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Abstract 

Parallelizing compilers do not handle loops in a satisfactory manner. Fine-graln transformations 
capture irregular parallelism inside a Mop body not amenable to coarser approaches but have limited 
ability to exploit parallelism across iterations. Coarse methods sacrifice irregular forms of parallelism 
in favor of pipelining (overlapping) iterations. In this paper we present a new transformation, Perfect 
Pipelining, that bridges the gap between these fine- and coarse-grain transformations while retaining 
the desirable features of both. This is accomplished even in the presence of conditional branches 
and resource constraints. To make our claims rigorous, we develop a formalism for parallelization. 
The formalism can also be used to compare transformations across computational models. As an 
illustration, we show that Doaeross, a transformation intended for synchronous and asynchronous 
multiprocessors, can be expressed as a restriction of Perfect Pipelining. 

1 In t roduc t ion  

A significant amount  of research has been done on parallelization, the extraction of parallelism from 
sequential programs. The extraction of fine-grain parallelism--parallelism at the level of individual 
instructions--using code compaction has emerged as an important sub-field. The model of  computat ion 
for compaction-based parallelization is generally some form of shared-memory parallel computer consist- 
ing of many synchronous, statically-scheduled functional units with a single flow of control. Programs for 
these machines may be depicted as program graphs where nodes can contain multiple operations. Trans- 
formations on these programs rearrange operations to shor ten- -compac t - - the  paths through the program 
graph. Numerous commercial machines (including Multiflow's Trace series, CHOPP,  Cydrome, the FPS 
series, horizontal microengines, and RISC machines) use compaction techniques to exploit parallelism. 

The standard approach to extracting parallelism from a loop through compaction is to compact the 
loop body. This yields some performance improvement, but does not exploit parallelism that  may be 
present between separate iterations of a loop. To alleviate this problem, most systems unroll (replicate) 
the loop body a number of times before compacting. If a loop is unrolled k times, parallelism can be 
exploited inside this unrolled loop body, but the new loop still imposes sequentiality between every group 
of k iterations. We present a new loop parallelization techniqu% Perfect Pipelining, that  overcomes this 
problem by achieving the effect of unbounded unrolling and compaction of a loop. 

The program graph in Figure l a  illustrates the importance of Perfect Pipelining. (We have simplified 
the loop contro|  code for clarity: the induction variable i is incremented implicitly on the backedge, as in a 
Fortran DO loop.) The running time of this loop is 4~ steps, where r~ is the number of iterations executed. 
Multiple iterations of this loop may be overlapped subject to the constraint that  the first operation of 
an iteration is dependent on the result of the first operation of the previous iteration. Figure lb  shows a 
schedule after the loop has been unwound three times and compacted. (Two additional memory locations 
are allocated to each array to handle the extra references generated when i = n.) Operation labels have 
been substituted for the operations; subscripts indicate the increment to the induction variable. Multiple 
operations within a node are evaluated concurrently. The running time of this loop is 2~ steps. Figure lc  
shows the loop unwound five times and compacted; in this ease the running time is sn  steps. Note the 
low parallelism at the beginning and end of  the loop body in both of  these examples. 

Additional unrolling and compaction will improve the running time further, although this becomes 
expensive very rapidly. Existing compaction transformations can achieve the schedules in Figures lb  
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Figure 1: A Perfect Pipelining example. 
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and lc. Perfect Pipelining derives the program shown in Figure ld. Intuitively, the transformation 
accomplishes this by noticing that the fourth and fifth nodes of Figure le execute the same operations 
from different iterations, and that further unrolling and compaction creates more nodes of the same type. 
The transformation achieves continuous (or perfect) pipelining of the loop iterations. The running time 
for this loop is n + 3 steps. 

In the example, the pattern detected by Perfect Pipelining is very simple because there are no branches 
(other than exits) in the loop body. A surprising property of Perfect Pipelining is that it finds such a 
pattern on all paths given arbitrary flow of control within the loop body. This is a substantial improvement 
over previous techniques, which rely on heuristics to estimate the runtime flow of control [FisS1] or ignore 
branches altogether. Another important property of Perfect Pipelining is that the transformation applies 
even in the presence of resource constraints. We prove that the transformation finds a pattern given 
arbitrary resources and provide an example illustrating its performance when the loop has unpredictable 
flow of control and machine resources are a limiting factor. 

Perfect Pipelining is defined using the primitive transformations of Percolation Scheduling [Nic85b] 
and loop unrolling. To make our claims precise, we develop a formal account of our transformations. We 
define the language to which the transformations apply and provide an operational semantics. A binary 
relation <p is defined on programs using the operational semantics; <p measures when one program 
is "more parallel" than another. We use <p to prove that Perfect Pipefining is better than any finite 
unrolling with compaction. 

The resulting formalism is powerful enough to capture the intuitive notion of program improvement 
used informally throughout the literature on parallelization. Thus, we can use ~p to compare seemingly 
unrelated transformations in a meaningful way. As an example, we show that Doacross [Cyt86] can 
be derived as a restriction of Perfect Pipelining. Since Doacross is a loop pipelining transformation 
intended for synchronous or asynchronous (loosely-coupled) multiprocessors, this result suggests that our 
formalism is generally applicable across the various models of computation and transformations proposed 
in the field of program parallelization. 

2 A Simple Language 

In this section we give an informal description ofSPL, a Simple Parallel Language. In the next section we 
develop a formal definition of the language and an operational semantics. We have minimized the details 
of language design while keeping the language rich enough to allow discussion of the important problems. 
SPL is not so much a "real" programming language as a tool convenient for discussing parallelizing 
transformations. 

SPL is graphical; programs are represented by a control flow graph as in Figure la. Each node in 
the graph contains zero or more primitive operations. These operations are divided into two categories: 
assignments and tests. The evaluation of an assignment updates the store, while tests affect the flow of 
control. Execution begins at the start node and proceeds sequentially from node to node. When control 
reaches a particular node, all operations in that node are evaluated concurrently; the assignments update 
the store and the tests return the next node in the execution sequence (see discussion below). Operations 
evaluated in;parallel perform all reads before any assignment performs a write. Write conflicts within a 
node are not permitted. 

Care must be taken to define how multiple tests are evaluated in parallel. The set of tests within a 
node is given as a directed acyclic graph (dug). Each test in the dag has two successors corresponding 
to its true and false branches. A successor of a test is either another test or a name; a name is a pointer 
to a program node. We require that the dug of tests be rooted--that it have a single element with no 
predecessors. To evaluate a dug in a state, select the (unique) path from the root to a name such that 
the branches on the path correspond to the value (true or false) of the corresponding test in the state. 
Evaluation of the dag returns the node name that terminates this path. On a real machine the evaluation 
of multiple tests can be very 'sophisticated to exploit parallelism. A hardware mechanism that efficiently 
implements general dags of tests is described in [KN85]; tess general multiway jump mechanisms are used 
in many horizontal mieroengines and the Multiflow architecture. 

SPL is powerful enough to model execution of a tightly-coupled parallel machine at the instruction 
level. It is at this level that our transformational system extracts parallelism from programs. A sample 
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Bool =: t t  + ff 
Loc = Z 
Store = Loc--* Val 
Assign = Store ~ Loc × Val 
Test = Store -~ Bool 

(a) Basic domains.  

suec: Node ~ iP(Node) 
suet(u) ---- H where n = (A, (B, select, r, H)I 

pred: Node--~ 79(Node) 
p~ed(n) -- {n% c ,~ec(n')} 
op: Node -~ P(Assign + Test) 
op(n) = A • B where n = (A, (B, select, r, H)) 

node: Assign + Test --* Node 
node(z) = n where z 6 op(=) 

(b) Useful functions. 

Figure 2: Some definitions. 

SPL program is shown in Figure la .  Note tha t  this program has only one operat ion per node; such a 
program is sequential. Another,  more parallel version of the same program is given in Figure lb .  

3 L a n g u a g e  D e f i n i t i o n  a n d  O p e r a t i o n a l  S e m a n t i c s  

The formal definition of SPL and its operat ional  semantics provide a framework for proving propert ies 
of program transformations.  In subsequent sections we develop a formalism for our t ransformat ions ;  
this formalism uses the operat ional  semantics of SPL to define when one program is more parallel t han  
another .  The  operat ional  semantics of SPL closely follows the s t ructural  style advocated by Plotkin [Plo]. 

Figure 2a lists the  basic domains of SPL. Val is a domain of basic values--integers,  f loat ing-point  
numbers ,  etc. An assignment,  a function of type Assign, deviates from the s tandard  approach in t ha t  it 
does not  re turn  an  updated  store. Instead, an assignment returns a pair It, v), where v is the new value 
of location 1. This  allows us to define the  parallel execution of several assignments as the  parallel binding 
of the new values to the updated  locations. A program is a tuple (N, no, F )  where: 

N is a finite set of nodes 
no 6 N is the s ta r t  node 
F C N is the set of final nodes 

A node is a pair (A, C) where: 

A is a set of assignments 
C is a dug; a four-tuple (B, select, r, H) where: 

B is a set of tests 
select : B × Bool -~ B + H is an edge function 
r is the root  test  or a node name 
H is a set of node names 

In what  follows, s and  s' range over stores; variants of v, l, a, and  t range over values, locations, 
assignments,  and  tests respectively. We assume tha t  assignments and  tests are to ta l  atomic actions of 
type  Assign or Test. We use n for bo th  the name of a node and the node itself; the meaning is clear f rom 
the context.  

The  t ransformat ions  we define require knowledge of the locations tha t  are read and  wri t ten  by the  
primit ive operat ions to model dependency analysis. Dependency anMysis determines when two program 
s ta tements  may refer to the same memory location. The analysis is used to determine when it is safe to 
perform instruct ions in parallel. We define write(a, s) to be the location wri t ten by ass ignment  a in store 
s; read(a, s) is the set of locations read by assignment (or test)  a in store s. 

In Section 2, we discussed well-formedness conditions and semantic constraints  on programs tha t  are 
not implemented by the above description. We omit the formal definition of these requirements;  the  
details can be found in [AN87b]. The  constraints  ensure tha t  the dug of tests is well-formed and  t ha t  
two assignments  in a node cannot  write the same location. In addit ion,  the s tar t  node should have no 
predecessors and  a final node should have no successors. A final node contains a distinguished operat ion,  
result, t ha t  reads and  re turns  the result of the computat ion.  For the purposes of this paper,  we assume 
t h a t  result returns the entire final store. 
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C = (B, select, r, [t), t E B, select(t, t(s)) = t '  

(C , s , t ) - ,~ (C , s , t ' )  

C = (B, select, r, H),  n ~ C H 
(C, s, n,)  ~ n' 

A : { a l }  ,ai(s) : ( l i , ~ i ) ,  s [ . . .  , l  i +-- "0 i , . . . ]  : s t  

(A,s)  "-+s' 

,~ = (A, C),  c = (~,  ,elect, ~, n ) ,  ,~ ~_ F, (c,  s, r} < ,,,, (A, ,)  . . . ;  
(n, s) --+ (n s, d )  

Figure 3: Operational semantics of SPL. 

Figure 3 gives art operational semantics for SPL. The semantics consists of a set of rewriting rules 
in the style of inference rules of formal logic. There are two types of transitions: ~+, which defines 
transitions within a node, and -% which defines transitions between nodes. Rules are read as stating that  
the assertion below the line holds if the assertions above the line hold. The first two rules deal with the 
evaluation of a dug of tests; the third rule describes the parallel evaluation of assignments. The fourth 
rule defines the execution of a node in terms of the evaluation of the node's test d~g and assignments. 

A rewriting sequence is an execution history of one computation of  a program. For our purposes, a 
complete sequence contains much irrelevant detail; in particular, we are rarely interested in the internal 
evaluation of a node (the -~+ transitions). The following definition puts a rewriting sequence at the right 
level of abstraction for viewing execution as transitions from nodes to nodes: 

D e f i n i t i o n  3.1 The ezecntion trace of program P in initial store s, written T(P,  s), is the sequence 
(n0, so) ---+ ( n 1 , $ 1 )  ----+ ( n 2 , S 2 )  . . . . .  (~r~k,Sk) where so = s, no is the start  node of  P,  and •k E F.  
Traces are defined only for terminating computations. 

4 T h e  C o r e  T r a n s f o r m a t i o n s  

The core transformations are the building blocks of Perfect Pipelining. These primitive transformations 
are local, involving only adjacent nodes of the program graph. Though simple, the core transformations 
can be used to express very powerful code motions JAN88]. 

D e f i n i t i o n  4.1 The result R(P,  s) of a computation is the final store of T(P,  s). Two programs P and 
P '  are strongly equivalent if Vs R( P, s) = 8' <~ R( P' ,  s) = s'. 

If T is a program transformation, then 7" is correct if  7"(P) is strongly equivalent to P for all P .  We 
require that  transformations be correct; this guarantees that any sequence of transformations is strongly 
equivalent to the original program. The formal definitions of the transformations and proofs of correctness 
can be found in [AN87b]. In this paper, we briefly describe and illustrate each transformation. 

Figure 2b lists some useful functions. Succ returns the immediate successors of a node; when it 
is convenient we refer to an edge (m, n) instead of writing rL E succ(m). Pred returns the immediate 
predecessors of  a node. The function op returns the operations in a node. Node(z) is the node containing 
operation z (we assume there is some way of distinguishing between multiple copies of the same operation). 

The DeleLe transformation removes a node from the program graph if it is empty (contains no oper- 
ations) or unreachable. A node may become empty or unreachable as a result of other transformations. 
Figure 4a gives a picture. Only the relevant portion.of the program graph is shown; incoming edges are 
denoted by Ij  and exiting edges by Ej .  Note that  an empty node has exactly one successor. 

The Unify transformation moves a single copy z of identical assignments from a set of nodes {nj } to 
a common predecessor node m. This is done if no dependency exists between ~ and the operations of  
m and z does not kill any value live at m. Care must be taken not to affect the computation of  paths 
passing through n but not through m. To ensure this, the original node n is preserved on all other paths. 
An illustration is given in Figure 4b. 
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Figure 4: Primitive transformations. 

The Move-test transformation moves a test z from a node n to a node m through an edge (re, n) 
provided that no dependency exists between z and the operations of m. Paths passing through n but 
not through m must not be affected; n is preserved on the other paths. Because we allow an arbitrary 
rooted dag of tests in a node and the test being moved may come from an arbitrary point in that dug, n 
is split into at and ny, where nt and ~/ correspond to the true and false branches of z. An illustration 
of the transformation is given in Figure 5. In the illustration, a represents the dug of tests (in n) not 
reached by z, b represents the dug of tests reached on z's true branch, and e the dug of tests reached on 
z's false branch. 

Loop unrolling (or unwinding) is a standard non-local transformation. When a loop is unrolled, 
the loop body is replicated to create a new loop. Loop unrolling helps exploit fine-grain parallelism 
by providing a large number of operations (the unrolled loop body) for scheduling. The operations 
ha the unwound loop body come from previously separate iterations and are thus freer of the order 
imposed by the original loop. Recent work has focused on the correct unwinding of multiple nested loops 
[Nic85a,AN87a,CCK87]. The shorthand uiL denotes the loop where i copies of the loop body of L are 
unrolled. 

5 A F o r m a l i z a t i o n  o f  Para l l e l i sm 

In this section we develop a formal account of our transformations. This allows us to make precise claims 
about the effect of Perfect Pipelining and to compare Perfect Pipelining with other transformations. We 
restrict the development to transformations that exploit only control and dependency information; this is 
a natural and large class of transformations (including our transformations) dominating the literature on 
paral]elization. Examples of transformations in this class include: vectorization, the hyper-plane method 
[Lam741, loop distribution [Kuc76], loop interchange [AK84], trace scheduling [FERNS4], and Doacross 
[CytS6]. 

We introduce a preorder on programs, "sim" (for similarity), that captures when one program ap- 
proximates the control and dependency structure of another. We then introduce a relation _~p that is a 
restriction of sire. If P _~ pt,  then P '  is a more parallel program than P. 

Informally, a program P is s lm to P~ if P* executes the same operations as P in an order compatible 
with the data and control dependencies present in P. pt may, however, have additional operations on 
some paths that do not affect the output of the program. The sample program in Figure lb  has more 
operations on some paths than the program in Figure la, but the two programs compute the same 
function. The purpose of sire is to establish a dependency-preserving mapping between operations in 
traces of P and operations in traces of P~. 

Def in i t ion  5.1 We say that y depends on z in trace T(P, s), written ~ ~ y, if y reads a value written 
by z. Formally, let (no, so) -L (n, ,s , )  -~ Inj,s~).  Then z -~ y i f z  G op(ni), y E op(nj),  write(z, sl) C_ 
read(!l, s i )  , and there is no operation z in nl  for i < h < j such that write(z,  sl) : write(z, s~). 
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Figure 5: The move-test transformation. 

The relation -~ models true dependencies [Kuc76], which correspond to actual definitions and uses of 
values during execution. This is not conservative dependency analysis--the relation -< precisely captures 
the flow of values through an execution of a program. This is all that is required to define the relation 
sin1. 

Def in i t ion  5.2 (S imi la r i ty )  P sire P~ if and only if there exists a function f satisfying: 

V, z ~ y in T(P, s) =:~ f(z) ~ f(y) in T(P', ,)A 
J(z) -~ !t in T(P', ,)  ~ z -~ f - l (y , )  in T(P,s) 

where J is I-to-1 from operations in T(P, s) to operations in T(P ' ,  s) and f(z)  ks an occurrence of z. 

The function f provides a mapping demonstrating that P~ preserves the dependency structure of P. 
It can be shown that P is strongly equivalent to P '  if P sian P'.  We now introduce the relation -<e" If 
P _p P ' ,  then all operations in P '  are executed at least as early in the trace as corresponding operations 
in P. We use _<p to prove that some improvement results from the application of the core transformations. 

Def in i t ion  5.3 Let z E op(n~) in T(P, s). The position of z, written pos(z), is i. 

P <p P '  ¢~ P sire P '  A Vs pos(z) in T(P, s) > pos(f(z)) in T(P', s) 

T h e o r e m  5.4 Let T be any core transformation or unrolling. Then for all P, P <_p T(P). 

Proof:  [sketch] The transformations preserve dependencies and do not remove an operation from any 
path on which it occurs--thus P slm T(P). For each core transformation, if it succeeds, at least one 
operation appears earlier on at least one path, so P <_p T(P). 1:3 
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6 Pipelining Loop Iterations 

Existing compaction systems all use the same technique to exploit parallelism across iterations of a 
loop. The loop is unwound a number of times and the new loop body is compacted. If there are no 
dependencies between the unwound iterations, then for a fixed size machine there is an unwinding that 
yields near optimal resource utilization after compaction. 

If there are dependencies between the unwound iterations the result can be much worse. Typically, the 
compacted loop has nodes containing many operations near the beginning of the loop, but towards the end 
of the loop body operations "thin out" because of dependency chains between unwound iterations. Thus 
the code becomes increasingly sequential towards the end of the compacted loop body. The problem can 
be somewhat alleviated by additional unwinding and compaction; however, this becomes eomputationally 
expensive rapidly and there will still be a "tail" of sequential code at the end of the loop body. 

We apply the results of the previous sections to develop a new loop transformation, Perfect Pipelining, 
that has the effect of unbounded unwinding and compaction. This transformation cannot be achieved 
directly using the core transformations. For this reason, the relation _<p is crucial to proving properties 
of Perfect Pipelining. 

6 .1  T h e  P r o b l e m  

For simplicity, we disregard the particular strategy for compacting a loop and assume only that we 
are given a deterministic compaction operator C built on the core transformations. We assume that a 
program is a simple (innermost) loop of the type discussed in the section on unrolling. Nested loops can 
be handled using techniques for unrolling multiple loops [AN87a]. 

Consider the sequence CuL, Cu2L, CuZL,.... If Vi Cull <p cui+lL, then C is well-behaved. We give 
a method, for a class of programs and well-behaved compaction operators, to compute a program Cu°°L 
satisfying 

Vi Cu~ L <p Cu°° L 

6 .2  T h e  P r o g r a m s  

A loop uiL consists of unwound iterations L1 , . . . ,  L~. A loop carried dependency [AK84] is a dependency 
between separate iterations of a loop. In this context we are referring to the approximate dependency 
graphs a compiler computes using conservative dependency analysis, rather than the precise trace de- 
pendency graphs used to define ___p. We consider simple loops satisfying the following property for any 
unwinding: 

C o n s t r a i n t  6.1 Assume there is a loop carried dependency between operations z and y in L. Then in 
uiL, there is a dependency between operations z of Lj and y of Lj+t for all j .  

Virtually all loops encountered in practice can be mechanically rewritten to satisfy this constraint 
[MS87]. In essence, the requirement is that the dependencies present in a loop unwound i times are a 
good predictor of the dependencies in the loop unwound i + 1 times. In practice, these conditions can be 
checked by inspection of the loop without resorting to computation of the dependency graph. 

7 Compaction Operators 
We are interested in the class of bounded compaction operators. The key characteristic of these operators 
is that on any path of CuiL the distance between the first and last scheduled operations of Lj is bounded 
by a constant. The fact that any iteration Lj cannot be "stretched" too much allows us to compute 
Cu°°L. We present the simplest bounded operator, the simple rule. More powerful bounded operators 
are discussed in [AN87b]. Initially we assume that computational resources are unlimited; in Section 9 
we discuss Perfect Pipellning when resources are bounded. 



229 

7 .1  T h e  S i m p l e  R u l e  

To simplify the algorithms, we combine the primitives Unify and Move-test into one operation Move 
(see Figure 6a). The simple rule moves an iteration Lj as far "up" in the program graph on as many paths 
as possible. Operations in the iteration remain in adjacent nodes and the iteration keeps its "shape"-- 
operations appear in the order of the original loop body. These restrictions are not great; the original 
loop body L could have been compacted prior to application of unrolling and the simple rule, in which 
case the operations in an unwound L i are actually nodes containing multiple operations. 

One step of the simple rule moves each operation in one copy of an iteration up one node in the 
program graph. An algorithm that accomplishes this is given in Figure 6b. We assume .that operations 
are identified with their Lj. A fail command causes the entire recursive computation to terminate and 
restores the original program graph. 

The simple rule is given in Figure 7. The algorithm guarantees that all possible unifications are 
performed, thus minimizing code explosion. As iterations move through the program graph, copies of 
operations--forming distinct copies of the iteration--are generated where paths split. The top-level 
algorithm refers to the first operation in each copy of the iteration; the other operations are handled by 
Move_iteration. Let C stand for the simple rule. An important property of C is that it is maximal-- 
for any C' using Move_iteration and for all programs P and unrollings i, CuiP ~p CluiP. The simple 
rule is well-behaved. Figure lc shows a loop unwound and compacted using ¢. The only loop carried 
dependency is between the first operation of consecutive iterations; after application of C the iterations 
overlap, staggered by one node. 

8 P e r f e c t  P i p e l i n i n g  

In this section, we require that looi) carried dependencies satisfy Constraint 6.1 and that there be enough 
such dependencies that C cannot completely overlap unwound iterations on any path. In Section 9 we 
remove this stronger condition. The following two properties of the simple rule are required for Perfect 
Pipelining. Proofs of lemmas not included in this paper may be found in [AN87b]. 

Def in i t ion  8.1 Two nodes n and u' are equivalent if they have the same operations (from different 
iterations) and dug structure and there is a k such that if operation z E op(n) is from iteration Lj, then 
z C op(n') is from iteration Lj+k. 

L e m m a  8.2 ( P r o p e r t y  1) Let n and u J be nodes in CuiL. Assume i is large enough that the succes- 
sors of n and n '  are unaffected by larger unwindings and apphcations of C--the stronger dependency 
assumption guarantees the existence of i. If n and u' are equivalent, then corresponding successors of n 
and n'  are equivalent. 

L e m m a  8.3 ( P r o p e r t y  2) There is a constant c, dependent only on L, satisfying 

w ,~ e C ~ L  ~ Iov(~)t < c 

T h e o r e m  8.4 (Convergence)  For a sufficiently large unwinding i, on every path in Cu~L there exists 
a node n such that there is another node n ~ (not necessarily on the same path) equivalent to n. 

Proof :  Property 2 assures the existence of n and u', as every node can have operations from some 
fixed range of iterations and there are no more than c operations per node, implying that there are only 
finitely many distinct classes of equivalent nodes. [] 

This theorem combined with Property 1 shows that a loop repeatedly unwound and compacted using 
C eventually falls into a repeating pattern. The pattern itself may be very complex, but it is sufficient to 
find two equivalent nodes to detect when it repeats. For the simple rule, it is sufficient to unwind k + 1 
copies of L to find the pattern on every path, where k is the length of the longest path in the loop body. 
The Perfect Pipelining transformation is given in Figure 8. The algorithm finds equivalent nodes n and 
n '  in the compacted program graph, deletes n', and adds backedges from the predecessors of n '  to n. 
For the simple rule, it can be shown that the first node on any path without an operation from the first 
iteration is repeated. 
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mo,,e( z, n, m) 
i f  z is an assignment 

t h e n  P ~ unify(P, z, n, m) 
else P ~- move-test(P, z, n, m) 

i f  no change in P 
t h e n  r e t u r n  (False) 
else r e t u r n  (True) 

(a) The Move operator. 

move_iteration(z, n, ra) 
i f  z E op(n) 

t h e n  
i f  -,move(z, n, m) t h e n  fail; 

(,nezt_op_in_it(z, n, p) is next operation 
in the iteration after z on edge (n,p).  *) 
for each (p, y) such that 

p c ,,,cc(n) A ne~t_op_i~_it(~, n, p) = it 

do move_iteration(y, p, n); 
Delete all empty nodes; 

(b) Moving an iteration. 

Figure 6: Higher-level transformations. 

(* Let P = uiL *) 
for  each  iteration L1,..., Li do 

X ~- {z} where z is the first operation in Lj 
r e p e a t  

(* we assume that X always contains all copies of operation z *) 
1. whi le  3y C X s.t. prea~node(y)) = {p} and it's iteration can move 

do  move_iteration(y, node(y), p) 

2. i f  3y E X s.t. it can move to node p C pred(node(it)) 
and the rest of the iteration can move accordingly t h e n  

select it s.t. the depth of node(it) in the program graph is maximized; 
move_iteration(it, node(y), p) 

u n t i l  2 fails. 
Delete all empty nodes. 

Figure 7: The simple rule. 

let  k = length of longest path in the loop body L; 
P ~ Cui+tL; 
for each  path p through P do 

let  n be the first node on p s.t. no operation 
in u is from iteration L1. 

Find n' equivalent to n; 
Replace edges (m, u ' )  by (m, n); 
Delete n * and any other unreachable nodes; 

Figure 8: Perfect Pipelining. 
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L e m m a  8.5 Let Cu°°L be the result of the application of Perfect Pipelining. For sufficiently large 
unwindings i, T(Cu°°L, s) is identical to T(Cu~L, s) for the first i/2 steps. 

T h e o r e m  8.6 For all i and L satisfying the dependency constraint, Cu~L _~p Cu~L. 

Proof:  Let k be the length ofT(CoiL, s). Consider a program CuJL where j >> max( i , / ) .  By the 
previous lemma, T(CuJL, s) = T(Cu°°L, s). Because C is well-behaved, CuiL <v CuJL. We conclude that 
CuiL <p Cu~°L. [] 

This shows that Perfect Pipelining is as good as full unwinding and compaction on all paths. The 
transformation computes a closed form of the pattern generated by repeated unwinding and compaction 
using C. Refer again to the loop in Figure la. The result of applying Perfect Pipelining to this loop 
is shown in Figure ld. The length of the loop body of the original loop is four; in Figure lc the loop 
has been unwound five times and compacted using C. The fourth and fifth nodes are equivalent. The 
transformation deletes the fifth node and all succeeding nodes and adds an edge from the fourth node to 
itself with an induction variable increment of one (the increment is the number k in Definition 8.1). 

9 Pipelining with Limited Resources 

Thus far we have assumed that our machine has unlimited resources. In practice, compilers must consider 
the fact that parallel computers have restrictions on the number of operations of a particular type that 
can be executed simultaneously. In our program graph representation, a node may not contain more 
than a fixed number of operations of a given type. The modification to Perfect Pipelining is made in the 
Move transformation (Figure 6). The change is simple: an operation may not move into a node if the 
node then violates the resource constraints. 

Resource constraints guarantee Property 2 (Lemma 8.3) by imposing a fixed upper bound on the 
size of program nodes. Thus, the simple rule applies to all loops satisfying Constraint 6.1 without the 
stronger condition used in Section 8. A proof that Property 1 (Lemma 8.2) holds in the presence of 
resource constraints may be found in [AN87b]. 

Figure 9 shows a simple loop L. The loop searches an array of elements, saving the position of all 
elements that match a key in order on a list. As before, we have left the details of the loop control code 
implicit. There is also no exit test; we stress that this is only for simplicity. We assume that the target 
machine can execute up to three tests in parallel. 

This particular loop highlights the problem that unpredictable flow of control presents in paralleliza- 
tion. Note that while the path corresponding to the true branches has tight dependencies preventing 
speedup, the path corresponding to the false branches has no dependencies whatsoever. Other paths 
(some true branches, some false branches) have intermediate parallelism. 

Existing restructuring transformations for multiprocessors can do very little with such a loop. Doacross 
is a transformation that assigns the iterations of a loop to the processors of a synchronous or asynchronous 
multiprocessor [Cyt86]. Doacross computes a delay that must be observed between the start of a loop 
iteration Li and the start of L~+t on each path of Li. For this loop, the computed delay is one on both 
paths; i.e., iteration i + 1 may begin after iteration i has executed its first statement. The dynamic 
execution of this loop using Doacross is shown in Figure 10a. An equivalent static SPL schedule is shown 
in Figure 10b. 

We now show how Perfect Pipelining applies to this loop. Figure 11 shows the original loop unwound 
seven times. The operations have been replaced by labels with subscripts indicating the increment to the 
induction variable. The result of applying the simple rule is shown in Figure 12. The dag of tests within 
each node is arranged as a chain with the false branches pointing to the next test and the true branches 
exiting the node; the lowest numbered test is the root of the dag. 

The first four nodes in the left column of Figure 12 are equivalent and the start node is equivalent to 
the first two nodes in the right column. Figure 13 shows the result of applying Perfect Pipelining--only 
the first two nodes remain. In this program, three tests are performed in parallel. If Tj is the lowest 
numbered test that evaluates to true, then the induction variable i is incremented by j and control passes 
to the node with the append operation. If none of the tests is true, control transfers to the first node. 
The second node performs an append and evaluates the next three tests. 
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The pipefined loop executes three tests at every step, achieving optimal use of the critical resource. 
The final code can run on the Multiflow machine, a commercial tightly-coupled parallel architecture that 
supports multiway jumps. The running time of Perfect Pipelining with resource constraints is dependent 
on the size (number of resources) of the machine as well as the original loop. 

10 Compar i son  wi th  Doacross  

As suggested in the previous section, loops transformed by Doacross can be represented in our formahsm. 
In fact, a restriction on the pipelining transformation corresponds exactly to Doaeross for single loops on 
synchronous multiprocessors. Another, more restrictive version corresponds to Doacross for asynchronous 
multiproeessors. Thus a family of transformations aimed at different machine models can be directly 
formulated and compared in our framework. 

The basic algorithm for Doacross analyzes a loop body and decides where, on each path, it is safe 
to begin the next iteration. A communication instruction is added to the loop at those points. During 
execution, when a processor executing iteration i encounters a communication instruction, it sends a 
message signaling another processor that execution of iteration i + 1 can begin. 

Let 7)~y~ be the compaction operator implementing Doacross for synchronous multiprocessors. The 
restriction to the pipelining algorithm is made in Move (see Figure 14). The new requirement is that 
if an iteration moves above a test, then it must move above that test on all paths. This restriction is 
necessary for Doacross because the various processors have independent flow of control--once an iteration 
is started on a processor it must be able to proceed regardless of the path taken by any other processor. 
It is easily shown that for O,~,~hL, the first operation of iteration i + 1 overlaps iteration i exactly where 
the communications are introduced by Doacross. The asynchronous case (~D~,~,~u) is similar and can 
also be written as a restriction on the pipelining transformation. The following theorem summarizes the 
relationship between the three transformations. 

T h e o r e m  10.1 For all loops L, 7Da,u,~.:t,L <~v D,v"chL ~p Cu°°L" 

11 Efficiency 

There are loops satisfying Constraint 6.1 for which Perfect Pipehning requires exponential time. In 
particular, ff there are no loop carried dependencies at all--iterations are completely independent--then 
the running time is exponential in the unwinding if there is at least one test in the loop body. However, 
this can be detected after unrolling only once, because the iterations completely overlap after applying 
C. In this ease, the loop is completely vectorizable and generating good code is relatively easy. 

It is also possible to construct examples with some loop carried dependencies for which Perfect Pipelin- 
ing requires exponential time. However, several conditions must be simultaneously satisfied for this to 
happen. We believe that these conditions do not commonly arise in practice. In fact, for every program 
we have examined (including the examples in this paper and all of the Livermore Loops) the pipelining 
algorithm runs in low-order polynomial time and requires at most quadratic space. Convergence often 
occurs on many or all paths for unrollings much smaller than the worst case bound; thus interleaving 
unwinding, compaction, and the test for equivalent nodes substantially improves the efficiency of the 
algorithm. Using simple data structures, the check for equivalent nodes can be done very quickly. 

12 Conclus ion 

We have presented a new technique, Perfect Pipelining, that allows full fine-grain parallelization of loops. 
Perfect Pipelining is currently being integrated into ESP, an Environment for Scientific Programming 
under development at Cornell. The environment already includes Percolation Schedufing and other 
transformations. We believe that Perfect Pipefining will greatly enhance the power of our environment 
by subsuming the effects of a class of coarse-grain transformations in a uniform, integrated fashion 
compatible with our fine-grain approach. 
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i : = i +  I 

I Test: tf A[i] 

kAP': list : = a 

Figure 9: A simple loop L. 

Processor I 

Processor 2 

T ~  Processor 1 

(a) Dynamic schedule. 

g i : =  

i : = i +  

' + 2  

(b) Static SPL program. 

Figure 10: Doacross applied to L. 

i : = i + 7  

4) 

Figure i1: L unwound seven times. 
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Figure 12: L unwound seven times and compacted. 

' : '" ' I  \ I I " ~  
f n \ ' l  L m 

"V V n  ,:.m 
i : -  i ÷ I  

i : ~  i + 2  

Figure 13: The same loop after pipellning. 
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i f  z is an assignment 
t h e n  i f ,  ~ op(s) for aU s ~ s,,~(,~) 

P , -  . n i b ( P ,  z, n, m) 
else P *-- move-test(P, z, n, m) 

i f  no change in P 
t h e n  r e t u r n  (False) 
else r e t u r n  (True) 

Figure 14: The Move operator for ~Dsv,~n. 
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