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1. Pattern Matching Approaches to Code Selection 

1.1 Summary  

Significant progress in the area of formal tools to support the construction of code generators in 
recent years has come along with a severe terminological confusion. Closely related techniques 
appear in different styles, further obscured by ad-hoc extensions. We try to alleviate this situation 
by suggesting that the code selection task should be understood as the problem of inversion of a 
hierarchic derivor. This understanding leads to several interesting generalizations. More expressive 
formalisms - heterogeneous tree languages, regular tree languages, derivor images - can be used to 
define the code selectors input language. In all cases, we retain the ability to decide the 
completeness of the code selector specification as a side-effect of code selector generation. The 
extension to nonlinear matching, in combination with matching relative to a subsignature M with a 
nonmvial equational theory, allows to express the non-syntactic conditions formerly associated with 
a production in a Graham-GlanviUe style code generator description. Due to space restrictions, such 
extensions can only be sketched here, while the emphasis of this paper lies on motivating and 
demonstrating our reformulation of the classical pattern matching approach to code generation. 

1.2 A Short Review of Recent Approaches to Code Selection 

Initiated by the work of Graham and Glanville [GrG177], many approaches to retargetable code 
generation have been presented in recent years. Commonly and correctly, they are subsumed under 
the phrase "pattern matching techniques". Some form of pattern matching is used to guide code 
selection, while other subtasks of code generation, such as register allocation, cost comparison of 
different coding alternatives, or evaluation ordering must be organized in some way along with the 
matching process. Henry [Henr84] has carefully and extensively demonstrated the limitations 
inherent in the original Graham-Glanvitle approach, which used LR-parsing techniques for pattern 
matching. We are particularly concerned here with work that attempts to overcome these limitations. 
While Graham and Glanville had demonstrated how the syntax-directed translation paradigm could 
be beneficially applied to code selection, it became clear that two kinds of improvements were 
desirable: using a more flexible kind of pattern matching for the "syntactic" aspects, and new 
techniques to describe other subtasks of code generation that have to be performed along with and 
are directed by the matching process. Several related suggestions have been made with respect to 
the first task, while the second has received less systematic treatment. As most workers in this area 
have observed, off-the-shelf tree pattern matching in the "classical" sense of [Kron75] or 
[HOOD82] is close to providing a solution, but is not quite expressive enough to serve as an 
adequate technique for code selection. Unfortunately, all approaches developed their own 
terminology and extensions, and the concepts used to formulate the individual pattern matching 
techniques have not been adequately separated from their particular application to the code 
generation task. As a result, the relative virtues of the different approaches can hardly be evaluated, 
as a comparison can only be made at a most technical or empirical level. Let us give a short 
discussion of the approaches we are referring to. 
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First variations of the Graham-Glmaville approach still used string parsing techniques, e.g. 
[Henr84] and [CHK85]. [Tum86] uses a technique called up-down parsing, and actually parses 
trees, but sees his grammars still as string grammars. [Gieg84] and [Benk85] use parsing with 
(regular) tree grammars, resorting to classical terminology from formal language theory. [HaCh86], 
[WeWi86] and [AhGa85],[AGT871 use the name pattern matching, but with different meanings. 
Recent approaches, yet to be worked out further, try to embed code generation in a formalism of 
algebraic equational specifications and term rewrite systems [Gieg85], [MRSD86]. 

Let us further exemplify the terminological inhomogenity by a look at corresponding notions in 
different approaches. Maybe the best-understood terminology is that of nonterminals, terminals and 
productions of a tree grammar, as everyone can understand a tree grammar as a context free 
grammar where the righthand sides of productions are trees. (This view is used frequently, but it 
does have a pitfall, which we will address later.) [Turn86] is closest to this terrain" ology, speaking 
of nonterminals, operators and prefix (string) expressions. [AGT87], DVeWi86] and [HaCh86] use 
"patterns" for productions. [AGT87] uses "labels" and "operators" for nonterminals and terminals, 
while [WeWi86] uses "labels" for both concepts. [HaCh86] calls terminals "node-type", and it 
seems at the first glance, that nonterminals show up here as "renaming symbols". But in fact, the 
correct counterpart of nonterminals is an index into some table, which may either be a "renaming 
symbol" or some proper sub-pattern. [Chas87], contributing a significant improvement of the 
classical pattern matching algorithm of [HoOH82], also discusses extensions necessary for code 
selection applications. He uses the most creative naming, calling nonterminals "introduced 
wildcards". Finally, with algebraically oriented approaches, we know (e.g. from [ADJ78]) that 
nonterminals correspond to the sorts of some signature, with terminals denoting the operators. 

Of course, if this was only an inconsistency of namings, it would not be worth bothering about. 
But to the extent that formal language terminology is abandoned, the concept of a derivation 
disappears - and this concept is in fact a very useful one in the given context - although not quite 
sufficient. In spite of all similarities, it does make an important difference for the expressive power 
of an approach, whether it uses "trees over a ranked alphabet" or "terms from a given signature" as 
its basic concept. It is one of our goals in this paper to explicate these differences, which are often 
considered negligible. 

We conclude this little survey by another observation with a similar lesson. Glanville [Glan77] 
originally addressed the problem of completeness of the code generator description (the "machine 
grammar"), partly ensuring it by imposing the condition of "uniformity". Much later work has been 
designed to remove this restriction. Interestingly, the more these approaches deviate from formal 
language terminology, the less inclined they are to address the completeness aspect. 

2. A Sketch of an Algebraic Model of Code Generation 

The overall goal of this work is not to suggest another pattern-directed technique for code selection. 
Our goat is a reformulation of such techniques, in a way suitable to handle code generation as well 
as other applications, combining the virtues of three areas: 

Efficiency and known generative techniques from classical pattern matching [Kron75], 
[HOOD82], [Chas87]; 
clean concepts and decidability results from formal language theory [Brai69], [Benk851, 
together with a modest gain in expressive power; 
powerful specification, implementation and proof techniques available in equational algebraic 
specifications [ADJ78], [HuOp801, [HuHu80]. 

In order to show how this can be achieved, we must first sketch our understanding of code 
generation. This subsection is an excerpt of a more substantial investigation in the theory of code 
generation (unpublished at this point). A predecessor of the model sketched here can be found in 
[Gie85]. The goals of this work are shared by the approach of [MRSD86], which describes work 
on the design of a code generation tool based on term rewriting techniques. 

To arrive at a model of code generation with the desired properties, we must break with two 
paradigms prevalent in previous approaches to code generation. The first is the "code emission 
paradigm". Typically, in code generator descriptions there are "actions" or parameterized code 
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strings associated with the patterns, which, upon a match of the template, trigger the emission of 
target machine or assembly code to some file. The problem with this is that when code is emitted 
right away, it has to be perfect from the beginning. This leads to a tendency to overfreight the 
pattem matching with other tasks such as register allocation or peephole optimization, which should 
preferably be described separately, at least on the conceptual level. Instead, the code we generate 
will be machine code in abstract syntax, and we disregard the task of writing a linearization of it to 
some file. 

The second paradigm we abandon is that "machine description" and "code generator description" 
have traditionally been treated as synonyms. It turns out to be very important to formally distinguish 
these two notions. The machine description says what (abstract) target programs are, the code 
generator specification says how they are related to source programs. We will now discuss 
approaches to code generation as if they had always been using our conceptual model. We focus on 
the central task of instruction selection for arithmetic and addressing calculations. 

Let Q and Z be many-sorted signatures. Source (= intermediate) and target (= machine) language 
programs are terms in the term algebras T(Q) and T(Z), respectively. Code generation requires 

(among other tasks) to specify and irnplement a code selection morphism 7:. T(Q) --> T(Z). 

Two ways have been used to obtain y. In handcrafted compilers, as welt in systematic approaches 
striving for retargetability like lACK83], one considers all relevant operator/operand combinations 
in T(Q), and specifies for each some term from T(Z) as its target code. If good code is desired, the 
necessary analysis of special cases becomes intricate and error-prone. It was an important 
observation of [GrG177], [Catt78], [Ripk77], that it may be more convenient to describe the target 
machine instructions in terms of the intermediate language, rather that vice versa. Hence, for each 
Z-operator (typically representing a machine instruction), one specifies some semantically 
equivalent term from 

T(Q). Let us call this description 8. With some right, it could be called a machine description rather 

than a code generator description. It specifies a homomorphism 8: T(Z) --> T(Q). 03ut traditionaUy 

it has not been understood this way, due to the two paradigms discussed above.) Algebraically, 8 is 

a derivor [ADJ78] from Z to Q. Now the arrow goes the "wrong" way, but to obtain 7from 8, 

pattern matching techniques can be used. So, the gains of this approach are twofold - descriptive 

ease, and generative support for an efficient and correct implementation of the required case 

analysis. (Ignoring this aspect leads to the argument in [Hors87] that Graham-Glanville style code 

generation goes the "wrong way".) 

A third advantage of the latter approach is the following. Inherent in the task of code generation 

there is some freedom of choice, usually exploited to optimize target code quality. The specification 

8 preserves this freedom. Correspondingly, to obtain the desired y, one must not only invert 8, but 

also supply a choice function { wherever for some qET(Q), there are several zeT(Z) with 8(z)=q. 

For example, dynamic programming accoording to [AhJo76] has been used to implement this 

choice. On the conceptual level, we would like to have the functionality T(Q) --8-1__> 2T(Z) __~__> 

T(Z), while on the technical level, we want to interleave ~ with the construction of 8 -1. 

The same holds for other subtasks of code generation, such as register allocation, evaluation 
ordering, or machine specific data type coercions. In current approaches, these tasks have not found 

a formal specification. In our algebraic framework, they are described along with Q, Z, and 8 by 
equational specifications for a so-called semantic subsignature M of Q and Z. ([Gieg85] provides 
an example of such a specification.) The main concern of our framework is that all aspects of code 
generation can be described formally and in a modular way, thus allowing proofs of completeness 
and correctness. But for the moment, this is still an open promise, and not the subject of the current 
paper. 
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With formal definitions still postponed, we illustrate the above by a small example. 

Example 1 
"semantic" subsignature M = 

sorts Number Type 

operators word: --> Type 
long: --> Type 
0 ,1 ,2  .... : -->Number 
scale: Type --> Number 

equations scale(word) = 2 
scale(long) = 4. 

"source" signature Q = M + 
sorts E 

operators const: Number --> E 
+ ,* :E  E -->E 
mem: Type E --> E 
reg: Type Number --> E. 

"target" signature Z = M + 
sorts Exp Adr 

operators ADD: Exp Exp --> Exp 
ADDI, MULI: Exp Number --> Exp 

R: Type Number --> Exp 
M: Type Adr --> Exp 

mk_adr: Exp --> Adr 
bdx: Type Type Number Number Number --> Adr. 

The above target signature is a little contrived, in order to demonstrate both nonlinearity and the use 
of nontrivial semantic subterms. Z-operator bdx denotes the addressing mode "base-displacement- 
addressing with index", where the first argument indicates the word length to be used in the address 
calculation, while the second indicates the word length of the addressed memory ceU, used to 
determine an automatic scaling factor. The other arguments are base and index register number, and 
the displacement. 

We can now explain the role of M. It serves a threefold purpose. 
i) Usually there are several variants of instructions or addressing modes like our bdx - depending 

on the available choices of operation, address and operand length. In Graham-Glanville style 
descriptions, this led to a phenomenon called "type crossing" [Henr84]: The size of the machine 
description is (essentially) multiplied by the number of machine data types, leading to extremely 
large descriptions. At least for the sake of readability, parameterization of the description is 
called for (which may be expanded automatically). In our approach, we just use machine data 
types as extra arguments to Z-operators, keeping the description concise without extra 
parametrization mechanisms, and avoiding expansion. 

ii) From the beginning in [GrGt77], patterns have been augmented by semantic attributes, which 
were instantiated by concrete register numbers or constant values, and used to test semantic 
restrictions on the applicability of a pattern. Again, we need no special attribute concept for this 
purpose - the register number is just another argument (with a sort from SM) of the reg 

operator. 
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iii) Functions calculating and predicates testing semantic attribute values in Graham- Glanville style 
descriptions are defined outside the formal specification. Here, they are defined as operators of 
OP M by equations in E. "Testing a semantic predicate" is thus elegantly subsumed in the notion 

of matching modulo =E" 

This is further demonstrated by the second part of  Example 1, the derivor specification. Note that 
the equation for bdx is nonlinear in t - our target machine uses word or longword addresses, but 
both base address and index must be of the same length. The M-subterm scale(t0 will match the 
numbers 2 or 4, but no others - according to the equations specified with M. 

Example 1 - continued 
hierarchic derivor ~:Z--> Q 

(By definition, 6 is the identity on M, and hence this part of 6 is not shown.) 

sort map  8: Exp - ->E 
Adr --> E 

0 

operator implementation equations -- using infix notation for + and * -- 

6(M(t, a)) = mem(t, a) 

6(R(t,i)) = reg(t, i) 

6(ADD(e, f)) = e+f 

6(ADDI(e,n)) = e+const(n) 

6(MULI(e, n)) = e*const(n) 

6(bdx(t, tt, i, j, n)) = (reg(t, i) + const(n)) + reg(t, j) * const(scale(tt)) 

6(mk_adr(e)) = e 

Example 2 

q ~ m e m  

w o r d  + 

+ * 

reg const reg const 

/\ I /\ I 
long 1 1230 long 5 2 

z =  M 
/ \  

word mk_adr 

t 
A D D  

ADDI MULl 

I /  
1230 R 

IX / \  
long 1 long 5 

Z j ~  M 

word bdx 

long word 1 5 1230 
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Example 2 shows z, z" such that 5(z) = E q and 5(z3 =E q, which can be verified formally from 

the definition of & The terms describe a memory word addressed via base, displacement and scaled 
index, which could be written (in a VAX-like notation) either as operand 1230(R1.L)[R5.L] in a 
word instruction, or as operand (R1) preceded by the code sequence ADDI.L R1, 1230; MULI.L 
R5, 2; ADD.L R1, R5. 

The reader is invited to attempt to construct z or z" from q by performing the appropriate pattern 
matching, for the moment on an intuitive basis. Note also that if we replace the constant 2 in q by 
(say) another register, there is no target term for the modified q. The specification is incomplete. 

3. Homogeneous Tree Languages, Heterogeneous Term Algebras, and Regular 
Tree Languages 

This chapter introduces familiar concepts and notes some straightforward correspondencies and 
differences. 

3.1 Homogeneous Tree Languages 

Definition 1: Ranked Alphabet, Homogeneous Tree Languages 
A ranked alphabet is a finite set A of symbols, together with a function rank, such that 

rank(a)_>0 for each aeA. 

The homogeneous tree language trees(A), also called the set of trees over the ranked alphabet 
A ,  is defined by 
aEtrees(A), if rank(a)=0, 

a(t 1 ..... tn)Gtrees(A), if tietrees(A) for l~<_n, a~A, and rank(a)=n. 

0 

Example 3 
Let A1 be the alphabet {0, 1, cons, nil}, with ranks 0, 0, 2, 0, respectively. Elements of 
trees(A1) are, for example: 0, nil, cons(nil, 1), cons(cons(0, 1), cons(nil, nil)). 
0 

We shall also depict trees in graphical form, as in Example 2. 

Observation 1 
Consider the subset lists(A1) of trees(A1) containing the constants 0 and 1, plus all linear 
lists of binary digits, such as nil or cons(l, cons(0, nil)). It cannot be described as a 
homogeneous tree language trees(A) for any A. 
<> 

3.2 Regular Tree Languages 

Definition 2: Regular Tree Grammars and Regular Tree Languages 
A regular tree grammar G is a triple (N, A, P), where 

N is a finite set of nonterminal symbols, 
A is a ranked alphabet of terminal symbols, AnN=O, 
P is a finite set of productions of the form X --> t, with XeN and tGtrees(AvN), with 
nonterminals given rank 0. 

For t, t'~trees(AuN), t immediately derives t', written t -> t', if there is a pep, say X->t% 
such that t" results from t by replacing a leaf labelled X by t".  Whererelevant, we indicate 
the p used m the denvauon step, wntang ->p. The relattons -> and -> are the transmve and 
the transitive and reflexive closure of->. 
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X--> t}, and L(X) := {t I t Gtrees(A) and * 

L(G) := {t I teL(X) for some X~N} is the language of G. 
<> 

In our context, we are not interested in a particular root symbol, and so it was omitted from 
Definition 2. 

Example 4 
Let G1 be the regular tree grammar ({D, R}, A1, P1 } with A1 as before, and 
P I = {  R - - > n i l  

R -->cons(D, R) 
D - > 0  
D -->1 }. 

Clearly, L(G1) = lists(A1) of  Observation 1. 
(> 

We call these grammars regular (following [Brai691), since in their formal properties, they are a 
generalization of regular string grammars, rather than of context free string grammars. The usual 
view of  Graham-Glanville style machine descriptions as context free grammars, with prefix 
expressions on the righthand sides of  productions, does not adequately express how strong the 
restriction to "prefix expressions" really is. For example, language containment is undecidable for 
context free string grammars, but decidable for regular string grammars.We note: 

Observation 2 

For regular tree grammars G 1 and G 2, L(GI)  _c L(G2) is decidable. 

A proof of this fact is given in [Benk85], although this result is probably much older. We will see a 
ve.ry important application of this result later. In the sequel, we shall need a few more technical 
nouons: 

Definition 3 
A production of the form X -->Y, with X, Y G N is a chain rule. Other productions are called 
structural rules. 

A derivation containing a subderivation of  the form X -->+X (using chain rules only) is 
called a circular derivation. 

A sentential form of G (for X) is a tree tGtrees(AuN) such that X -->*t, 
<> 

Observation 3 
tEL(G) has infinitely many derivations iff it has a circular derivation. 
0 

Of course, regular tree grammars may be ambigous, but observation 3 tells us, that if we restrict our 
attention to noncircular derivations, there will be only finitely many such derivations for any 
tEL(G). 

3.3 Heterogeneous Term Algebras 

For the standard terminology we need from algebraic specifications, we do not give full formal 
definitions (see [HuOpS0] for that matter), but only explain the notation we are going to use. 

Definition 4: Signatures, Specifications 
For a signature Z = (S, OP), T(Z) denotes the set of terms over Z, while the set of terms of a 
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particular sort s is denoted T(E):s. T(Z, V) is the set of Z-terms over an S-sorted set V of 

variables. A specification (~;, E) is a signature Y~ together with a set E of equations of form 

= t ' ,  with t, t'ET(S,V). It induces the equality relation =E on T(Z,V). 

Substitutions are mappings o:V --> T(Z, V), the application of cr to t is denoted by ta. 

The replacement of a subterm t" in t by t'" is written t[t" <-- t 'q. 
0 

Example 5 
Let Z1 be the signature with sorts {D, R} and operators 

{0: --> D, 1: --> D, cons: D R -->R, nil: -->R}. 

Clearly, T(Z1) is isomorphic to L(G1), and T(Z1, V), when restricted to a single variable for 
each sort, is isomorphic to the sentential forms of G1. 
0 

In the sequel, we will mainly be concerned with syntactic aspects - recognizing terms for which =E 

is the syntactic identity relation. However, we set the stage for a convenient generalization, allowing 
a subsignature for which nontrivial equations may hold. The idea is that equality relation of this 
subsignature can be implemented by some other means, for example by providing a canonical term 
rewrite system for it. The concept of a hierarchic signature here is the same as in algebraic compiler 
specifications with attribute coupled grammars [GaGi84]. There, the subsignature is called the 
"semantic" subsignature, while its complement is called "syntax". In this terminology, terms can 
be seen as syntactic trees with semantic terms at their leaves. 

Definition 5: Hierarchic Signature 
A signature Y~ is hierarchic, if it contains a subsignature Z" such that all operators of Z with 

result sorts from Z" are from Z'. 
0 

We shall restrict our attention to specifications where equations may only be given between terms of 

those sorts which belong to the subsignature Z'. The particular significance of the subsignature M 

and its equational theory in the application to code generation was explained following Example 1 in 

section 2. 

3.4 Simple Correspondencies 

Let rl be the grammar morphism that merges all nonterminals into a single one, modifying 

productions accordingly. 

Observation 4 

L(G) ~ L(rI(G)) ~ trees(A). 
0 

In general, the inclusion is proper. This is illustrated by Example 6. 

Example 6 
Let grammar G2 =({D, R}, A1, P2} with 
P2= { R--> nil 

R --> cons(0, R) 
R --> cons(l, R) 
D --> 0 
D-->  I}. 
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We have L(G2) = L(Gt). We have L(G2) c L(rI(G2)) c trees(A1), proved by considering 
cons(0, 0) and cons(cons(0, 0), nil). Although L(G2) = L(G1), the second inclusion is not 

~ roper in the case of G1. 

Observation 5 
For any A, trees(A) = L(G) for a regular tree grarmnar G in the following restricted form: 
(RF1) G =({X}, A, P}, with 

P = {X--> a(X ..... X) I for aeA and according to rank(a)}. 
0 

Now we denote by rl the signature morphism that identifies all sorts, yielding one-sorted 
signatures. 

Observation 6 
T(Z) g T(rl(Z)) = trees(OP) 
0 

To see that the above inclusion is proper, consider cons(0, 0) e T(TI(Z1))\ T(~I). More precisely, 

the inclusion above would have to be expressed as T(Z) being isomorphic to a subset of T(TI(Z)), 
and the equality as isomorphism. Besides this, the equality in Observation 6 is justified below. 

Observation 7 

Any T(Z) for Z=(S, OP) is isomorphic to L(G) of a regular tree grammar G in the restricted 
special form 
(RF2) G = (S, OP, P) with 

P = {X 0 --> a(X 1 ..... Xn), for any a: X 1 ... X n --> X 0 E OP}. 
0 

In G, we simply use sort symbols as nonterminals. If G has only one nonterminal, RF2 and RF1 

coincide. Hence, the grammar corresponding to rl(Z) is in RF1, which proves T(rl(Z)) = trees(OP) 
of Observation 6. 

According to the isomorphisms stated here, heterogeneous term algebras are rightfully called 
heterogeneous tree languages, and we will consider terms as trees and trees as terms, as convenient. 

For example, we will speak of a Z-derivation of t as a way to sucessively construct some t~T(Z) 

from Z-operators. 

Summing up, we shortly address the question of what concept to use when designing an 
intermediate language. Expressive power is an important issue here. It is undesirable to specify an 
intermediate language which is a superset of what will actually occur, and then base subsequent 
compiler phases on assumptions on "that subset of the intermediate language actually produced by 
the front-end". (An interesting lesson is to be learned here from Henry's experience with the 
portable C-Compiler [Henr84].) Summing up our observations, homogeneous tree languages are 
less powerful than heterogeneous tree languages, i.e. term algebras, which are in turn less powerful 
than regular tree languages. However, in section 4 we shall add another concept from algebraic 
data type specifications, which makes many-sorted term algebras more expressive than regular tree 
grammars. 

3.5 Tree Parsing 

Let G = (N, A, P) be a regular tree grammar. We now define what a G-parse for some mtrees(A) 
is. Permitting t~trees(A) rather than t~L(G) means of course that a G-parse does not necessarily 
exist. Since in general, G is ambiguous, we define the notion of a parse such that it comprises all 



256 

possible derivations of  the given tree. 

Definition 6 
Let tEtrees(A), G = (N, A, P). 

The G-semi-parse of t is the function ~" associating with each subtree t" of  t the set of  all 
• 

producnons p of  form X -->t'" such that X -->p t "" --> t ' .  

The G-parse of  t is the function ~ associating with each subtree t" of  t the set of  all 

productions p of  form X-->t'" such that for any p: X-->t '" e ~(t'), there is some derivation 
X" -->* t[t'<--X] -->p t[t '<--t"] --> t. 
0 

Usually, the grammar G of concern will be clear from the context, and we speak just of semi-parses 
and parses. Clearly, a semi-parse may associate productions with some subtree that cannot be part 
of  a derivation of the overall tree. 

Observation 8 

Let ~ be the parse, and O" the semi-parse of t. 

i) ~ and ~" coincide at the root: ~(t) = ~'(t). 

ii) teL(G) iff~(t)*O. 

iii) If  ~(t') = 0 for some proper subtree t ' ,  this does not imply t ~ L(G). 
0 

In case iii), the root of subtree t" may still be derived as an inner node of the righthand side of some 
production. 

Given ~(t), we can enumerate all derivations for t. If  G is noncircular, or if we restrict our interest 
to noncircular derivations, their number is finite, and a simple backtracking traversal of  t is 
sufficient to 

enumerate them. But generally, although ~ can clearly be represented in space linear in the size of t, 
there may be exponentially many noncircular derivations, and a complete enumeration or explicit 
representation is not what one is interested in. We shall return to the problem of what to do with a 
parse in chapter 8. 

4. Derivors and Their Inversion 

Derivors [ADJ78] are an implementation concept in algebraic data type specifications: By a derivor 

5:Q-->Z, the operators of  some signature Q are implemented by composite operators in some other 

signature Z, which are specified as terms of T(Z, V). Sometimes a derivor in the opposite direction, 

5:Z-->Q, is used to (partially) specify a morphism ~/: T(Q) --> T(Z), which one is interested in. For 

q~T(Q), we require ~q) := some zET(Z) such that 8(z) =E q. The task, then, is to construct in some 

way an inverse of  5. Code selection is an important and natural example for this phenomenon when 
understood in the way outlined in section 2). 

4.1 Derivors and Linearity 

Definition 7 
A derivor 5: Z --> Q is specified by 

a sort implementation map ~: S Z - >  SQ, 

an operator implementation map 5: OP Z --> T(Q, V), specified for each operator 
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a:s 1 ... s n --> s o E Op z by operator implementation equations of  the form 

~(a(vl:s  1 . . . . .  Vn:Sn):S 0) = ta(Vl:fi(Sl) . . . . .  Vn:8(Sn)):8(s0). 
( Not all variables of  the lefthand side must actually occur in ta.) 

A derivor is linear, if for all a ~ OP Z, none of the variables v i occurs more than once in the 

term t a. 

When Q and Z are hierarchic signatures (cf. Definition 5) over the same subsiguature Z',  we 

call 8 hierarchic if it is the identity on ~ ' .  

On the right.hand side of  these equations, the variable v i of  the Q-sort 8(si) denotes the ~-image of 
the i-th argument (whose sort is s i) of  operator a. For an example, return to Example I in section 2. 

The terms t a are called derived operators in Q, and forgetting the original operators of Q turns T(Q) 

into a Z-algebra. The Z-homomorphism defined by 8 is readily implemented by reading the operator 

implementation equations left to right as rewrite rules over T(QuZ), where the elements of T(Q) are 
the normal forms. As there is, by definition, one equation for each Z-operator, there are no critical 
pairs, and the rules trivially form a canonical rewrite system. 

However, while 8 translates target into intermediate language programs, our interest goes in the 

opposite direction. Simply orienting the equations right to left to obtain a rewrite system for y, an 

inverse of  8, will generally fail for two reasons: 

(1) If  8 is not injective, the rewrite system so obtained will not be confluent. 

(2) If 8 is not surjective, some tET(Q) will have normal forms that are not in T(Z). 

Injectivity of  8 cannot be enforced (- at least when a certain freedom of choice in y is  inherent in the 

problem under consideration -), so standard rewrite techniques cannot be used for implementing y. 

Surjectivity (modulo =E) of 8 will be required - as ~ should specify y for any input term -, and for 
practical matters we need a way to verify this requirement. 

Definition 8 

Let there be given a derivor ~: Z --> Q, specifying (as outlined in section 1.3) some inverse 

mapping ~: T(Q) --> T(Z). We call this 8 complete, ff 8 is surjective modulo =E, i.e. 

for all q e T(Q), there is some z ~ T(Z ) such that q =E 8(z). 

4.2 Derivor Inversion by Tree Parsing 

Observation 9 

I f  ~ is linear, ~Sff(Z)) _c T(Q) can be described by a regtflar tree grammar A 8 of the following 
form: 

A 8 = (S Z, OPQ, {s O --> ta(S 1 ..... s n) for each operator implementation equation 

8(a(vl:Sl ... . .  Vn:Sn):SO) = ta(Vl:8(s 1) ..... Vn:~(Sn)):8(so) of  8}). 
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Where 8 is clear from the context, we just write A for A S. Note that A constructs terminal trees over 

OPQ, using as nonterminals the sorts of  S Z. Single variables on righthand sides of  operator 

implementation equations give rise to chain productions in A, while proper terms yield structural 

productions. Equations with the same righthand sides and the same result sort s O give rise to the 

same production in A, in spite of the fact that they implement different Z-operators. 

As one easily verifies, for a linear 5, L(s) as defined by A is the set of ~-images of T(Z):s. This 

means that, for a linear 8, the problem of constructing y, the inverse of  g, is solved by constructing 

A-parses. The reader is invited to construct A S for 8 as given in Example 1, (ignoring its 

nonlinearity for the moment), to construct the Ag-parse of  q, and to obtain from it z and z" as 

shown in Example 2. 

Theorem 1 
Let E = 0 .  If  y is specified to be an inverse of a linear derivor 5, then 
i) completeness of the specification is decidable, 

ii) any choice for "y(q) can be obtained from a A-parse of qeT(Q). 

Proof." 
i) follows from Observations 2, 7 and 9: Completeness now means verifying that, with Q 

seen as a grammar according to Observation 7, L(Q) ~ L(A). 

ii) We construct a Z-derivation of z" "in parallel" to a A-derivation of  8(z') = q: For each 

application of s o --> ta(S 1 ..... Sn) in a A-derivation of  q ,  apply s O --> a(s 1 ..... Sn) 

for some a~OP Z with ~(a(vl:s 1 ..... Vn:Sn):S0) = ta(Vl:8(s 1) ..... Vn:6(Sn)):~(s0) being 

an operator implementation equation, thus obtaining a Z-derivation of  z'~T(Z, SZ). 

Obtain z from z" by substituting different variables for all occurences of  sort-symbols in 

z'.  For any substitution G, 8(zo) = q. 

Note that several terms z can be constructed from the same A-derivation of t according to the above 
proof. One reason is that there is a choice of  a, if several operators with the same result sort s o have 

implementation equations with the same righthand side t a. The other reason is that if there are 
equations where some variable of  the lefthand side does not occur on the righthand side, the 

corresponding Z-subterm is "forgotten" by 5, and hence may be chosen arbitrarily by G. 

4.3 Expressive Power Revisited 

We now remark that many-sorted signatures together with the concept of  linear derivors have the 
same expressive power as regular tree languages. Observation 9 showed that they do not have more 
expressive power, as every linear derivor image can be generated by a regular tree grammar. It is 
easy to see that the reverse also holds: 

Observa t ion  10 
Let Q be a many-sorted signature. For any regular tree grammar G with L(G)_T(Q), there 

exist a signature Z and a linear derivor 8 such that L(G)=8(T(Z)). 
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Proof." 
1. For any G with L(G)C_T(Q), there exists a G" such that for all nonterminals X of G ' ,  there 

is a unique Q-sort s such that for 'all teL(X), sort(t)=s. We construct this G" as follows: Let 
X -->p t:s, X -->p- t ':s" with s*s', and both p and p" be structural productions. X cannot 

occur on the righthand side of any structural production, as this would violate L(G)_CT(Q) by 
generating a non-wellsorted term. We replace X by a new nonterminal symbol X" in p ' ,  and 
add for each chain rule Y->X a further chain rule Y->X'.  The same argument applies to Y 
with Y -->X, Y -->X',  and X -->p t:s, X" -->p- t ':s" with s*s'.  Successive application of 
this step yields the desired G ' ,  with L(G')=L(G). 

2. Now w.l.o,g, let G be such that for all nonterminals X of G, there is a unique Q-sort s 

such that for all tEL(X), sort(t)=s. Let us denote this s as sort(X). We define Z and 8 as 
follows: 
S Z = N G. OP Z has an operator P:X1.. .X n --> X 0 for each production p: X0-->  

tp(X1...Xn) G PG" 

The derivor 8 is given by the sort map 

8 (x )  = sor t (x) ,  
and the operator implementation equations 

8(p(v 1 ... . .  Vn)) = tp(V 1 ... . .  Vn). 
0 

Note that the derivor constructed in Observation 10 is linear. Hence, regular sub-languages of a 
term algebra can be seen as homomorphic images of some other term algebra, specified by a linear 
derivor. Images of  nonlinear derivors can define sub-languages that cannot be specified by regular 
tree grammars. 

5. Two Notions of Matching 

While "matching" (between terms) has a precise and uniform meaning in the field of term rewrite 
systems (cf. Definition 4), the phrase "pattern matching" is sometimes used more vaguely - for 
matching a single pattern against a tree, for determining all matches of  a pattern set in a given tree, 
or sometimes for purposes that would more rightfully be called parsing of  trees. This section 
clarifies the correspondencies by describing parsing as a slightly generalized form of matching 
between terms. 

Definition 9 

Let R be some subset of  T(Z, V). A substitution cr is a substitution from R, or an 

R-substitution for short, ff v~*v implies C(v)GR. 
0 

In the application we have in mind, R will be described by a grammar, but for Definitions 9 and 10, 
this is irrelevant. 

Definition 10 

Let (E, E) be a specification, let p, t~T(Y.,V), P,~T(E,V). 

p matches t, if there exists a substitution c such that p a  =E t. 

p R-matches t, ff there exists an R-substitution (~ such that p6  =E t. 
0 

Note that f fp  R-matches t, this does not imply t¢R! 
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Theorem 2 
Given E, let G be such that L(G)_ T(Z), and t:s~T(Z):s, v:s~V. Then we have: 

teL(G) iff v L(G)-matches t. 

This is in fact the trivial case of Definition 10, with p being a single variable. The point is that we 
can formulate it in a more constructive way by separating out the "topmost production" of t: 

Corollary 
teL(G) iff, for some production p of form X-->t', with t'ET(]g, V), t" L(G)-matches t. 
0 

Matching a term p against t (in the sense of Definition 10) is a local task - only the non-variable part 
of p must be compared against the outermost portion of t. The required substitution is determined 
automatically by associating subterms of t to variables of p in corresponding positions. (If p is 
nonlinear, subtree comparison faust also be performed, but we ignore nonlinearity for the moment.) 
The expensive part of this, if any, is testing the equality relation =E underlying the comparison. In 

tree pattern matching, as in [Kron75], [HOOD82], no equality other than syntactic equality is 
considered, and matching a single pattern against a tree is still a local task, But in typical 
applications, one is interested in all matches of a set of patterns at all subtrees of t, and this is the 
reason why the matching algorithms studied there perform a complete top-down or bottom-up 
traversal of t. 

With matching relative to L(G), this is different: In order to determine a single match of p, say at the 
root of t, we must not only compare p and the appropriate portion of t, but also ensure that the 
substitution so obtained is an L(G)-substitution. This in turn requires L(G)-matching the variables 
of p to the corresponding subtrees of t, and so forth. So in any case, a complete analysis of t is 
required. 

6. Algorithms for Derivor Inversion 

We formulate algorithms for derivor inversion, retaining the classical pattern matching algorithm as 
a special case. 

6.1 Problem Statement and Outline of Solution 

Given: 
- Two hierarchic signatures Q=(SQ, OPQ) and Z=(S Z, OPz) over a common subsig- 

nature M=(S M, OPM). 

- A set E of equations of form m=m', with m, m'~T(M, V), defining the relation =E 
(equality modulo E) on T(M, V), T(Q, V) and T(Z, V), such that unification, equality 
and matching in T(M,V) (and hence T(Q, V) and T(Z, V)) modulo E are decidable (and 
presumably efficiently irnplementable). 

~:Z --> Q, a hierarchic derivor. 

Desired: 

For qET(Q), some representation of the set 8-1(q) := {zET(Z)I 8(z) =E q}" 

A criterion for "specification completeness", i.e. for T(Q) ---E 5(T(Z)). 

Special cases: 

For space reasons, we can consider here in detail only the case where M is empty and 8 is linear. 
For ISzI = ISQI = 1 this is the case of classical pattern matching according to [HOOD82] or 
[Kron75]. In this section we will generalize the notion of matching sets appropriately to handle the 
heterogeneous case, and shortly comment on the other generalizations. 
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Outline of the solution: 
Let A=(N A, oPQ,  pA) be the regular tree grammar for 8, constructed according to Observation 9. 

L(A) describes 8(T(Z)), if 8 is linear, and else a superset of  8(T(Z)). For XEN A, sort(X)eSQ is 

uniquely defined as in Observation t0, which follows from the way in which A is constructed. 

Definition 11: Pattern, Pattern Forest, Matching Sets 
Let P _c T(Z, V) be the set of terms occuring on the righthand sides of  the operator 

implementation equations of 8. P is called the set of "patterns". 

Let PF = {p" I p" is a subterm of some p~P}, the "pattern forest". (Note that P~_PF.) 

For q~T(Q), let the "matching set" o f q  be 

MS(q) = {pEPF I p 8(T(Z))-matches q}. 

Let MSs = {M I M = M(q) for some q ~ T(Q)}. 
0 

These notions are analogous to those used in pattern matching in homogeneous tree languages, but 

significantly more general. Basing the definitions on 8(T(Z))-relative matching of terms (with 

variables) accomodates heterogenity, nonlinearity, and a nontrivial equational theory of M. 

Definition 12: Algorithm Building Blocks 
builda: For m 1 ..... m n _c PF, a E OPQ\OPM,  

builda(m 1 ..... m n) = {pePF I p = a(p 1 ..... Pn), Piemi} • 

prod" For p~P with p = t(Vl:8(Sn) ..... Vn:8(Sn)), prod(p) = t(s 1 ..... Sn). 

(Remember: N A = SZ. ) 

nonlinq: For any q e T(Q), m _q PF, 

nonlinq(m) = { l~ml  p= t(Vl:S 1 ..... Vn:S n) such that 

i) prod(p)->*q" for some q~T(Q) with q" =E q- 
Let qi" be the subtree derived from s i in the derivation of q'. 

ii) (v i = vj implies qi" =E qj" for any i, j E 1..n)}. 

chain: Let N" ~ N A, and closure(N') ;= {X ~ N A ] X -->* Y ,  Y e N'}.  

For R ~ prod(PF), chain(R) = closure({X ~ N A 1 (X --> t) e pA, t E R}). 

vats: For X~N A, vars(X) = {v a PFcW I sort(v)=sort(X)}. 

~ rod and vars are extended to sets element-wise. 

build a just constructs the set of  patterns rooted by a, given choices of  subpatterns for the n->0 
arguments of a. chain determines nontermAnals from which certain righthand sides can be derived 

by (possibly empty) chains, ending in a structural production whose righthand side is in R. prod 

and vats are used to translate between the algebraic-view and the grammar-view of 8. For p ~ P, 
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prod(p) is the righthand side of  the corresponding A-production(s). Ignoring =E for the moment, if 

is linear, the notions of  derivation and L(A)-relative matching coincide. In this sense, prod(p) can 

also be thought of  as a rewritten pattern p with variables renamed to make it linear. 5(T(Z))-relative 

matching of p against some q can thus be separated into two "parts": derivation of q from prod(p) 

with qiES(T(Z)), and verifying the nonlinearity condition, nonlinq checks nonlinearity of  patterns p 

which - if they were linear - would match at the root of q. (In an implementation, one uses the 

functionality nonlin(p, q) instead of  nonlinq(p).) 

Algorithms calculating matching sets will be composed from these functions. MS(q) and the 

matching sets for all subterms of q will be the desired representation of 5-1 (q). The following 

theorem shows that matching sets are an extension of the notion of a semi-parse ¢' .  

T h e o r e m  3: 

Let M be empty and 5 linear. We have the following correspondence between the 

matching sets and a semi-parse ¢" of  q E T(Q) (and for all subterms of q): 

¢'(q) = {X --> prod(p) E pA I p E MS(q) c~ P}. 
0 

We now have to show - for the general case - that MS(q) in fact represents 8"l(q) in a precise way. 
The following two definitions are mutually recursive: 

Definition 13a 

For p e P, let Z-op(p) = {f(v 1 . . . . .  Vn) I fE Op Z and 5(f (v  t . . . . .  Vn)) = p is an 

operation implementation equation of 5}. 

For q E T(Q), define Z-terms(q) c_ T(Z,V) as follows: 

i) forqG T(M): Z-terms(q)= {t~ T(M) I t = E q } .  

ii) for q ~ T(Q) \ T(M): 

Z-terms(q) ={fp I f~  Z-op(p) for some p e MS(q) n P, and P a matching 
substitution for p over q}. 

0 

Case i) comes from the fact that 5 by definition is the identity on T(M). One may choose to 
represent Z-terms(q) by q in this case. Case ii) constructs a Z-term rooted by f, taking as its 
arguments Z-terms from the corresponding variable positions in p, as matched against q. This 
correspondence is defined formally as the notion of a "matching substitution", which substitutes 
Z-terms for variables, and hence applies to f(v 1 ..... Vn) rather than p. 

Definition 13b 

For pEMS(q), we say that p: V->T(Z, V) is a matching substitution for p over q, iff one 
of the following applies: 

i) p = v (a single variable) and vp G Z-terms(q); 

ii) pET(M,V) and ppeZ-Terms(q); 

iii) v does not occur in p and vp is a new unique variable; 

iv) p = a(Pl ..... Pk), aGOPQ\OPM, Pi ~T(Q,V), (and hence q = a(q 1 ..... qk)), and p 
is a matching substitution for Pi over qi for l_<i<_k. 

<) 
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If  p is nontrivial, case iv) applies and takes us down to the positions in q that correspond to the 
variables in p. It ensures that variables occuring in several leaf positions are consistently 
substituted. Cases ii) and iii) should be clear, but case i) contains a subtlety that needs further 
explanation. 

On the one hand, case i) is just the terminating case in the parallel structural induction over p and q 
as specified by case iv). However, considering the situation where the pattern p considered in case 

ii) of  Definition 13a is a single variable, Definitions I3a and 13b seem circular. When 8(f(v))=v, 

and veMS(q), they say that f(t)eZ-Terms(q) if tGZ-Terms(q). When t and f(t) happen to be of the 

same sort, this even implies fi(t)eZ-Terms(q) for i_>0. This is exactly what we need here: it models 

the situation where 5 plainly forgets Z-structure, which is recovered by finding (potentially circular) 

derivations using the chain productions in A that stem from operation implementation equations of 

the form 8(f(v 1 ..... Vn) = v i. 

Note that Z-terms(q) may contain terms of different sorts. They contain variables for subterms 

"forgotten" by 8. Finally, we observe: 

T h e o r e m  4 

~-l(q) = {to I t e Z-terms(q) and ~ a ground substitution}. 

Now we are left with the task of efficiently calculating MS(q) for a given q e T(Q). 

6.2 The Basic Dynamic Algorithm 

With the functions of  Definition 12, it is straightforward to describe our basic algorithm for 
determining matching sets for a given input term q. Subsequently, we shall derive table driven 
versions from this Algorithm 1. 

A lgo r i t hm 1: 

Input: r e  T(Q), PF. 

Output: For each subterm q o f r  (including r itself): MS(q). 

(1) for all subterms q of r with sort(q) ~ S M *) 

do MS(q)= {p G PFI p matches m (modulo E)} od; 
(2) i:= i; 
(3) while i < height(r) 

(4) do for all subterms q = a(q t ..... qn), n_>0, of  r with height(q) = i and sort(q)/~ S M 
(4a) do MS(q) := let m =(MS(q1) ..... MS(qn) ) in 

(nonlinq.builda)(_m_) t.) (vars.chain, prod, nonlinq, builda)(.m_) 
od; 

(4b) i:= i+l; 
od 

*) Actually it suffices to compute the matching sets of "semantic" subterms m (i.e. sort(m)ES M ),which are not 
subterms of a semantic subterm themselves, because on the one hand ~-l(m) = m, and on the other hand we 
need the matching sets of such "complete" subterms m, in order to be able to compute the matching sets of 
the "syntactic" superterms q" (i.e. sort(q3 ~ S M ) containing them. 
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6.3 Table-Driven Algorithm for  M empty  and  ~ l inear  

For this section, we let M be empty and ~ linear. In step 4a) of  Algorithm 1, all functions except 

nonIinq are independent of  the actual input term q. When ~ is linear, nonlinq is the identity on 

pattern sets, for any q. Hence, the matching set of  a term q = a(ql ..... qn) is computed (only) from 

the operator "a" and the matching sets of  the subterms ql  ..... qn- 

As noted earlier, the set of  all matching sets, MSs, is finite. These facts gave rise to the idea (in the 
treatment of  the homogeneous case in [Kron75] and [HOOD82]) to precompute the information 
which is dynamically computed in step 4 of  Algorithm 1. This information is represented by 

tabulating the following functions fa, for each a ~ OPQ: 

fa (-~-) = builda(m) u (vars*chain*prod*builda)(.m_). 

The functionality of fa could be seen as fa: (MSs)rank(a) ---> MSs, but this would be excessively 

expensive in table size and generation time. Instead, fa should only be tabulated for those combinati- 
ons of  arguments that can actually occur. A restriction of the possible combinations is observed by 
exploiting the heterogenity of the input language: All patterns matching a term q must have the same 
sort as q. We may partition MSs according to SQ: 

MSs = k) N-MSs, for NGSQ, with MS(q) E N-MSs fff sort(q)=N. 

It suffices to precompute the following (generally smaller) tables: 

For (a: N1...N n --> N 0) E OPo:  fa: N1-MSs x... x Nn-MSs ---> N0-MSs. 
(As observed in [Kron75] for the one-sorted case, the N-MSs as carriers and fa as functions form a 

Q-algebra. Another such algebra could be defined over the carriers C N =2{P EPF 1 sort (p)=N} 

with fa extended accordingly. This algebra is the worst case of our approach with respect to size of 

the precomputed tables. Work on the homogeneous case has shown that the tables for fa as defined 
above are significantly smaller in many practical applications.) 

Provided that we have precomputed fa for all a E OPQ, we get the following table driven version of 

Algorithm 1: 

Algorithm 2: 
Input: r e T(Q); for all a e OPQ: fa 

Output: as Algorithm t 
(1) -- step i is omitted as we assume M to be empty -- 
(2) i:= 1; 
(3) while i _.<. height(r) 
(4) do for all subterms q = a(ql ..... qn), n_<0, of  r with height(q) = i 
(4a) do MS(q):= fa (MS(ql) ..... MS(qn)) od; 

(4b) i:= i+l 
od 

Obviously, this matching algorithm is linear in the size of r, as it consists of  a single table-lookup 
per node of the input term r. 

The principle idea in the following table generating algorithm is m compute successively the 
matching sets of all terms from T(Q) of height 0,1,2, etc. until MSs, the set of all matching sets, 
converges. Terms are not enumerated explicitely. Rather, a term of height i is represented by its top 
operator and the possible matching sets for its arguments. The first iteration (for nullary a) is taken 
out of the repeat loop, as its repeated calculation cannot yield further matching sets. 
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Algorithm 3: 
Input: PF, OPQ, SQ. 

Output: for all a ~ OPQ: fa- 

for all N e SQ do N-MSs0: = 0 od; 

for all (a : --> N) E OPQ 

do tabulate fa; 

N-MSs0:= N-MSs 0 u fa 

od; 
i:=l; 
repeat for all (a : N1...N n --> N) ~ OPQ, n.~>l, 

do for all N E SQ do N-MSsi: = 0 od; 

for all (R 1 ..... Rn) ~ N1-MSsi-1 ×... × Nn-MSsi-1 *) 

do tabulate fa(R1 ..... Rn); 

N-MSsi:= N-MSs iU fa(R1 ..... R n) 

od 
od; 
for all N e  SQ do N-MSsi: = N-MSs i ~) N-MSs i-1 od; 

i:= i+l 
until for all N E SQ, N-MSs i ' t  = N-MSs i '2  

0 
*) Here we can demand at least one Rj to be computed in the last iteration step of the repeat-loop, in order to 

ensure that there will be computed matching sets of terms of height i indeed. 

Obse rva t i on  12: 

The specification is complete, i.e. T(Q) = L(A) (= 8(T(Z)) ), iff 

for all table-entries fa(R1 ..... Rn) = R holds: R c~ P ,  ¢1. 

6.4 Extensions 

Space does not allow to explicate the extension of the generator algorithm to the cases where M is 
non-empty, and the derivor may be non-linear. This will be done in an extended version of this 
paper, planned to appear elsewhere. We only sketch here the particular problems to be solved for 
each of  these, and one further extension. 

Extension to non-empty M 

A particular initial step is needed to calculate the s-MSs for sES M. Generally, not all subsets of  

2 PF:s can occur, since some patterns in PF:s may not be independent, as for example the patterns 
car(cons(l,  v)) and 1 in the presence of the usual axioms. Here we need the prerequisite of our 
problem statement that unification modulo E be decidable. 

Extension to nonlinear 8 
Consider Algorithm 1. In the linear case, nonlinq is the identity, and the composite effect of  step 4a) 
can be precomputed, nonlinq, however, can only be evaluated dynamically, and so we have to 

generate separate tables representing build a and f(rn):= m u (vars*chain*prod)(.m_.). Now the central 
step (4a) in Algorithm 2 becomes 

MS(q):= let m" = nonlinq*builda(MS(ql ) ..... MS(qn)) in m ' u  f(m') ,  
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where build a and f are tabulated, nonlinq introduces twofold complications: In order to know for 

which arguments build a and f must be precomputed, we must anticipate the effect of nonlinq. 
Furthermore, for applying nonlinq dynamically, information about matching substitutions must be 
calculated along with the matching sets. 

Extension to More Refined Input Languages 

Let IL be the input language to our pattern matcher. So far, we have assumed that it is a term 

algebra, IL=T(Q) for some Q. But an actual IL may be some subset ofT(Q), being the output of 

earlier compiler phases. IL may be L(G) _c T(Q) for some regular tree grammar G, or it may be 

9(T(P)) for some other signature P and a (possibly nonlinear) derivor 9: P --> Q. In these cases, 
the table driven algorithm with tables generated as if IL = T(Q) will still work correctly, but the 
tables may contain matching sets that cannot actually occur for the more restricted IL. Besides tables 
being larger than necessary, our completeness criterion is only a sufficient, but no longer a 
necessary condition. But in both cases, our generative algorithms can be adapted to generate the 
precise matching sets for the given IL. There is no need to study further generalization to input 
languages such as 

IL = (P2 * Pl)(T(P)), as derivors are closed under composition. 

7. Table Size and Generation Effort 

Measuring space and time efficiency in terms of the size of the given pattern set P, it is known from 
work on the homogeneous case [HOOD82], that there is an exponential worst case behaviour. 
Fortunately, it has also been experienced that this behaviour does not occur for many practical 
situations, in particular when the compacting technique of [Chas87] is used. As our algorithms 
include the homogeneous case when ISQI ( = ISzl ) = 1, these worst case observations are still valid. 
On the other hand, one can construct a specification with ISQI - 1 and ISzl >1 that yields a linear 
number of matching sets, but turns into the worst-case example of [Chas87] when applying the 
sort-identifying morphism of section 3.4 to the target signature Z. 

The generator algorithm (Alg. 3) is a 360-line PROLOG program. It uses the compacting generation 
technique of [Chas87], and some care was given to the way in which PROLOG's backtracking is 
used. The largest example it has been run with is a fairly complete description for the MC68000 
processor, containing 37 sorts and 92 operators in the target signature. The (compiled) generator 
produces 76 matching sets in about 32 seconds on a SUN-3 (25MHz) workstation, and the 
generated tables (in the form of PROLOG facts) occupy 53K bytes of storage. (Without Chase's 
compacting technique, generation time is about 2 hours!) With the present data, it seems that space 
and time requirements of the code selector and its generator will no longer be a problem. But 
experiments comparable to those of [Henr84] have not yet been performed. 

8. Conclusion and Future Work 

We expect that more general machine specific aspects or code generation subtasks such as register 
allocation, that were previously treated in an ad-hoc manner, can be expressed by extending the 
target signature Z by equational specifications. Such code generator specifications may look rather 
different from the ones in most of the approaches discussed here (with the exception of 
[MRSD86]), but the underlying implementation technique will still be pattern matching as 
developed here. The long-term goal of this work is to make code generator specifications more 
formal and complete, such that proof methods from the area of term rewrite systems [HuOpS0], 
[HuHu80], [RKKL85] can be used to verify the correctness of code generators. 

The recent approaches we have discussed shortly in the introduction should be evaluated in terms of 

the formalism presented here. Besides by peculiarities in their pattern matching mechanisms, they 

are characterized by the way in which the evaluation of the "choice function" ~ is interleaved with 

the construction of 8-1. Both ideas which have been used - dynamic programming at matching time, 
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and reduction of generated tables at generation time according to cost criteria - can be incorporated 
with our approach. Most interesting may be an hybrid scheme, using table reduction where it retains 
completeness and optimality, and matching-time cost comparison otherwise. 

Finally, a conceptually interesting and technically demanding problem spared out in this paper is the 

following: Having implicitly represented 8-I(q) in a compact way (cf. Theorem 4), how do we 

extract from it an interesting subset according to cost minimality or other well-formedness criteria 

that express machine properties not covered by 8 itself?. Some progress has been achieved [Weis87] 

by work subsequent to [WeWi86], but an eventual solution to this problem also depends on what 

further subtasks of code generation are to be integrated into the overall approach. 
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