3 .4  - P r o c e s s e s  

The computation of  results requires particular mecanisms which look like the control of  processes 

in a parallel language. So, we can easily use the relations as processes without the need of a modification 

of the GREL reduction (evaluation) machine. A relation, seen as a process is an object, which can be 

handle with appropriate functions. A process is self modified each time it is activated, in order to give a 

new result of  the relation at each new activation. Processes are useful to control the stream of 

computations results. They may be include in a relation or in an other process. 

Creation : A relation is constructed as a process with the create function. Its reduction rule is : 

create : fx l . . . xn  ~ (process fx l . . .xn)  

The form (process f xl . . .xn) is a GREL object, which is interpreted as a suspended process, 

corresponding to the application of the relation f to xl.. . .xn. 

Activation : The activation of this process is given by the function next. This function computes the next 

result of  the relation. 

1) If (f : xl . . .xn) ~- y l  y2 . . . .  then we have (next : (process f xl . . .xn))  ~ y l ,  and 

the process self modifies to a process (process g zl . . .zm) such that we have the reduction 

(g: z l . . .zn)  ~ y2 y3 ... 

2) t f  (f : x l . . .xn)  has no result, then (next : (process f xl . . .xn))  ~ e r ror .  

With this form, we can compute all the results of a relation by repeating the function next. Example : 

(de : foo (union next foo)) 

(foo o create : f x l  ...xn) ~ y l  y2 .... 

Peck : It is not possible to know if there exists other results without activating the process. But we can 

know if no more activations of  the process may be done. The peek function applied to a process reduces 

to t rue if  other activations are possible, else reduces to nil. 

kil__2 : In order to relieve the memory and the stack management, the kill function applied to a process 

deletes it, and frees memory space. 

Duplicate : A process may be duplicated in order to compute the same results of a relation several times. 

Since GREL is a pure relational language, no partial memory copying is required. The dupl ica te  

function, applied to a process, does not copy the process but only keeps a continuation address. 



214 

4 - E X A M P L E S  

Because GREL is an extension of GRAAL, all functional problems may be very efficiently written 
in GREL. But, this language is particularly interesting when many results are required. In that case, it 

shows its full efficiency and flexibility. We give three examples of such programs. 

4.1 - The  powers  of  two and  three  

We want to compute all the numbers of the set P(2,3) = { 2P * 3 q , p,q e N}. In order to have a 
constructive definition of P(2,3), we transform the definition in : 

P(2,3) = {1} U { 2 '  k, k e  P(2,3)} U {3 * k , k  e P(2,3)} 
So, the definition of the relation pui23 which gives all the powers of 2 and 3 is : 

(de : pui23 
(union ' 1 

{muI '2 pui23} 

{mul '3 pui23} )) 

In accordance with the strategy, the reduction of ((set pui23) : ) gives powers of two and three in 

different orders : 

1) If the limited depth is one 
( ( s e tpu i23 ) : )  ~ 1 2 3 4 6 9 8 1 2  ..... 

2) If limited depth is three 
((set pui23) : ) m- 1 2 4 8 16 12 24 ..... 

3) If limited depth is infinite (i.e. a very large number) 
( ( s e tpu i23 ) : )  ~- 1 2 4 8 1 6 3 2  .... 

But, we can also compute the subset of P(2,3) given by : 
pn,m(2,3) = { 2P* 3 q,  0 < p < n , 0 < q < m  } 

We define the relation pui231 computing the elements of this set. The two arguments of pui231 are 

respectively the number of power of 2 and 3 allowed. 

(de : pui231 
(union '1 

(if 

(if 

{eq '0 #1} 
culdesac 
{mul '2 {pui231 subl o#1 #2} } ) 

{eq '0 #21 
culdesac 
{mul '3 {pui231 #1 subl o #2}} ) )) 

With a limited depth equal to 
((set pui231) : 2 1) m~- 
((set pui231) : 3 2) i -  

one, wehave the re~c f ions :  
1 2 3 4 6 1 2  
1 2 3 4 6 9 8 1 2 1 8 2 4 3 6 7 2  
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4.2 - Subsets  m a n a g e m e n t  

Thesubsets of  a set : All the subsets are easily given by the relation (set are implemented as lists) : 

(de : subsets 

(if null 

nil 

(union {cons car subsets o cdr} 

subsets o cdr ))) 

(subsets : < 1 2 3 > ) ~ <1 2 3> <1 2> <1 3> <1> <2 3> <2> <3> <> 

The partitions : The partitions of  a set are defined by the relation partition : 

(de : partition 

(if nun 
nil 

{partitionl car partition o cdr} 

The reduction rule of pa r t i t lon l  is : 

(partitionl : x < I1 12 ....>) m- < < x .  t1> 12...> <11 < x .  12> ...> ..... 

The relation par t i t ion l  is defined by : 

(de : partitionl 

(if nul lo  #2 

{cons 
(union 

{cons #1 nil} nil} 

{cons {cons #1 caro#2} 

cdr o #2} 

{cons car o #2 

{partitionl #1 cdro#2}  }))) 

Remark : In case of  an infinite limited depth, these two relations need a space in the stack and in the 

memory proportional to the number of elements in the set. In case of  a pure functional programming of 

these two relations, the space is exponential in the number of  elements in the set. 

4.3 - Same fringe 

With the relations used as processes, we are able to solve the same fringe problem defined in 

[Durieux 81]. The required algorithm must compare the leaves of  two trees. The bad method is to 

linearize the two trees before to compare them. The difference may appear at the first leaf, and the two 

leaves lists would have been useless. The good solution which we describe here, is to compare the leaves 
streams of  the two trees. 

Representation of  a tree : We only consider the binary trees with nodes labelled by a symbol. So, a tree is 

a atom (i.e. a leaf) or a list of  three elements which are the symbol of  the node and the two subtrees. 
Examples : <nl  <n2 a b> c> c <nd  e> 

The tree fringe : The fringe of a tree is the ordered list of  its leaves. We define the relation fringe which 

computes the leaves. If the relation is evaluated with a infinite limited depth, then the order of results wilI 
be correct for the relation : 
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(de : fringe 

(if atomp 
id 

(union fringe o cadr 

fringe o caddr))) 

(fringe : <nl  <n2 a b> <n3 <n4 c d> e>>) ~ a b c d e 

Sentinel add : In order to mark the end of the fringe, we add two sentinels : 

(de:fringe_s (union fringe 'endl (exit end2 true) )) 
Same fring~ relation. : The relation same fringe reduces to t rue  if its two arguments have the same 

fringe, else it reduces to <>. 

(de : same_fringe 

(tag end2 { same_fringe1 {create 'fringe_s #1 } 
{create 'fringe_s #2} })) 

(de : same_fringel 

(if {eq next o #1 next o #2} 
{same_fringe1 #1 #2} 

nil )) 
(same_fringe : <n 1 <n2 a b> <n3 <n4 c d> e>> <n a < n b  <n c <nd  e>>>>) ~" true 

(same_fringe : <n i  a b > < n b  <n c >) ~ <> 

5 - I M P L E M E N T A T I O N  

The GREL system has been implemented on a VAX 11/780 at the LITP (Laboratoire 
d'Informatique Throrique et Programmation). It is based on a execution mecanism called g raph  

reduct ion machine  [Turner 79]. This machine runs on a classical Von Neumann machine. It is a 

extension of the reduction machine of GRAAL, which is described in [Bellot 86b]. We explain the 

GREL machine and the dynamic representation of graphs. 

5.1 - G R E L  machine  

The GREL machine reduces graphs describing expressions of the language, until the obtention of 

an irreducible expression, which is the result. We suppose that relations are monoadic in order to 

simplify the writing. So, we have to describe the graphs bound to GREL expressions, their reduction, 

and the strategy of reduction used. 

Gr.aph : Since a relation has a class of results, the graph considers classes of element corresponding to 

GREL expressions. A graph is represented by : 

~ ~  ~,~,~-.~.'~ or 
gl g2 g3 .... gn f 

X 
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with gl,...gn graphs, f a relation, x a GREL object, and p an integer called the current depth, which 

will indicate when the limited depth is reached. In the first graph, f will have to be applied to the 

reduction of each graph gi. In the second graph, f wii1 have to be applied to x. The grey bar indicates 

that the reduction have to be delayed. Moreover, this second graph (issued from the form union) is called 

"delayed node". 

Initially, the graph representing the expression (f" x) is • f/'~, ~ 

x 
Reduction rules : They transform the graphs describing an expression from the initial representing until 

an irreducible graph. The reduction rules are classified in four groups. 

1) Management results rules : 

f x g2 g3 .... gn 

• ) 

x g2 g3 .... gn 

,,?,,7,,,t.,,?,@ > ... 
x hi .... hn hi .... hn 

2) Primitive rules : Each primitive function behaviour is described with a reduction rule. These rules are 
intuitive but are not really graph reduction rules. Example : 

<a.b> 3 

3) Functional forms rules : We bind to each form a reduction rule. For instance the binary composition is 
bound to the rule : 

x 
4) Union rules : The form union is bind to a rule which is applicable only if p is smaller than the limited 
depth. This rule is : 

(uuioa f ~  
x 

x 
If p is equal to the limited depth, the reduction rule is : 

(union f ~  ) 

x 
(union f ~  

x 
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Strategy_o_f reduction : The call-by-value and the lirnited-depth-first route indicate in which order the 
reductions are done. Graphs Reductions are deterministic (at each step, only one reduction is allowed). 
The reductions must correspond to the call-by-value used in GREL. Thus, the reductions previously 
described are only allowed when x is a GREL object and not a graph. The limited-depth-first strategy 
corresponds to the two principles (the first must be tried before the second) : 

1 - Between all the delayed nodes appeared in the graph, since the last reduction with the rule applied in 
next case (or since the beginning), we select the left most and depth most node in the graph. Thus, if the 
graph is irreducible, we apply the rule to this node: 

X X 

2 - If the graph is still irreducible, then we apply to the delayed node, which contains the smallest p in all 

the graph, the rule : 

X X 

5.2 - Dynamic representation of graphs 

This section describes how the graphs are represented in the memory. We do not entirely examine 

it, because it is a generalization of the GRAAL system which is explained in [Bellot 86b]. We just 
specify what is modified. In this way, there are two new developments to do : the memorization of 
delayed nodes, and the activation of delayed nodes. These two notions appear in the stack management. 

Memorization : Only the form union creates delayed nodes in the reduction graph. The delayed nodes are 
memorized in the stack, but hiden to the rest of the stack. The correspondence between the graph and the 

stack is : 

S ~ k  
pointer 

Stack I 
Remark : The creation of a delayed node is very simple : we just have to push in the stack the address of 
the form (union f2...fn) and the argument x. This is why GREL is implemented in a functional 
language and not in an applicative language. The applicative languages, as the Lisp system, require a 
safeguard-restorat ion mecanism to variables management. This is really unefficient, whereas the 

functional languages do not need it. 
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Activation : The caches are activated when the second principle is used. The correspondence between 
graphs, reductions and the stack is : 

Reduc~on f/~ 
x x 

~ack 

~mck 
l~oin~r 

6 - CONCLUSIONS 

This work describes a relational programming language without variable, issued from GRAAL 
system. This language is as efficient as a functional language and gives more flexibility. 

The appearance of relations in programming almost preserves the same efficiency that the 
functional language, when they are implemented in a language without variable. This is another element 
on account of functional language better than applicative language. 

As only functional languages have been developed until now, almost all the classical examples are 
functional. But, the class of "multi-results" problems is as important as the class of functional problems. 
In point of fact, the "multi-results" problems are implemented in functional languages, using side effects. 
They can not be efficiently written in a pure functional language, like the algorithm giving all the 
partitions of a set. So, relations avoid inappropriate programming, and allow more flexibility in programs 
writing. 

One of the most important applications of Relational GRAAL is given by the programming in 
logic. The logic languages are declarative one. Relation appears as the procedure corresponding to the 
translation of a declarative Horn clause used in logic. Thus, relation is nearest computation than clauses, 
and consequently is more efficient. Therefore, logic languages can be naturally implemented in a 
relational language. Moreover, We have realized [Legrand 87] a programming language in logic from 
GREL. This kind of approach gives an easy and efficient implementation, because the bactracking used 
in logic programming is already implemented in the Relational Language. The limited-depth-first is even 
a generalization of the PROLOG strategy, and the relations as processes allow implementation of 
coroutines and predicate "freeze". 
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The progranmaers used to functional or applicative languages do not have to try to adapt when they 
use the relational programming. Relations give flexibility and efficiency to the functional languages 
without compensations. 
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