
Code Selection Techniques:

Pattern Matching, Tree Parsing, and Inversion of Derivors

Robert Giegerich

Karl Schmal

FB Informatik - Lehrstuhl V
Universit~'t Dortmund

Posffach 500500
D-4600 Dortmund

1. Pattern Matching Approaches to Code Selection

1.1 Summary

Significant progress in the area of formal tools to support the construction of code generators in
recent years has come along with a severe terminological confusion. Closely related techniques
appear in different styles, further obscured by ad-hoc extensions. We try to alleviate this situation
by suggesting that the code selection task should be understood as the problem of inversion of a
hierarchic derivor. This understanding leads to several interesting generalizations. More expressive
formalisms - heterogeneous tree languages, regular tree languages, derivor images - can be used to
define the code selectors input language. In all cases, we retain the ability to decide the
completeness of the code selector specification as a side-effect of code selector generation. The
extension to nonlinear matching, in combination with matching relative to a subsignature M with a
nonmvial equational theory, allows to express the non-syntactic conditions formerly associated with
a production in a Graham-GlanviUe style code generator description. Due to space restrictions, such
extensions can only be sketched here, while the emphasis of this paper lies on motivating and
demonstrating our reformulation of the classical pattern matching approach to code generation.

1.2 A Short Review of Recent Approaches to Code Selection

Initiated by the work of Graham and Glanville [GrG177], many approaches to retargetable code
generation have been presented in recent years. Commonly and correctly, they are subsumed under
the phrase "pattern matching techniques". Some form of pattern matching is used to guide code
selection, while other subtasks of code generation, such as register allocation, cost comparison of
different coding alternatives, or evaluation ordering must be organized in some way along with the
matching process. Henry [Henr84] has carefully and extensively demonstrated the limitations
inherent in the original Graham-Glanvitle approach, which used LR-parsing techniques for pattern
matching. We are particularly concerned here with work that attempts to overcome these limitations.
While Graham and Glanville had demonstrated how the syntax-directed translation paradigm could
be beneficially applied to code selection, it became clear that two kinds of improvements were
desirable: using a more flexible kind of pattern matching for the "syntactic" aspects, and new
techniques to describe other subtasks of code generation that have to be performed along with and
are directed by the matching process. Several related suggestions have been made with respect to
the first task, while the second has received less systematic treatment. As most workers in this area
have observed, off-the-shelf tree pattern matching in the "classical" sense of [Kron75] or
[HOOD82] is close to providing a solution, but is not quite expressive enough to serve as an
adequate technique for code selection. Unfortunately, all approaches developed their own
terminology and extensions, and the concepts used to formulate the individual pattern matching
techniques have not been adequately separated from their particular application to the code
generation task. As a result, the relative virtues of the different approaches can hardly be evaluated,
as a comparison can only be made at a most technical or empirical level. Let us give a short
discussion of the approaches we are referring to.

248

First variations of the Graham-Glmaville approach still used string parsing techniques, e.g.
[Henr84] and [CHK85]. [Tum86] uses a technique called up-down parsing, and actually parses
trees, but sees his grammars still as string grammars. [Gieg84] and [Benk85] use parsing with
(regular) tree grammars, resorting to classical terminology from formal language theory. [HaCh86],
[WeWi86] and [AhGa85],[AGT871 use the name pattern matching, but with different meanings.
Recent approaches, yet to be worked out further, try to embed code generation in a formalism of
algebraic equational specifications and term rewrite systems [Gieg85], [MRSD86].

Let us further exemplify the terminological inhomogenity by a look at corresponding notions in
different approaches. Maybe the best-understood terminology is that of nonterminals, terminals and
productions of a tree grammar, as everyone can understand a tree grammar as a context free
grammar where the righthand sides of productions are trees. (This view is used frequently, but it
does have a pitfall, which we will address later.) [Turn86] is closest to this terrain" ology, speaking
of nonterminals, operators and prefix (string) expressions. [AGT87], DVeWi86] and [HaCh86] use
"patterns" for productions. [AGT87] uses "labels" and "operators" for nonterminals and terminals,
while [WeWi86] uses "labels" for both concepts. [HaCh86] calls terminals "node-type", and it
seems at the first glance, that nonterminals show up here as "renaming symbols". But in fact, the
correct counterpart of nonterminals is an index into some table, which may either be a "renaming
symbol" or some proper sub-pattern. [Chas87], contributing a significant improvement of the
classical pattern matching algorithm of [HoOH82], also discusses extensions necessary for code
selection applications. He uses the most creative naming, calling nonterminals "introduced
wildcards". Finally, with algebraically oriented approaches, we know (e.g. from [ADJ78]) that
nonterminals correspond to the sorts of some signature, with terminals denoting the operators.

Of course, if this was only an inconsistency of namings, it would not be worth bothering about.
But to the extent that formal language terminology is abandoned, the concept of a derivation
disappears - and this concept is in fact a very useful one in the given context - although not quite
sufficient. In spite of all similarities, it does make an important difference for the expressive power
of an approach, whether it uses "trees over a ranked alphabet" or "terms from a given signature" as
its basic concept. It is one of our goals in this paper to explicate these differences, which are often
considered negligible.

We conclude this little survey by another observation with a similar lesson. Glanville [Glan77]
originally addressed the problem of completeness of the code generator description (the "machine
grammar"), partly ensuring it by imposing the condition of "uniformity". Much later work has been
designed to remove this restriction. Interestingly, the more these approaches deviate from formal
language terminology, the less inclined they are to address the completeness aspect.

2. A Sketch of an Algebraic Model of Code Generation

The overall goal of this work is not to suggest another pattern-directed technique for code selection.
Our goat is a reformulation of such techniques, in a way suitable to handle code generation as well
as other applications, combining the virtues of three areas:

Efficiency and known generative techniques from classical pattern matching [Kron75],
[HOOD82], [Chas87];
clean concepts and decidability results from formal language theory [Brai69], [Benk851,
together with a modest gain in expressive power;
powerful specification, implementation and proof techniques available in equational algebraic
specifications [ADJ78], [HuOp801, [HuHu80].

In order to show how this can be achieved, we must first sketch our understanding of code
generation. This subsection is an excerpt of a more substantial investigation in the theory of code
generation (unpublished at this point). A predecessor of the model sketched here can be found in
[Gie85]. The goals of this work are shared by the approach of [MRSD86], which describes work
on the design of a code generation tool based on term rewriting techniques.

To arrive at a model of code generation with the desired properties, we must break with two
paradigms prevalent in previous approaches to code generation. The first is the "code emission
paradigm". Typically, in code generator descriptions there are "actions" or parameterized code

249

strings associated with the patterns, which, upon a match of the template, trigger the emission of
target machine or assembly code to some file. The problem with this is that when code is emitted
right away, it has to be perfect from the beginning. This leads to a tendency to overfreight the
pattem matching with other tasks such as register allocation or peephole optimization, which should
preferably be described separately, at least on the conceptual level. Instead, the code we generate
will be machine code in abstract syntax, and we disregard the task of writing a linearization of it to
some file.

The second paradigm we abandon is that "machine description" and "code generator description"
have traditionally been treated as synonyms. It turns out to be very important to formally distinguish
these two notions. The machine description says what (abstract) target programs are, the code
generator specification says how they are related to source programs. We will now discuss
approaches to code generation as if they had always been using our conceptual model. We focus on
the central task of instruction selection for arithmetic and addressing calculations.

Let Q and Z be many-sorted signatures. Source (= intermediate) and target (= machine) language
programs are terms in the term algebras T(Q) and T(Z), respectively. Code generation requires

(among other tasks) to specify and irnplement a code selection morphism 7:. T(Q) --> T(Z).

Two ways have been used to obtain y. In handcrafted compilers, as welt in systematic approaches
striving for retargetability like lACK83], one considers all relevant operator/operand combinations
in T(Q), and specifies for each some term from T(Z) as its target code. If good code is desired, the
necessary analysis of special cases becomes intricate and error-prone. It was an important
observation of [GrG177], [Catt78], [Ripk77], that it may be more convenient to describe the target
machine instructions in terms of the intermediate language, rather that vice versa. Hence, for each
Z-operator (typically representing a machine instruction), one specifies some semantically
equivalent term from

T(Q). Let us call this description 8. With some right, it could be called a machine description rather

than a code generator description. It specifies a homomorphism 8: T(Z) --> T(Q). 03ut traditionaUy

it has not been understood this way, due to the two paradigms discussed above.) Algebraically, 8 is

a derivor [ADJ78] from Z to Q. Now the arrow goes the "wrong" way, but to obtain 7from 8,

pattern matching techniques can be used. So, the gains of this approach are twofold - descriptive

ease, and generative support for an efficient and correct implementation of the required case

analysis. (Ignoring this aspect leads to the argument in [Hors87] that Graham-Glanville style code

generation goes the "wrong way".)

A third advantage of the latter approach is the following. Inherent in the task of code generation

there is some freedom of choice, usually exploited to optimize target code quality. The specification

8 preserves this freedom. Correspondingly, to obtain the desired y, one must not only invert 8, but

also supply a choice function { wherever for some qET(Q), there are several zeT(Z) with 8(z)=q.

For example, dynamic programming accoording to [AhJo76] has been used to implement this

choice. On the conceptual level, we would like to have the functionality T(Q) --8-1__> 2T(Z) __~__>

T(Z), while on the technical level, we want to interleave ~ with the construction of 8 -1.

The same holds for other subtasks of code generation, such as register allocation, evaluation
ordering, or machine specific data type coercions. In current approaches, these tasks have not found

a formal specification. In our algebraic framework, they are described along with Q, Z, and 8 by
equational specifications for a so-called semantic subsignature M of Q and Z. ([Gieg85] provides
an example of such a specification.) The main concern of our framework is that all aspects of code
generation can be described formally and in a modular way, thus allowing proofs of completeness
and correctness. But for the moment, this is still an open promise, and not the subject of the current
paper.

250

With formal definitions still postponed, we illustrate the above by a small example.

Example 1
"semantic" subsignature M =

sorts Number Type

operators word: --> Type
long: --> Type
0 ,1 ,2 : -->Number
scale: Type --> Number

equations scale(word) = 2
scale(long) = 4.

"source" signature Q = M +
sorts E

operators const: Number --> E
+ ,* :E E -->E
mem: Type E --> E
reg: Type Number --> E.

"target" signature Z = M +
sorts Exp Adr

operators ADD: Exp Exp --> Exp
ADDI, MULI: Exp Number --> Exp

R: Type Number --> Exp
M: Type Adr --> Exp

mk_adr: Exp --> Adr
bdx: Type Type Number Number Number --> Adr.

The above target signature is a little contrived, in order to demonstrate both nonlinearity and the use
of nontrivial semantic subterms. Z-operator bdx denotes the addressing mode "base-displacement-
addressing with index", where the first argument indicates the word length to be used in the address
calculation, while the second indicates the word length of the addressed memory ceU, used to
determine an automatic scaling factor. The other arguments are base and index register number, and
the displacement.

We can now explain the role of M. It serves a threefold purpose.
i) Usually there are several variants of instructions or addressing modes like our bdx - depending

on the available choices of operation, address and operand length. In Graham-Glanville style
descriptions, this led to a phenomenon called "type crossing" [Henr84]: The size of the machine
description is (essentially) multiplied by the number of machine data types, leading to extremely
large descriptions. At least for the sake of readability, parameterization of the description is
called for (which may be expanded automatically). In our approach, we just use machine data
types as extra arguments to Z-operators, keeping the description concise without extra
parametrization mechanisms, and avoiding expansion.

ii) From the beginning in [GrGt77], patterns have been augmented by semantic attributes, which
were instantiated by concrete register numbers or constant values, and used to test semantic
restrictions on the applicability of a pattern. Again, we need no special attribute concept for this
purpose - the register number is just another argument (with a sort from SM) of the reg

operator.

251

iii) Functions calculating and predicates testing semantic attribute values in Graham- Glanville style
descriptions are defined outside the formal specification. Here, they are defined as operators of
OP M by equations in E. "Testing a semantic predicate" is thus elegantly subsumed in the notion

of matching modulo =E"

This is further demonstrated by the second part of Example 1, the derivor specification. Note that
the equation for bdx is nonlinear in t - our target machine uses word or longword addresses, but
both base address and index must be of the same length. The M-subterm scale(t0 will match the
numbers 2 or 4, but no others - according to the equations specified with M.

Example 1 - continued
hierarchic derivor ~:Z--> Q

(By definition, 6 is the identity on M, and hence this part of 6 is not shown.)

sort map 8: Exp - ->E
Adr --> E

0

operator implementation equations -- using infix notation for + and * --

6(M(t, a)) = mem(t, a)

6(R(t,i)) = reg(t, i)

6(ADD(e, f)) = e+f

6(ADDI(e,n)) = e+const(n)

6(MULI(e, n)) = e*const(n)

6(bdx(t, tt, i, j, n)) = (reg(t, i) + const(n)) + reg(t, j) * const(scale(tt))

6(mk_adr(e)) = e

Example 2

q ~ m e m

w o r d +

+ *

reg const reg const

/\ I /\ I
long 1 1230 long 5 2

z = M
/ \

word mk_adr

t
A D D

ADDI MULl

I /
1230 R

IX / \
long 1 long 5

Z j ~ M

word bdx

long word 1 5 1230

252

Example 2 shows z, z" such that 5(z) = E q and 5(z3 =E q, which can be verified formally from

the definition of & The terms describe a memory word addressed via base, displacement and scaled
index, which could be written (in a VAX-like notation) either as operand 1230(R1.L)[R5.L] in a
word instruction, or as operand (R1) preceded by the code sequence ADDI.L R1, 1230; MULI.L
R5, 2; ADD.L R1, R5.

The reader is invited to attempt to construct z or z" from q by performing the appropriate pattern
matching, for the moment on an intuitive basis. Note also that if we replace the constant 2 in q by
(say) another register, there is no target term for the modified q. The specification is incomplete.

3. Homogeneous Tree Languages, Heterogeneous Term Algebras, and Regular
Tree Languages

This chapter introduces familiar concepts and notes some straightforward correspondencies and
differences.

3.1 Homogeneous Tree Languages

Definition 1: Ranked Alphabet, Homogeneous Tree Languages
A ranked alphabet is a finite set A of symbols, together with a function rank, such that

rank(a)_>0 for each aeA.

The homogeneous tree language trees(A), also called the set of trees over the ranked alphabet
A , is defined by
aEtrees(A), if rank(a)=0,

a(t 1 tn)Gtrees(A), if tietrees(A) for l~<_n, a~A, and rank(a)=n.

0

Example 3
Let A1 be the alphabet {0, 1, cons, nil}, with ranks 0, 0, 2, 0, respectively. Elements of
trees(A1) are, for example: 0, nil, cons(nil, 1), cons(cons(0, 1), cons(nil, nil)).
0

We shall also depict trees in graphical form, as in Example 2.

Observation 1
Consider the subset lists(A1) of trees(A1) containing the constants 0 and 1, plus all linear
lists of binary digits, such as nil or cons(l, cons(0, nil)). It cannot be described as a
homogeneous tree language trees(A) for any A.
<>

3.2 Regular Tree Languages

Definition 2: Regular Tree Grammars and Regular Tree Languages
A regular tree grammar G is a triple (N, A, P), where

N is a finite set of nonterminal symbols,
A is a ranked alphabet of terminal symbols, AnN=O,
P is a finite set of productions of the form X --> t, with XeN and tGtrees(AvN), with
nonterminals given rank 0.

For t, t'~trees(AuN), t immediately derives t', written t -> t', if there is a pep, say X->t%
such that t" results from t by replacing a leaf labelled X by t". Whererelevant, we indicate
the p used m the denvauon step, wntang ->p. The relattons -> and -> are the transmve and
the transitive and reflexive closure of->.

253

X--> t}, and L(X) := {t I t Gtrees(A) and *

L(G) := {t I teL(X) for some X~N} is the language of G.
<>

In our context, we are not interested in a particular root symbol, and so it was omitted from
Definition 2.

Example 4
Let G1 be the regular tree grammar ({D, R}, A1, P1 } with A1 as before, and
P I = { R - - > n i l

R -->cons(D, R)
D - > 0
D -->1 }.

Clearly, L(G1) = lists(A1) of Observation 1.
(>

We call these grammars regular (following [Brai691), since in their formal properties, they are a
generalization of regular string grammars, rather than of context free string grammars. The usual
view of Graham-Glanville style machine descriptions as context free grammars, with prefix
expressions on the righthand sides of productions, does not adequately express how strong the
restriction to "prefix expressions" really is. For example, language containment is undecidable for
context free string grammars, but decidable for regular string grammars.We note:

Observation 2

For regular tree grammars G 1 and G 2, L(GI) _c L(G2) is decidable.

A proof of this fact is given in [Benk85], although this result is probably much older. We will see a
ve.ry important application of this result later. In the sequel, we shall need a few more technical
nouons:

Definition 3
A production of the form X -->Y, with X, Y G N is a chain rule. Other productions are called
structural rules.

A derivation containing a subderivation of the form X -->+X (using chain rules only) is
called a circular derivation.

A sentential form of G (for X) is a tree tGtrees(AuN) such that X -->*t,
<>

Observation 3
tEL(G) has infinitely many derivations iff it has a circular derivation.
0

Of course, regular tree grammars may be ambigous, but observation 3 tells us, that if we restrict our
attention to noncircular derivations, there will be only finitely many such derivations for any
tEL(G).

3.3 Heterogeneous Term Algebras

For the standard terminology we need from algebraic specifications, we do not give full formal
definitions (see [HuOpS0] for that matter), but only explain the notation we are going to use.

Definition 4: Signatures, Specifications
For a signature Z = (S, OP), T(Z) denotes the set of terms over Z, while the set of terms of a

254

particular sort s is denoted T(E):s. T(Z, V) is the set of Z-terms over an S-sorted set V of

variables. A specification (~;, E) is a signature Y~ together with a set E of equations of form

= t ' , with t, t'ET(S,V). It induces the equality relation =E on T(Z,V).

Substitutions are mappings o:V --> T(Z, V), the application of cr to t is denoted by ta.

The replacement of a subterm t" in t by t'" is written t[t" <-- t 'q.
0

Example 5
Let Z1 be the signature with sorts {D, R} and operators

{0: --> D, 1: --> D, cons: D R -->R, nil: -->R}.

Clearly, T(Z1) is isomorphic to L(G1), and T(Z1, V), when restricted to a single variable for
each sort, is isomorphic to the sentential forms of G1.
0

In the sequel, we will mainly be concerned with syntactic aspects - recognizing terms for which =E

is the syntactic identity relation. However, we set the stage for a convenient generalization, allowing
a subsignature for which nontrivial equations may hold. The idea is that equality relation of this
subsignature can be implemented by some other means, for example by providing a canonical term
rewrite system for it. The concept of a hierarchic signature here is the same as in algebraic compiler
specifications with attribute coupled grammars [GaGi84]. There, the subsignature is called the
"semantic" subsignature, while its complement is called "syntax". In this terminology, terms can
be seen as syntactic trees with semantic terms at their leaves.

Definition 5: Hierarchic Signature
A signature Y~ is hierarchic, if it contains a subsignature Z" such that all operators of Z with

result sorts from Z" are from Z'.
0

We shall restrict our attention to specifications where equations may only be given between terms of

those sorts which belong to the subsignature Z'. The particular significance of the subsignature M

and its equational theory in the application to code generation was explained following Example 1 in

section 2.

3.4 Simple Correspondencies

Let rl be the grammar morphism that merges all nonterminals into a single one, modifying

productions accordingly.

Observation 4

L(G) ~ L(rI(G)) ~ trees(A).
0

In general, the inclusion is proper. This is illustrated by Example 6.

Example 6
Let grammar G2 =({D, R}, A1, P2} with
P2= { R--> nil

R --> cons(0, R)
R --> cons(l, R)
D --> 0
D--> I}.

255

We have L(G2) = L(Gt). We have L(G2) c L(rI(G2)) c trees(A1), proved by considering
cons(0, 0) and cons(cons(0, 0), nil). Although L(G2) = L(G1), the second inclusion is not

~ roper in the case of G1.

Observation 5
For any A, trees(A) = L(G) for a regular tree grarmnar G in the following restricted form:
(RF1) G =({X}, A, P}, with

P = {X--> a(X X) I for aeA and according to rank(a)}.
0

Now we denote by rl the signature morphism that identifies all sorts, yielding one-sorted
signatures.

Observation 6
T(Z) g T(rl(Z)) = trees(OP)
0

To see that the above inclusion is proper, consider cons(0, 0) e T(TI(Z1))\ T(~I). More precisely,

the inclusion above would have to be expressed as T(Z) being isomorphic to a subset of T(TI(Z)),
and the equality as isomorphism. Besides this, the equality in Observation 6 is justified below.

Observation 7

Any T(Z) for Z=(S, OP) is isomorphic to L(G) of a regular tree grammar G in the restricted
special form
(RF2) G = (S, OP, P) with

P = {X 0 --> a(X 1 Xn), for any a: X 1 ... X n --> X 0 E OP}.
0

In G, we simply use sort symbols as nonterminals. If G has only one nonterminal, RF2 and RF1

coincide. Hence, the grammar corresponding to rl(Z) is in RF1, which proves T(rl(Z)) = trees(OP)
of Observation 6.

According to the isomorphisms stated here, heterogeneous term algebras are rightfully called
heterogeneous tree languages, and we will consider terms as trees and trees as terms, as convenient.

For example, we will speak of a Z-derivation of t as a way to sucessively construct some t~T(Z)

from Z-operators.

Summing up, we shortly address the question of what concept to use when designing an
intermediate language. Expressive power is an important issue here. It is undesirable to specify an
intermediate language which is a superset of what will actually occur, and then base subsequent
compiler phases on assumptions on "that subset of the intermediate language actually produced by
the front-end". (An interesting lesson is to be learned here from Henry's experience with the
portable C-Compiler [Henr84].) Summing up our observations, homogeneous tree languages are
less powerful than heterogeneous tree languages, i.e. term algebras, which are in turn less powerful
than regular tree languages. However, in section 4 we shall add another concept from algebraic
data type specifications, which makes many-sorted term algebras more expressive than regular tree
grammars.

3.5 Tree Parsing

Let G = (N, A, P) be a regular tree grammar. We now define what a G-parse for some mtrees(A)
is. Permitting t~trees(A) rather than t~L(G) means of course that a G-parse does not necessarily
exist. Since in general, G is ambiguous, we define the notion of a parse such that it comprises all

256

possible derivations of the given tree.

Definition 6
Let tEtrees(A), G = (N, A, P).

The G-semi-parse of t is the function ~" associating with each subtree t" of t the set of all
•

producnons p of form X -->t'" such that X -->p t "" --> t ' .

The G-parse of t is the function ~ associating with each subtree t" of t the set of all

productions p of form X-->t'" such that for any p: X-->t '" e ~(t'), there is some derivation
X" -->* t[t'<--X] -->p t[t '<--t"] --> t.
0

Usually, the grammar G of concern will be clear from the context, and we speak just of semi-parses
and parses. Clearly, a semi-parse may associate productions with some subtree that cannot be part
of a derivation of the overall tree.

Observation 8

Let ~ be the parse, and O" the semi-parse of t.

i) ~ and ~" coincide at the root: ~(t) = ~'(t).

ii) teL(G) iff~(t)*O.

iii) If ~(t') = 0 for some proper subtree t ' , this does not imply t ~ L(G).
0

In case iii), the root of subtree t" may still be derived as an inner node of the righthand side of some
production.

Given ~(t), we can enumerate all derivations for t. If G is noncircular, or if we restrict our interest
to noncircular derivations, their number is finite, and a simple backtracking traversal of t is
sufficient to

enumerate them. But generally, although ~ can clearly be represented in space linear in the size of t,
there may be exponentially many noncircular derivations, and a complete enumeration or explicit
representation is not what one is interested in. We shall return to the problem of what to do with a
parse in chapter 8.

4. Derivors and Their Inversion

Derivors [ADJ78] are an implementation concept in algebraic data type specifications: By a derivor

5:Q-->Z, the operators of some signature Q are implemented by composite operators in some other

signature Z, which are specified as terms of T(Z, V). Sometimes a derivor in the opposite direction,

5:Z-->Q, is used to (partially) specify a morphism ~/: T(Q) --> T(Z), which one is interested in. For

q~T(Q), we require ~q) := some zET(Z) such that 8(z) =E q. The task, then, is to construct in some

way an inverse of 5. Code selection is an important and natural example for this phenomenon when
understood in the way outlined in section 2).

4.1 Derivors and Linearity

Definition 7
A derivor 5: Z --> Q is specified by

a sort implementation map ~: S Z - > SQ,

an operator implementation map 5: OP Z --> T(Q, V), specified for each operator

257

a:s 1 ... s n --> s o E Op z by operator implementation equations of the form

~(a(vl:s 1 Vn:Sn):S 0) = ta(Vl:fi(Sl) Vn:8(Sn)):8(s0).
(Not all variables of the lefthand side must actually occur in ta.)

A derivor is linear, if for all a ~ OP Z, none of the variables v i occurs more than once in the

term t a.

When Q and Z are hierarchic signatures (cf. Definition 5) over the same subsiguature Z', we

call 8 hierarchic if it is the identity on ~ ' .

On the right.hand side of these equations, the variable v i of the Q-sort 8(si) denotes the ~-image of
the i-th argument (whose sort is s i) of operator a. For an example, return to Example I in section 2.

The terms t a are called derived operators in Q, and forgetting the original operators of Q turns T(Q)

into a Z-algebra. The Z-homomorphism defined by 8 is readily implemented by reading the operator

implementation equations left to right as rewrite rules over T(QuZ), where the elements of T(Q) are
the normal forms. As there is, by definition, one equation for each Z-operator, there are no critical
pairs, and the rules trivially form a canonical rewrite system.

However, while 8 translates target into intermediate language programs, our interest goes in the

opposite direction. Simply orienting the equations right to left to obtain a rewrite system for y, an

inverse of 8, will generally fail for two reasons:

(1) If 8 is not injective, the rewrite system so obtained will not be confluent.

(2) If 8 is not surjective, some tET(Q) will have normal forms that are not in T(Z).

Injectivity of 8 cannot be enforced (- at least when a certain freedom of choice in y is inherent in the

problem under consideration -), so standard rewrite techniques cannot be used for implementing y.

Surjectivity (modulo =E) of 8 will be required - as ~ should specify y for any input term -, and for
practical matters we need a way to verify this requirement.

Definition 8

Let there be given a derivor ~: Z --> Q, specifying (as outlined in section 1.3) some inverse

mapping ~: T(Q) --> T(Z). We call this 8 complete, ff 8 is surjective modulo =E, i.e.

for all q e T(Q), there is some z ~ T(Z) such that q =E 8(z).

4.2 Derivor Inversion by Tree Parsing

Observation 9

I f ~ is linear, ~Sff(Z)) _c T(Q) can be described by a regtflar tree grammar A 8 of the following
form:

A 8 = (S Z, OPQ, {s O --> ta(S 1 s n) for each operator implementation equation

8(a(vl:Sl Vn:Sn):SO) = ta(Vl:8(s 1) Vn:~(Sn)):8(so) of 8}).

258

Where 8 is clear from the context, we just write A for A S. Note that A constructs terminal trees over

OPQ, using as nonterminals the sorts of S Z. Single variables on righthand sides of operator

implementation equations give rise to chain productions in A, while proper terms yield structural

productions. Equations with the same righthand sides and the same result sort s O give rise to the

same production in A, in spite of the fact that they implement different Z-operators.

As one easily verifies, for a linear 5, L(s) as defined by A is the set of ~-images of T(Z):s. This

means that, for a linear 8, the problem of constructing y, the inverse of g, is solved by constructing

A-parses. The reader is invited to construct A S for 8 as given in Example 1, (ignoring its

nonlinearity for the moment), to construct the Ag-parse of q, and to obtain from it z and z" as

shown in Example 2.

Theorem 1
Let E = 0 . If y is specified to be an inverse of a linear derivor 5, then
i) completeness of the specification is decidable,

ii) any choice for "y(q) can be obtained from a A-parse of qeT(Q).

Proof."
i) follows from Observations 2, 7 and 9: Completeness now means verifying that, with Q

seen as a grammar according to Observation 7, L(Q) ~ L(A).

ii) We construct a Z-derivation of z" "in parallel" to a A-derivation of 8(z') = q: For each

application of s o --> ta(S 1 Sn) in a A-derivation of q , apply s O --> a(s 1 Sn)

for some a~OP Z with ~(a(vl:s 1 Vn:Sn):S0) = ta(Vl:8(s 1) Vn:6(Sn)):~(s0) being

an operator implementation equation, thus obtaining a Z-derivation of z'~T(Z, SZ).

Obtain z from z" by substituting different variables for all occurences of sort-symbols in

z'. For any substitution G, 8(zo) = q.

Note that several terms z can be constructed from the same A-derivation of t according to the above
proof. One reason is that there is a choice of a, if several operators with the same result sort s o have

implementation equations with the same righthand side t a. The other reason is that if there are
equations where some variable of the lefthand side does not occur on the righthand side, the

corresponding Z-subterm is "forgotten" by 5, and hence may be chosen arbitrarily by G.

4.3 Expressive Power Revisited

We now remark that many-sorted signatures together with the concept of linear derivors have the
same expressive power as regular tree languages. Observation 9 showed that they do not have more
expressive power, as every linear derivor image can be generated by a regular tree grammar. It is
easy to see that the reverse also holds:

Observa t ion 10
Let Q be a many-sorted signature. For any regular tree grammar G with L(G)_T(Q), there

exist a signature Z and a linear derivor 8 such that L(G)=8(T(Z)).

259

Proof."
1. For any G with L(G)C_T(Q), there exists a G" such that for all nonterminals X of G ' , there

is a unique Q-sort s such that for 'all teL(X), sort(t)=s. We construct this G" as follows: Let
X -->p t:s, X -->p- t ':s" with s*s', and both p and p" be structural productions. X cannot

occur on the righthand side of any structural production, as this would violate L(G)_CT(Q) by
generating a non-wellsorted term. We replace X by a new nonterminal symbol X" in p ' , and
add for each chain rule Y->X a further chain rule Y->X'. The same argument applies to Y
with Y -->X, Y -->X', and X -->p t:s, X" -->p- t ':s" with s*s'. Successive application of
this step yields the desired G ' , with L(G')=L(G).

2. Now w.l.o,g, let G be such that for all nonterminals X of G, there is a unique Q-sort s

such that for all tEL(X), sort(t)=s. Let us denote this s as sort(X). We define Z and 8 as
follows:
S Z = N G. OP Z has an operator P:X1.. .X n --> X 0 for each production p: X0-->

tp(X1...Xn) G PG"

The derivor 8 is given by the sort map

8 (x) = sor t (x) ,
and the operator implementation equations

8(p(v 1 Vn)) = tp(V 1 Vn).
0

Note that the derivor constructed in Observation 10 is linear. Hence, regular sub-languages of a
term algebra can be seen as homomorphic images of some other term algebra, specified by a linear
derivor. Images of nonlinear derivors can define sub-languages that cannot be specified by regular
tree grammars.

5. Two Notions of Matching

While "matching" (between terms) has a precise and uniform meaning in the field of term rewrite
systems (cf. Definition 4), the phrase "pattern matching" is sometimes used more vaguely - for
matching a single pattern against a tree, for determining all matches of a pattern set in a given tree,
or sometimes for purposes that would more rightfully be called parsing of trees. This section
clarifies the correspondencies by describing parsing as a slightly generalized form of matching
between terms.

Definition 9

Let R be some subset of T(Z, V). A substitution cr is a substitution from R, or an

R-substitution for short, ff v~*v implies C(v)GR.
0

In the application we have in mind, R will be described by a grammar, but for Definitions 9 and 10,
this is irrelevant.

Definition 10

Let (E, E) be a specification, let p, t~T(Y.,V), P,~T(E,V).

p matches t, if there exists a substitution c such that p a =E t.

p R-matches t, ff there exists an R-substitution (~ such that p6 =E t.
0

Note that f fp R-matches t, this does not imply t¢R!

260

Theorem 2
Given E, let G be such that L(G)_ T(Z), and t:s~T(Z):s, v:s~V. Then we have:

teL(G) iff v L(G)-matches t.

This is in fact the trivial case of Definition 10, with p being a single variable. The point is that we
can formulate it in a more constructive way by separating out the "topmost production" of t:

Corollary
teL(G) iff, for some production p of form X-->t', with t'ET(]g, V), t" L(G)-matches t.
0

Matching a term p against t (in the sense of Definition 10) is a local task - only the non-variable part
of p must be compared against the outermost portion of t. The required substitution is determined
automatically by associating subterms of t to variables of p in corresponding positions. (If p is
nonlinear, subtree comparison faust also be performed, but we ignore nonlinearity for the moment.)
The expensive part of this, if any, is testing the equality relation =E underlying the comparison. In

tree pattern matching, as in [Kron75], [HOOD82], no equality other than syntactic equality is
considered, and matching a single pattern against a tree is still a local task, But in typical
applications, one is interested in all matches of a set of patterns at all subtrees of t, and this is the
reason why the matching algorithms studied there perform a complete top-down or bottom-up
traversal of t.

With matching relative to L(G), this is different: In order to determine a single match of p, say at the
root of t, we must not only compare p and the appropriate portion of t, but also ensure that the
substitution so obtained is an L(G)-substitution. This in turn requires L(G)-matching the variables
of p to the corresponding subtrees of t, and so forth. So in any case, a complete analysis of t is
required.

6. Algorithms for Derivor Inversion

We formulate algorithms for derivor inversion, retaining the classical pattern matching algorithm as
a special case.

6.1 Problem Statement and Outline of Solution

Given:
- Two hierarchic signatures Q=(SQ, OPQ) and Z=(S Z, OPz) over a common subsig-

nature M=(S M, OPM).

- A set E of equations of form m=m', with m, m'~T(M, V), defining the relation =E
(equality modulo E) on T(M, V), T(Q, V) and T(Z, V), such that unification, equality
and matching in T(M,V) (and hence T(Q, V) and T(Z, V)) modulo E are decidable (and
presumably efficiently irnplementable).

~:Z --> Q, a hierarchic derivor.

Desired:

For qET(Q), some representation of the set 8-1(q) := {zET(Z)I 8(z) =E q}"

A criterion for "specification completeness", i.e. for T(Q) ---E 5(T(Z)).

Special cases:

For space reasons, we can consider here in detail only the case where M is empty and 8 is linear.
For ISzI = ISQI = 1 this is the case of classical pattern matching according to [HOOD82] or
[Kron75]. In this section we will generalize the notion of matching sets appropriately to handle the
heterogeneous case, and shortly comment on the other generalizations.

261

Outline of the solution:
Let A=(N A, oPQ, pA) be the regular tree grammar for 8, constructed according to Observation 9.

L(A) describes 8(T(Z)), if 8 is linear, and else a superset of 8(T(Z)). For XEN A, sort(X)eSQ is

uniquely defined as in Observation t0, which follows from the way in which A is constructed.

Definition 11: Pattern, Pattern Forest, Matching Sets
Let P _c T(Z, V) be the set of terms occuring on the righthand sides of the operator

implementation equations of 8. P is called the set of "patterns".

Let PF = {p" I p" is a subterm of some p~P}, the "pattern forest". (Note that P~_PF.)

For q~T(Q), let the "matching set" o f q be

MS(q) = {pEPF I p 8(T(Z))-matches q}.

Let MSs = {M I M = M(q) for some q ~ T(Q)}.
0

These notions are analogous to those used in pattern matching in homogeneous tree languages, but

significantly more general. Basing the definitions on 8(T(Z))-relative matching of terms (with

variables) accomodates heterogenity, nonlinearity, and a nontrivial equational theory of M.

Definition 12: Algorithm Building Blocks
builda: For m 1 m n _c PF, a E OPQ\OPM,

builda(m 1 m n) = {pePF I p = a(p 1 Pn), Piemi} •

prod" For p~P with p = t(Vl:8(Sn) Vn:8(Sn)), prod(p) = t(s 1 Sn).

(Remember: N A = SZ.)

nonlinq: For any q e T(Q), m _q PF,

nonlinq(m) = { l~ml p= t(Vl:S 1 Vn:S n) such that

i) prod(p)->*q" for some q~T(Q) with q" =E q-
Let qi" be the subtree derived from s i in the derivation of q'.

ii) (v i = vj implies qi" =E qj" for any i, j E 1..n)}.

chain: Let N" ~ N A, and closure(N') ;= {X ~ N A] X -->* Y , Y e N'}.

For R ~ prod(PF), chain(R) = closure({X ~ N A 1 (X --> t) e pA, t E R}).

vats: For X~N A, vars(X) = {v a PFcW I sort(v)=sort(X)}.

~ rod and vars are extended to sets element-wise.

build a just constructs the set of patterns rooted by a, given choices of subpatterns for the n->0
arguments of a. chain determines nontermAnals from which certain righthand sides can be derived

by (possibly empty) chains, ending in a structural production whose righthand side is in R. prod

and vats are used to translate between the algebraic-view and the grammar-view of 8. For p ~ P,

262

prod(p) is the righthand side of the corresponding A-production(s). Ignoring =E for the moment, if

is linear, the notions of derivation and L(A)-relative matching coincide. In this sense, prod(p) can

also be thought of as a rewritten pattern p with variables renamed to make it linear. 5(T(Z))-relative

matching of p against some q can thus be separated into two "parts": derivation of q from prod(p)

with qiES(T(Z)), and verifying the nonlinearity condition, nonlinq checks nonlinearity of patterns p

which - if they were linear - would match at the root of q. (In an implementation, one uses the

functionality nonlin(p, q) instead of nonlinq(p).)

Algorithms calculating matching sets will be composed from these functions. MS(q) and the

matching sets for all subterms of q will be the desired representation of 5-1 (q). The following

theorem shows that matching sets are an extension of the notion of a semi-parse ¢' .

T h e o r e m 3:

Let M be empty and 5 linear. We have the following correspondence between the

matching sets and a semi-parse ¢" of q E T(Q) (and for all subterms of q):

¢'(q) = {X --> prod(p) E pA I p E MS(q) c~ P}.
0

We now have to show - for the general case - that MS(q) in fact represents 8"l(q) in a precise way.
The following two definitions are mutually recursive:

Definition 13a

For p e P, let Z-op(p) = {f(v 1 Vn) I fE Op Z and 5(f (v t Vn)) = p is an

operation implementation equation of 5}.

For q E T(Q), define Z-terms(q) c_ T(Z,V) as follows:

i) forqG T(M): Z-terms(q)= {t~ T(M) I t = E q } .

ii) for q ~ T(Q) \ T(M):

Z-terms(q) ={fp I f~ Z-op(p) for some p e MS(q) n P, and P a matching
substitution for p over q}.

0

Case i) comes from the fact that 5 by definition is the identity on T(M). One may choose to
represent Z-terms(q) by q in this case. Case ii) constructs a Z-term rooted by f, taking as its
arguments Z-terms from the corresponding variable positions in p, as matched against q. This
correspondence is defined formally as the notion of a "matching substitution", which substitutes
Z-terms for variables, and hence applies to f(v 1 Vn) rather than p.

Definition 13b

For pEMS(q), we say that p: V->T(Z, V) is a matching substitution for p over q, iff one
of the following applies:

i) p = v (a single variable) and vp G Z-terms(q);

ii) pET(M,V) and ppeZ-Terms(q);

iii) v does not occur in p and vp is a new unique variable;

iv) p = a(Pl Pk), aGOPQ\OPM, Pi ~T(Q,V), (and hence q = a(q 1 qk)), and p
is a matching substitution for Pi over qi for l_<i<_k.

<)

263

If p is nontrivial, case iv) applies and takes us down to the positions in q that correspond to the
variables in p. It ensures that variables occuring in several leaf positions are consistently
substituted. Cases ii) and iii) should be clear, but case i) contains a subtlety that needs further
explanation.

On the one hand, case i) is just the terminating case in the parallel structural induction over p and q
as specified by case iv). However, considering the situation where the pattern p considered in case

ii) of Definition 13a is a single variable, Definitions I3a and 13b seem circular. When 8(f(v))=v,

and veMS(q), they say that f(t)eZ-Terms(q) if tGZ-Terms(q). When t and f(t) happen to be of the

same sort, this even implies fi(t)eZ-Terms(q) for i_>0. This is exactly what we need here: it models

the situation where 5 plainly forgets Z-structure, which is recovered by finding (potentially circular)

derivations using the chain productions in A that stem from operation implementation equations of

the form 8(f(v 1 Vn) = v i.

Note that Z-terms(q) may contain terms of different sorts. They contain variables for subterms

"forgotten" by 8. Finally, we observe:

T h e o r e m 4

~-l(q) = {to I t e Z-terms(q) and ~ a ground substitution}.

Now we are left with the task of efficiently calculating MS(q) for a given q e T(Q).

6.2 The Basic Dynamic Algorithm

With the functions of Definition 12, it is straightforward to describe our basic algorithm for
determining matching sets for a given input term q. Subsequently, we shall derive table driven
versions from this Algorithm 1.

A lgo r i t hm 1:

Input: r e T(Q), PF.

Output: For each subterm q o f r (including r itself): MS(q).

(1) for all subterms q of r with sort(q) ~ S M *)

do MS(q)= {p G PFI p matches m (modulo E)} od;
(2) i:= i;
(3) while i < height(r)

(4) do for all subterms q = a(q t qn), n_>0, of r with height(q) = i and sort(q)/~ S M
(4a) do MS(q) := let m =(MS(q1) MS(qn)) in

(nonlinq.builda)(_m_) t.) (vars.chain, prod, nonlinq, builda)(.m_)
od;

(4b) i:= i+l;
od

*) Actually it suffices to compute the matching sets of "semantic" subterms m (i.e. sort(m)ES M),which are not
subterms of a semantic subterm themselves, because on the one hand ~-l(m) = m, and on the other hand we
need the matching sets of such "complete" subterms m, in order to be able to compute the matching sets of
the "syntactic" superterms q" (i.e. sort(q3 ~ S M) containing them.

264

6.3 Table-Driven Algorithm for M empty and ~ l inear

For this section, we let M be empty and ~ linear. In step 4a) of Algorithm 1, all functions except

nonIinq are independent of the actual input term q. When ~ is linear, nonlinq is the identity on

pattern sets, for any q. Hence, the matching set of a term q = a(ql qn) is computed (only) from

the operator "a" and the matching sets of the subterms ql qn-

As noted earlier, the set of all matching sets, MSs, is finite. These facts gave rise to the idea (in the
treatment of the homogeneous case in [Kron75] and [HOOD82]) to precompute the information
which is dynamically computed in step 4 of Algorithm 1. This information is represented by

tabulating the following functions fa, for each a ~ OPQ:

fa (-~-) = builda(m) u (vars*chain*prod*builda)(.m_).

The functionality of fa could be seen as fa: (MSs)rank(a) ---> MSs, but this would be excessively

expensive in table size and generation time. Instead, fa should only be tabulated for those combinati-
ons of arguments that can actually occur. A restriction of the possible combinations is observed by
exploiting the heterogenity of the input language: All patterns matching a term q must have the same
sort as q. We may partition MSs according to SQ:

MSs = k) N-MSs, for NGSQ, with MS(q) E N-MSs fff sort(q)=N.

It suffices to precompute the following (generally smaller) tables:

For (a: N1...N n --> N 0) E OPo: fa: N1-MSs x... x Nn-MSs ---> N0-MSs.
(As observed in [Kron75] for the one-sorted case, the N-MSs as carriers and fa as functions form a

Q-algebra. Another such algebra could be defined over the carriers C N =2{P EPF 1 sort (p)=N}

with fa extended accordingly. This algebra is the worst case of our approach with respect to size of

the precomputed tables. Work on the homogeneous case has shown that the tables for fa as defined
above are significantly smaller in many practical applications.)

Provided that we have precomputed fa for all a E OPQ, we get the following table driven version of

Algorithm 1:

Algorithm 2:
Input: r e T(Q); for all a e OPQ: fa

Output: as Algorithm t
(1) -- step i is omitted as we assume M to be empty --
(2) i:= 1;
(3) while i _.<. height(r)
(4) do for all subterms q = a(ql qn), n_<0, of r with height(q) = i
(4a) do MS(q):= fa (MS(ql) MS(qn)) od;

(4b) i:= i+l
od

Obviously, this matching algorithm is linear in the size of r, as it consists of a single table-lookup
per node of the input term r.

The principle idea in the following table generating algorithm is m compute successively the
matching sets of all terms from T(Q) of height 0,1,2, etc. until MSs, the set of all matching sets,
converges. Terms are not enumerated explicitely. Rather, a term of height i is represented by its top
operator and the possible matching sets for its arguments. The first iteration (for nullary a) is taken
out of the repeat loop, as its repeated calculation cannot yield further matching sets.

265

Algorithm 3:
Input: PF, OPQ, SQ.

Output: for all a ~ OPQ: fa-

for all N e SQ do N-MSs0: = 0 od;

for all (a : --> N) E OPQ

do tabulate fa;

N-MSs0:= N-MSs 0 u fa

od;
i:=l;
repeat for all (a : N1...N n --> N) ~ OPQ, n.~>l,

do for all N E SQ do N-MSsi: = 0 od;

for all (R 1 Rn) ~ N1-MSsi-1 ×... × Nn-MSsi-1 *)

do tabulate fa(R1 Rn);

N-MSsi:= N-MSs iU fa(R1 R n)

od
od;
for all N e SQ do N-MSsi: = N-MSs i ~) N-MSs i-1 od;

i:= i+l
until for all N E SQ, N-MSs i ' t = N-MSs i '2

0
*) Here we can demand at least one Rj to be computed in the last iteration step of the repeat-loop, in order to

ensure that there will be computed matching sets of terms of height i indeed.

Obse rva t i on 12:

The specification is complete, i.e. T(Q) = L(A) (= 8(T(Z))), iff

for all table-entries fa(R1 Rn) = R holds: R c~ P , ¢1.

6.4 Extensions

Space does not allow to explicate the extension of the generator algorithm to the cases where M is
non-empty, and the derivor may be non-linear. This will be done in an extended version of this
paper, planned to appear elsewhere. We only sketch here the particular problems to be solved for
each of these, and one further extension.

Extension to non-empty M

A particular initial step is needed to calculate the s-MSs for sES M. Generally, not all subsets of

2 PF:s can occur, since some patterns in PF:s may not be independent, as for example the patterns
car(cons(l, v)) and 1 in the presence of the usual axioms. Here we need the prerequisite of our
problem statement that unification modulo E be decidable.

Extension to nonlinear 8
Consider Algorithm 1. In the linear case, nonlinq is the identity, and the composite effect of step 4a)
can be precomputed, nonlinq, however, can only be evaluated dynamically, and so we have to

generate separate tables representing build a and f(rn):= m u (vars*chain*prod)(.m_.). Now the central
step (4a) in Algorithm 2 becomes

MS(q):= let m" = nonlinq*builda(MS(ql) MS(qn)) in m ' u f(m') ,

266

where build a and f are tabulated, nonlinq introduces twofold complications: In order to know for

which arguments build a and f must be precomputed, we must anticipate the effect of nonlinq.
Furthermore, for applying nonlinq dynamically, information about matching substitutions must be
calculated along with the matching sets.

Extension to More Refined Input Languages

Let IL be the input language to our pattern matcher. So far, we have assumed that it is a term

algebra, IL=T(Q) for some Q. But an actual IL may be some subset ofT(Q), being the output of

earlier compiler phases. IL may be L(G) _c T(Q) for some regular tree grammar G, or it may be

9(T(P)) for some other signature P and a (possibly nonlinear) derivor 9: P --> Q. In these cases,
the table driven algorithm with tables generated as if IL = T(Q) will still work correctly, but the
tables may contain matching sets that cannot actually occur for the more restricted IL. Besides tables
being larger than necessary, our completeness criterion is only a sufficient, but no longer a
necessary condition. But in both cases, our generative algorithms can be adapted to generate the
precise matching sets for the given IL. There is no need to study further generalization to input
languages such as

IL = (P2 * Pl)(T(P)), as derivors are closed under composition.

7. Table Size and Generation Effort

Measuring space and time efficiency in terms of the size of the given pattern set P, it is known from
work on the homogeneous case [HOOD82], that there is an exponential worst case behaviour.
Fortunately, it has also been experienced that this behaviour does not occur for many practical
situations, in particular when the compacting technique of [Chas87] is used. As our algorithms
include the homogeneous case when ISQI (= ISzl) = 1, these worst case observations are still valid.
On the other hand, one can construct a specification with ISQI - 1 and ISzl >1 that yields a linear
number of matching sets, but turns into the worst-case example of [Chas87] when applying the
sort-identifying morphism of section 3.4 to the target signature Z.

The generator algorithm (Alg. 3) is a 360-line PROLOG program. It uses the compacting generation
technique of [Chas87], and some care was given to the way in which PROLOG's backtracking is
used. The largest example it has been run with is a fairly complete description for the MC68000
processor, containing 37 sorts and 92 operators in the target signature. The (compiled) generator
produces 76 matching sets in about 32 seconds on a SUN-3 (25MHz) workstation, and the
generated tables (in the form of PROLOG facts) occupy 53K bytes of storage. (Without Chase's
compacting technique, generation time is about 2 hours!) With the present data, it seems that space
and time requirements of the code selector and its generator will no longer be a problem. But
experiments comparable to those of [Henr84] have not yet been performed.

8. Conclusion and Future Work

We expect that more general machine specific aspects or code generation subtasks such as register
allocation, that were previously treated in an ad-hoc manner, can be expressed by extending the
target signature Z by equational specifications. Such code generator specifications may look rather
different from the ones in most of the approaches discussed here (with the exception of
[MRSD86]), but the underlying implementation technique will still be pattern matching as
developed here. The long-term goal of this work is to make code generator specifications more
formal and complete, such that proof methods from the area of term rewrite systems [HuOpS0],
[HuHu80], [RKKL85] can be used to verify the correctness of code generators.

The recent approaches we have discussed shortly in the introduction should be evaluated in terms of

the formalism presented here. Besides by peculiarities in their pattern matching mechanisms, they

are characterized by the way in which the evaluation of the "choice function" ~ is interleaved with

the construction of 8-1. Both ideas which have been used - dynamic programming at matching time,

267

and reduction of generated tables at generation time according to cost criteria - can be incorporated
with our approach. Most interesting may be an hybrid scheme, using table reduction where it retains
completeness and optimality, and matching-time cost comparison otherwise.

Finally, a conceptually interesting and technically demanding problem spared out in this paper is the

following: Having implicitly represented 8-I(q) in a compact way (cf. Theorem 4), how do we

extract from it an interesting subset according to cost minimality or other well-formedness criteria

that express machine properties not covered by 8 itself?. Some progress has been achieved [Weis87]

by work subsequent to [WeWi86], but an eventual solution to this problem also depends on what

further subtasks of code generation are to be integrated into the overall approach.

References

[ACK83] A. Tanenbaum, H. van Staveren, E. Keizer, J. Stevenson: A Practical tool Kit for
making Portable Compilers. CACM 26 (9), pp. 654-660, 1983]

[ADJ78] J.A. Goguen, J.W. Thatcher, E.G. Wagner: An initial algebra approach to the
specification, correctness and implementation of abstract data types. In R. Yeh (ed.):
Current trends in programming methodology, Vol. IV, Prentice Hall, 1978.

[AhGa85] A.V. Aho, M. Ganapathi: Efficient tree pattern matching: an aid to code generation.
Proceedings POPL 12, pp.334-340, 1985.

[AGT86] A.V. Aho, M. Ganapathi, S.W.K. Tjiang: Code Generation Using Tree Matching
and Dynamic Programming. Report, Bell Laboratories, Murray Hill, 1986.

[AhJo76] A.V. Aho, S.C. Johnson: Optimal Code Generation for Expression Trees. JACM
23(3), pp. 488-501, 1976.

[Benk85] M. Benk: Tree grammars as a pattern matching mechanism for code generation.
Report TUM-I8524, Technical University MiJnchen, 1985.

[Brai69] W.S.Brainerd: Tree generating regular systems. Information and Control 14, pp.
217-231, 1969.

[Catt77] R.G.G. Cattell: Formalization and Automatic Derivation of Code Generators.
Dissertation, Report CMU-CS-78-117, Carnegie-Mellon-University, Pittsburgh
1978.

[Chas87] D.R. Chase: An improvement to bottom-up tree pattern matching. Proceedings POPL
14, 1987.

[CHK84] Th.W. Christopher, Ph.J. Hatcher, R.C. Kukuk: Using dynamic programming to
generate optimized code in a Graham-Glanville style code generator. Proceedings
SIGPLAN "84 Symposium on Compiler Construction, SIGPLAN Notices 19, 6,
1984.

[GaGi84] H. Ganzinger, R. Giegerich: Attribute coupled grammars. Proceedings 2nd
SIGPLAN Symposium on Compiler Construction, SIGPLAN Notices 19 (6),
pp.70-80, 1984.

[Gieg84]

[Gieg85]

R. Giegerich: Code generation phase models based on abstract machine descriptions.
Report TUM-I8412, Technical University Mtinchen, 1984.

R. Giegerich: Logic specification of code generation techniques. In: H. Ganzinger,
N.D. Jones (Eds.): Programs as data objects. LNCS 217, Springer Verlag, 1985.

268

[Glan77] R.S. Glanville: A Machine Independent Algorithm for Code Generation and its Use
in Retargetable Compilers. Dissertation, Report UCB-CS-78-01, University of
California, Berkeley 1977.

[GrG177] R.S. Glanville, SJ~. Graham: A new method for compiler code generation.
Proceedings 5th ACM Symposium on Principles of Programming Languages, pp.
231-240, 1977.

[HaCh86] Ph. J. Hatcher, Th. W. Christopher: High quality code generation via bottom-up tree
pattern matching. Proceedings SIGPLAN "86 Symposium on Compiler
Construction, SIGPLAN Notices 21, 6, 1986.

[Henr84] R.R. Henry: Graham-Glanville code generators. Dissertation, Report
UCB-CSD-84-184, Berkeley 1984.

[HOOD82]

[Hors87]

Ch. Hoffman, M. O'Donnell: Pattern matching in trees. JACM, pp.68-95, 1982.

N. Horspooh An alternative to the Graham-Glanville code-generation method. IEEE
Software, pp. 33-39, May 1987.

[HuHu80]

[HuOp80]

G. Huet, J.-M. Hullot: Proofs by induction in equational theories with constructors.
Proceedings 21st SFCS, Lake Placid, pp 96-107, 1980.

G. Huet, D.C. Oppen: Equations and rewrite rules: A survey. In R. Book (ed.):
Formal language theory: Perspectives and open problems. Academic Press, 1980.

[Kron75] H. Kron: Tree templates and subtree transformational grammars. Dissertation, UC
Santa Cruz, 1975.

[MRSD86] M. Mazaud, R. Rakatozafy, A. Szumachowski-Despland: Code Generation Based on
Template-Driven Target Term Rewriting; Rapport de Recherche, INRIA, 1986.

[Ripk77] K. Ripken: Formale Beschreibung von Maschinen, Implementierungen und
optimierender Maschinencodeerzeugung aus attributuerten Programmgraphen.
Dissertation, TUM-INFO-7731, Institut flit Informatik, TU Miinchen, 1977.

[RKKL85] P. Rety, C. Kirchner, H. Kirchner, P. Lescanne: NARROWER: a new algorithm for
unification and its application to logic programming. Proc. 1st Conference on
Rewriting Techniques and Applications, LNCS 202, Springer Verlag, pp. 141-157,
1985.

[Turn86] P.K. Turner: Up-down parsing with prefix grammars. SIGPLAN Notices 21, (12),
1986.

[Weis871

[WeWi86]

B. Weisgerber: Private communication.

B. Weisgerber, R. Wilhelm: Two tree pattern matchers for code generation. Internal
Report, University Saarbrticken, 1986.

