
Implementation of Lazy Pattern 

Algorithms 

Matching 

Alain LavUle 

I.N.R.I.A. (Projet FORMEL) 
B.P. 105 78150 Le Chesnay CEDEX France 

and Universit~ de Reims 
B.P. 347 51062 Reims CEDEX France 

1 I n t r o d u c t i o n  

Several of the recently developped functional programming languages include a function defi- 

nition capability that  uses a ~pattern matching" mechanism. These languages handle structured 

values which may be given as argument to the functions. The calculation to perform in order 

to get the result of the function call is choosen according to the structure of the argument. 

One may find this feature in such languages as HOPE ([3]), MIRANDA ([13]) or ML ([1], [10], 

[12]). Pat tern matching, and algorithms to perform it, has been widely studied in the theory of 

UTerm Rewriting Systems". I t  is here used in a more or less restricted way (lhaearity of patterns, 

patterns without function symbols . . .  for example in ML). 

Although pat tern matching comes from ~Term Rewriting Systems" theory, languages using 

it often add a complementary mechanism that  does not belong to this theory. One generally asks 

computations to be deterministic, which is not the case if a value may match several patterns 

(this is called ambiguity). Such a trouble may be avoided using unambiguous sets of patterns. 

But, since such a constraint leads to tedious work from the programmer, ambiguity is allowed 

between the patterns,  and a "meta-rule" is added to choose between ambiguous patterns. Various 

priority rules have been suggested, the two most frequently used are the following : 

• when a value matches several patterns, choose the first one in the list (ordered as given by 

the programmer). 

• when a value matches several patterns, choose the most defined one. 

We only shall address in this paper the first case of priority rule, which is the one used in ML. 

There is also a growing interest in Ulazy" evaluation (see [11] for precise definition). This 

essentially means that  a value is effectively computed only when it is needed to produce the 

result, and, for a structured value, that  only the needed parts are evaluated. This ensures that  

the language is safe, i.e. if computation fails there was no way to avoid this failure. This 
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moreover gives to the language the ability of handling infinite data structures as long as only 

finite parts of them are used in calculations. MIRANDA and at least two implementations of 

ML include this feature : Lazy CAML at INRIA (see [8] or [9]) and LML the implementation of 

(see [1]). 
However there are problems when using pattern matching in a lazy language. The question is : 

"How to find which pattern is matched by a given value, without doing useless computations ?~. 

It is connected with other troubles such as expression evaluations which succeed or fail depending 

on the order of the arguments in the function definition. 

E x a m p l e  Define the two functions : 

l e t  f l  = f u n c t i o n  ( t rue ,  f a l s e )  -> t rue  

I ( f a l s e ,  x) -> f a l s e ; ;  

let f2 = function (false. true) -> true 

J (x, false) -> false;; 

and denote by ± an infinite computation. One would expect, in a lazy system that both 

f l  ( f a l s e ,  J.) and f2  (2.. f a l s e )  evaluate to f a l s e .  This is not the case in existing func- 

tional languages : since they use explicit top-down and left-to-right scanning of the patterns 

they succeed evaluating f l  ( f a l s e ,  2.) to f a l s e  and loop evaluating f2 (± ,  f a l s e )  (see for 

example the pattern matching compilations described in [2] or [14]). The algorithms we give 

here provide a compilation of pattern matching with which the two function calls return fa l se .  

This leads to the question of the existence of a lazy pattern matching algorithm (and of its 

effective building). The answer was known when no ambiguity exists between patterns since the 

work of G. Huet and J.J. Ldvy (see [5]). In [6], we extended this result to the case of ambiguity 

with priority meta-rule. However, the results established in this work are essentially theoretical 

ones and do not give a practical implementation tool (for example, compilation of real pattern 

matching definitions, using algorithms of [6] may need up to several hours of CPU time). 

We present here improved algorithms of practical use, together with an efficiency study of 

a compiler which incorporates them. This study was done with the CAML system (see [12]), a 

version of ML using the Categorical Abstract Machine (CAM, see [4]) currently implemented at 

I.N.R.I.A. 

A very detailed version of both the theoretical and the implementation aspects may be found 

in the author's thesis ([7]). 

2 T h e o r e t i c a l  R e s u l t s  

We first recall those of the theoretical results of [6] which are useful to state our practical 

algorithms. 
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2 . 1  N o t a t i o n s  a n d  d e f i n i t i o n s  

Def in i t ion  1 A pattern is a term built from the pairing operator, some constructors of (already 

defined) concrete data types and the special symbol 12. The meaning of ~2 is that one doesn't 

care, during the pattern matching process~ about what may appear at the place where it is used. 

It replaces both the variables and the "don't care" symbol. 

A value of CAML is said to be an instance of a pattern if it can be obtained from the pattern 

by replacing all the •'s by any values. 

With a list of patterns [ P l , . . . , P ~  ], we shall say that a value v of CAML matches the 

pattern p~ if pl is the f irst  pattern in the list, of which v is an instance. 

We shall say that a function is defined by pattern if 

1. Its definition consists of an ordered list of pairs (pattern, expression) 

2. Its value when applied to an argument v is obtained in the following way : first find the 

first pattern, say p, in the list such that v is an instance of p and then evaluate the result 

of the corresponding expression. 

Assume now that we want to compile the definition by pattern of a function : 

f u n c t i o n  Pl "-* expl 

I f :  ] P2 --* exp2 

[ Pn -~ expn 

Here the pi's are the patterns to be matched against the argument of the function call (if the 

function has arity greater than 1, the patterns pi's are t-uples). 

We define a signature I] containing all the constructors of the types used in the patterns 

P l , . . . , P n  and two other symbols : t2, which will denote the ~unknown" or "undefined", and 

otherwise  which will be used to group many cases into a single one (see section 4). 

Def in i t ion  2 Since such terms will often denote partially known, or partially evaluated values, 

we shall call partial term every term built over ~. We shall only use term to denote a partial 

term in which there is no symbol 12 (but we do not forbid to use apartial term" even in this 

case). 

Partial terms provide us with a formalism suited for patterns (which are partially undefined 

terms) as well as for lazy values (which may be thought of as partially unknown since they are 

not completely evaluated). 

Def in i t ion  3 We define a partial ordering (denoted by _<) over the set of all partial terms as 

follows : 



301 

* For each partial term M : 12 < M 

* F ( M x , . . . , M n )  < F(N1 . . . . .  N , )  if and only ifM~ _< N~ (1 < i < n) 

The ordering < is a kind of prefix ordering with the meaning that a partial term is less than 

another if it is less defined (or less known). 

We shall use the following notations : 

* M T N means that M and N have a common upper bound (and we shall say that M and 

N are compatible) 

. M ~ N  means that they don't  have one (and we shall say that M and N are incompatible) 

• V and A will respectively denote the 1.u.b. (when it exists) and the g.l.b, of two partial 

terms 

• [M, N [ will denote the set of partiel terms t verifying M _< t and t < N. 

Def in i t ion  4 When seeing partial terms as trees, we shall say that M~ is the ,~h son of the 

partial term F ( M 1 , . . . , M ~ ) .  We call occurrence an integer list which designates a subterm of 

a given partial term. For example, the occurrence [2; 3] points to the third son of the second 

son of the full partial term. The prefix ordering of occurrences will be denoted by <_. For a 

given partial term M, we shall denote O (M) the set of all occurrences in M, ~-(M) the set of 

occurrences in M where the symbol is not 12 and On (M) the set of occurrences in M where the 

symbol is 12. The symbol in M at occurrence u will be denoted by M(u) .  

We shall now define some predicates over the set of partial terms (i.e. functions with values 

in the set {tt, if} of the truth values). 

Def in i t ion  5 For each i C {1 , . . . ,  n}, the predicate match~ is defined by match,(M) = tt if and 

only if the following two conditions hold : 

1. p i < M  

2. V j < i  p j ~ M  

We then define the predicate matchn : 

matehn(M) = tt if and only if rnatch,(M) = tt  for some i e {1 , . . . ,  n}. 

The meaning of these predicates is the following : 

matchi(M) = tt  iff M is sufficiently defined to know that every value better defined than M is 

an instance of pl and not one of a pattern with higher priority than pi (i.e. a pattern pj with 

j < i ) .  

matchn (M) = tt  iff M is sufficiently defined to decide which pattern will be matched by any 

value better defined than M. 

L e m m a  1 If  we order the set of truth values by defining f f  < tt, all these predicates are mona- 

tonically increasing functions from the partial terms into the truth values. 
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2.2 Lazyness R e s u l t s  

Def in i t ion  6 We shall call minimally eztendcd pattern (associated with r[) any partial term t 

verifying the following two properties : 

i. matchn(t) = tt 

2. Vt' < t, matchn (t') = ff 

We shall denote the set of all minimally extended patterns by MEPH. 

Def in i t ion  7 Let match be one of the predicates matchl or match1, and M be a given partial 

term. Let u e On(M) be such that VN > M match(N) = tt implies N(u) ¢ ~. We shall say 

that such an occurrence is an index of match in M. 

We shall say that match is sequential at M if and only if the two conditions match(M) = ff 

and there exists N > M such that match(N) = tt  imply together that there exists an index of 

match in M. 

Def in i t ion  8 We call pattern matching algorithm any deterministic algorithm which will match 

any partial term against II (i.e. which finds the first Pi E H of which the partial term is an 

instance). 

We say that a pattern matching algorithm is lazy if it never does useless work (as partial 

terms are trees and a pattern is a prefix of any partial term that matches it, this process has 

to work in a top-down way). We may express this constraint in the following way : Assume we 

want to match a value v against II and let U be the set of all occurrences in v where the symbol 

was evaluated during the pattern matching process. Denote vn the partial term which coincides 

with v along U and is completed with fl's according to the arities of the symbols used. Then 

we ask vn to be less than or equal to (for the ordering of partial terms) every prefix of the full 

value v which is sufficient to choose the right hand side. 

Example Consider the two classical function definitions : 

let AND = function (true, true) -> true 

I (x, y) -> false;; 

let XOR = function (true. false) -> true 

I (false, true) -> true 

I (x, y) -> false; ; 

it is easy to see that any pattern matching algorithm is lazy in the case of XOR (both parts of 

the pair are always needed), and none is lazy in the case of AND (each part of the pair is useless 

if the other is false). 

We may now present the main results that were established in [6 I. 
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T h e o r e m  1 i .  If  the signature ~ is finite the set MEPN is finite and computable from the 

list of patterns II. 

2. Given a function defined by pattern, there exists an associated lazy pattern matching algo- 

rithm if and only if the predicate matehn is sequential at any partial term. 

~. If two members of MEPN are compatible then there exists no lazy pattern matching algo- 

Fithm. 

4. If all the elements of MEPn are pairwise incompatible, the existence of a lazy pattern match- 

ing algorithm is decidable. Moreover, if such an algorithm exists, one may mechanically be 

built from the initial list of patterns. 

We only look at these parts of the proof that  are useful to present the algorithms of the next 

sections, and particularly to the effective building of the lazy pat tern matching algorithm. 

When all the minimally extended patterns are pairwise incompatible, the predicate matehn 

is the ordinary matching predicate against the set of patterns MEPH. Hence its sequentiality is 

easily decided using already known methods. One only has to check if this predicate is sequential 

at every part ial  term which is a prefix of an element of MEPn. Moreover, one can exhibit a lazy 

pat tern matching algorithm when the checking succeeds. These two goals are achieved by trying 

to build a "matching tree" (see for details Huet and L~vy [5] where this method is introduced). 

A matching tree is a tree of which each node contains a part ial  term M with an index u of 

matehn in M,  and the branches issued from a node < M, u > are labelled with the symbols 

that  may be placed at u in M in order to get a match. Leaves contain elements of MEPH which 

mean a success in the matching process. The root of the tree contains the partial  term 12 with 

the trivial index of matchn at this part ial  term. 

Given the matching tree and a value v to be matched, the lazy pat tern matching algorithm 

is as follows : s tar t  at  the root of the tree and when reaching a node take the symbol in v at the 

occurrence contained in the node ; if there is a branch labelled with this symbol start ing from 

the node then follow it, else the matching process fails ; when reaching a leave one ensures that 

v is greater than the element, say p, of MEPn contained in the leave. Hence the value matches 

the unique initial pa t tern  p~ such that  matchi(p) = t t .  

The proof of computabil i ty of MEPn only consists of the following remark : The set of 

occurrences in any member of MEPn may be bounded by U~=I ~(p~) and the signature ~ is 

finite. Such a characterisation leads to practically useless algorithms because of the exponential 

growth of the number of part ial  terms to compute, when the number of patterns or the number 

of constructors grow. We shall now give pratical algorithms. 
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3 Building of the Matching Tree 

We shall address now the question of efficiently building the matching tree defined in the 

preceding sect ion1/This  process asks for finding (at least) an index in each partial term one 

has to place in the tree. If one has previously generated the set of all the minimally extended 

patterns, it is easy to find an index in a partial term M less defined than some of the extended 

patterns. One only has to check if there exists an occurrence u E 0n (M) such that u belongs to 

O(p) for all minimally extended pattern p greater than M. 

However, generating all the minimally extended patterns is a very costly process. Hence we 

shall try to build the tree without using the minimally extended patterns. We shall show that in 

many cases one can find some index in a partial term without knowing the minimally extended 

patterns that are greater (see section 3.1). Unfortunately this method may fail to give any index 

in partial terms where such indexes exist. In such cases we shall have to compute the minimally 

extended patterns, but only from a restricted set of initial patterns. Once we have generated 

these patterns we may use them to find indexes in subsequent partial terms. 

In the following we only shall deal with partial terms that appear in the matching tree. 

Hence, we state here two properties of such partial terms which will be used in some of the 

proofs of the following sections. 

N o t a t i o n s  : We shall denote M [ u  +- N] the partial term obtained by replacing in M the 

subterm at occurrence u by the partial term N. F(~)  will denote the partial term whose top 

symbol is F and all the sons (according with arity of F) are fl. 

P r o p o s i t i o n  1 Let M be a partial term appearing in some non terminal node of the matching 

tree. One has the two following properties : 

1. There ezists a minimally extended pattern p such that M < p. 

e. M has been built by filling indexes, i.e. there exists a sequence Mo,. . .  ,Mq of partial terms 

and a sequence u0,. • •, u~-i of occurrences such that : 

(a) M o = a  

(b) M,=~t 

(e) for all i E {0 , . . . ,  q - 1}, u, is an index of matchn in Mi 

(d) V i e { 0  . . . . .  q - 1 } 3 F ~ e ~ .  ( M , + I = M ~ t u , * - - ~ ( O ) ] )  

Proof : Both properties are obvious consequences of the definition of a matching tree. m 

Def in l t lon  9 We shall call accessible from a partial term M, each initial pattern pl such that 

matehu(N) = tt for some partial term N > M. 

1I would like to thanks one of the referees of this paper for his careful reading and very useful comments. They 

led to great improvement in the presentation of this section. 
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3 . 1  E a s y  i n d e x e s  

We shall give here a way of finding an index in a partial term M that is already present in 

some non terminM node of the matching tree without using the set of all the minimally extended 

patterns. Looking for efficiency in the compilation process, we do not try to generate all the 

indexes, only to give one as soon as possible. 

We first remark that the set of indexes of matchri in M is the intersection of the sets of 

indexes in M of all the predicates rnatch~ for those i such that p, is accessible from M. This fact 

follows obviously from the definition of matchn. 

Let p, be accessible from M.  What are the indexes of match~ in M ? 

First, it is clear that all the occurrences in ~'(p~) n Oa (M) are such indexes. Moreover, if we 

assume that Pi is incompatible with any pattern pj with j < i, then we got here all the indexes 

of match, in M. 

Assume now that pi is ambiguous with some patterns of higher priority, denoted here q l , . . . ,  q,, 

and that M T qj for all j E {1, . . .  ,n}. Since we assumed that there exists a partial term on 

which match, returns tt ,  the set of occurrences -~-(qY) \ ~-(P~) is nonempty for all ] e {1 , . . . ,  n} 

(it contains the occurrences where one may exclude qY in order to recognize p~). We shall denote 

by U s the set of occurrences in 0a (M) which are a prefix of at least one element of ~-(qj)\ ~-(p,). 

Consider a partial term N such that N > M and matchi(N) = tt. There must exist an 

occurrence uj E U 1 such that N(uy) ~ fl. If the set U 1 only has one element, we may thus ensure 

that this unique element is an index of matchi in M. Repeating this for all j ,  we show that the 

union of those Uj which are singletons is contained in the set of the indexes of match, in M. 

R e m a r k  1 The condition on U i to be a singleton, although sufficient, is not a necessary one. 

Suppose, for example, that we deal with this definition of an "Exclusive Or" function : 

let XOg = function (true, false) -> true 

I (false, true) -> true 

I (x ,  y) -> f a l s e ; ;  

It is associated with the list of initial patterns H = [(true,false) ; (false,true) ; (n ,~) ] .  Here 

pattern ps is ambiguous with both Pl and P2. If we deal with the partial term M = (12,n) and 

search for indexes of matchs in M,  we get U1 = U2 = {[1],[2]}. Hence the preceding method 

does not give any index for mateh3 in M. 

On the other hand, the set of all the minimally extended patterns is here : 

{(true, false), (false, true), (true, true), (false, false)} 

so that, in M,  both occurrences [i] and [2] are indexes of matchn (and of course of matchs too). 

R e m a r k  2 It is not easy to check if a given pattern p~ is accessible from a partial term M. 

However one may ensure that if p, is accessible from M then one has M T Pi. Hence we shall 
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use the preceding result with all the initial patterns compatible with M rather than with the 

accessible ones. It is obvious that this does not produce wrong indexes. 

3 . 2  R e s t r i c t i n g  t h e  S e t  o f  I n i t i a l  P a t t e r n s  

We are now faced with the problem of finding an index (if it is possible) in a partial term M 

where the method of the preceding section has failed. From the properties of the partial terms in 

the matching tree, we know that it suffices to compute the minimally extended patterns greater 

than M. Moreover these patterns will give us an easy way to find indexes in all the partial terms 

appearing in nodes of the matching tree below the node of M. 

Using the fact that M was built by filling indexes (see proposition 1), we may give the 

following characterisation of those minimally extended patterns which are greater than M. It 

essentially means that one may built them starting from M and discarding all the initial pat- 

terns not accessible from M. Denoting II' the list of patterns accessible from M, the sets 

{t >_ M ; match,( t )  = t t  } and {t _> M ; matehn,(t) = tt  } have the same minimal elements. 

P r o p o s i t i o n  2 Let {Pi~,... ,P~} be a subset of the initial patterns list, containing all the initial 

patterns accessible from M (we assume that i i < ik whenever j < k). Let t be a partial term 

greater than M .  Then t is a minimally extended pattern if and only if it satisfies the two following 

conditions : 

i: ?k (t >_ p,~ and Vj < k (t ~ p,~)) 

e. Vt' E [M, t [  Vk (t' ^ p~, < P~k or 3j  < k (t' T pi~)) 

Proof : Assume that t is a minimally extended pattern. Since t >_ M and matchn(t) = tt, using 

definition of the subscripts i , ,  we can find some k such that mateh~k(t ) = tt. This means that 

t >_ Pi, and for all j < ik, we get t ~ Pi" This implies that if j < k (and hence i i < ik) we have 

t ~ pl i : t satisfies the first condition. 

In order to get the second condition, let t t be a partial term such that t' < t. Since t is a 

minimally extended pattern, one has matchn(t') = g, and then for all k, either t ~ A Plk < Pi~, or 

there exists j < ik such that t ~ T Pi" If for all k, t s A Pi~ < pi~ holds, we get the desired result. 

Assume now that for some k, this condition does not hold, then we have to show that there 

exists I < k such that t t T Ph. Due to assumption above we know that there exists j < ik such 

that t ~ T pj'. Thus it suffices to show that this subscript j is one of the subscripts i~. Since 

moreover t ~ is greater than or equal to M we have t m V pj > M and matehi(t  ~ V pj) = tt. Hence 

Pi is one of the patterns pi,,, we proved that t satisfies the second condition. 

Conversely, let t be a partial term greater than M and satisfying the two conditions given 

above. Since t >__ M, if j ~ { i l , . . .  ,i~} we have matehj(t) = ft. Combining this result with the 

first condition we get : 

3k (t > Pi~ and Vj < ik (matehj(t) = tI~) 
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which implies that  match~(t) = tt ,  hence rnatchn(t) = tt.  

It remains to show that  such a t is minimal.  To get this result, assume that  there exists a 

part ial  t e rm t '  < t such that  matehn (t s) = t t .  We shall prove that  this leads to a contradiction. 

From the monotonici ty  of the predicates rnatehi (see lemma 1), one has rnatchik (t') = tt  for the 

same k as t. If we assumed that  t '  is greater than  or equal to M (i.e. t '  E [M, t [) then the second 

condit ion would imply that  rnatchi~(t ~) = ft. This contradict ion ensures tha t  t s is not  greater 

than  or equal to M.  Hence we can find an occurrence v such that  t'(v) = f2 and M(v) # ft. 

There exists a subscript j0 such that  Mj0+l = Mjo Iv +-- Fjo (1~) ] and v is an index of matehn in 

Mjo. This implies Mjo(V ) = 12. Now look at the partial  t e rm t '  vMio : it is greater than  or equal 

to Mio , by monotonici ty  it satisfies matchri(t~VMio) = tt .  Since it has a symbol f~ at occurrence 

v this contradicts the assumption that  v is an index of matchn in Mjo. 

In all cases we get a contradiction when we assume that  matchn(t') = t t .  Hence, t is a 

minimally extended pa t te rn  associated with the initial list of pat terns.  ,, 

R e m a r k  3 We shall use this proposition with the list of pat terns compatible with M since we 

do not  have art easy way to compute the list of pat terns accessible from M. 

3 . 3  G e n e r a t i n g  t h e  U s e f u l  E x t e n d e d  P a t t e r n s  

According to the results of section 3.2, we shall give an algorithm generating all the minimally 

extended pat terns ,  greater than  a given partial  term. This set will be bui l t  incrementally using 

two different steps. 

In the following we assume given a part ial  term M and we shall denote by {Pt , - . .  ,P,} a 

subset  of the init ial  pat terns  list containing at  least all those initial  pat terns  which are accessible 

from M .  We assume moreover that  the ordering on the pat terns has not  been removed, i.e. if 

i < j then  Pi has higher priority than  pj.. We shall give a construct  of the set of all the minimally 

extended pat terns  tha t  are greater than  M. According to proposition 2, this set may be defined 

E M =  { t ;  1) t > M  

2) 3 k ( t _ > p ~ a n d V j < k ( t ~ p ~ ) )  

3) Vt' e [ M ,  t[ Vi (t'Ap, < p, or 3 j  < i (t' T pj)) } 

EMis the set of minimal  elements of {t > M ; matchn(t) = t t  } (the third condition meaning 

match,(t) = if). 

P r o p o s i t i o n  3 The set EM is the union, for all the subscripts k E { 1 , . . . , n } ,  of the disjoint 

sets, denoted by EMk, of the minimal partial terms greater than M verifying match,. EM~ may 

be defined as follows : 
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E M h =  { t ;  1) t > M V p ~  

2) v j  < k (t ~p;) 
3) Vt 'E  [ M  V p~, t[  Vi <_ k 

(t' ^ p, < p, or 3 j  < i (t'T pj)) } 

Proof : We first remark that  each t 6 EMk satisfies the two conditions : t T p~ and Vj < k (t ~ Pi). 

This ensures tha t  t does not  belong to EMi  for i # k. 

Now let t E E M ,  and let k be  the subscript for which t satisfies the second condition in the 

definition of E M .  Then t G EMk. 

Conversely, let t G EMk for some k. tt  is obvious that  t satisfies the first two conditions in 

the definition of E M .  To establish the third one, let t t be a partial  te rm in the interval [M, t [ .  

Since t ' < t and t T p~, we get t '  1" p~. Hence t '  is compatible with a pa t te rn  (Pk) with higher 

priority than  each pl for i > k : for these i the third condition is satisfied. 

Assume now that  i < k and denote by t" the partial  te rm t t v Pk- Since t > p~, one has 

t" E [M V pk, t[.  It follows that  : 

• either t" A p~ < Pi and hence (since t t < t") t '  A Pi < Pl, 

• or one can find j < i such that  t" 1" pj and f T pj. II 

We shall give a method to build stepwise the sets EMk.  Each step of the building will let 

grow the partial  te rm p~ in order to make it incompatible with one of the pat terns with higher 

priority. 

P r o p o s i t i o n  4 Let k E {1 . . . .  ,n} .  We reeursiveIy define the sets E M ~ , . . . , E M ~ ,  in the fol- 

lowing way : 

1. EM~ is the singleton { M  V Pk} 

~. We assume EM~ to be built, for some i 6 { 1 , . . . , k  - 1}. We define EM~ +1 as the union, 

for all t E EM~, of the following sets Et : 

• if t ~ p~_~ then Et = {t} 

• else E, = i t '  >_ t ; there exists a unique occurrence where the symbols in t' and Pk-i 

are distinct (and are not f l)  and D-(t') __ ~ ( t )  u ~(Pk- , )} .  

Then EMk is the set of all the elements of EM~ that are minimal according to the ordering 

over the partial terms. 

Proof : 

We shall establish, using induction on i, the following three properties of the sets EM~ : 
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1. VtEEM~ t > M Y p k  

2. VtCEM~ t~p  i ( j = k - i + l  . . . .  , k - l )  

3. If a part ial  te rm t satisfies 

t > M V p k e t t ~ p i  ( j : k - i + l , . . . , k - 1 )  

then there exists to E EM~ such that  t _> to 

The three properties hold obviously for i = 1. Assume they hold for some i and look at 

EM~ +1. 

1. Since the elements of E~P~ +1 are greater than  or equal to those of EM~ the first property 

remains true. 

2. Let t E EMik +1. There exists to E EM~ such that  t E Eto. Since t > to and to ~ P1 (J = 

k - i + 1 . . . .  ,k  - 1) (from the induct ion hypothesis), we have the following property : 

t ~ pj ( j  = k - i + 1 , . . . ,  k - 1). From the definition of Eto, we know that  t is incompatible 

with all the part ial  terms Pk-i. We get so the second property. 

3. Let t > M V p~ satisfying t ~ P1 ( j  = k - i , . . . , k  - 1), we shall exhibit an element to 

of EM~ +1 less than  or equal to t. From the induct ion hypothesis, we know that  there 

exists an  element tx o f  EM~ less t han  or equal to t. If this element is not  compatible with 

p~_~, it is a member  of EM~ +1 and we may take to = t l .  If it is compatible,  let u0 be an 

occurrence, minimal  for the prefix ordering on occurrences, where the symbols in t and 

p~_~ are different and  not  equal to [1. Such an occurrence exists from the hypothesis on t. 

We may then define to by the conditions ~(t0) = ~-(ti) u {u; u _< u0} and to _< t. These 

two conditions may hold together since ~ ' ( t l )  u {u; u < u0} C ~-(t). 

Moreover, to and pk-i only differ at occurrence uo and t l  < to. We get to E Et , ,  and hence 

the result. ,, 

R e m a r k  4 In  the preceding construct,  we may replace each set Et (see proposition 4) by the 

set of its minimal  elements (for the ordering over the part ial  terms).  The first two properties of 

the sets EM~ remain since we only reduce the size of these sets. The third one remains since we 

keep all the minimal  elements. 

We have now to give a method to build the sets which we called E~ in the proposition 4. This 

building may be done in an obvious way : given the part ial  terms t and pj, Et is the  set of all 

the part ial  terms we get by replacing in t V P1 the subterm at an occurrence u in ~-(pj) \ ~-(t) 

by f ( ~ ) ,  where f is any constructor  other than  pi(u). 

There are at least two reasons for inefficiency in this method. First ,  it does not  use the fact 

tha t  one ks not  allowed to place any constructor  at a given occurrence in a part ial  t e rm : ML's 
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typing constraints only allow a constructor of the same type than pi(u) to appear at occurrence 

u in Pi" The second reason is that it does not use remark 4, building many partial terms that 

are to be discarded. We shall not address here the question of using only useful symbols when 

generating the set of all the minimally extended patterns. It essentially relies on looking at 

which symbols appear in still accessible patterns when one tries to extend a partial term toward 

a minimally extended pattern ; we shall discuss it in a section dealing with properties which 

depend on ML specificities (see below section 4). 

In order to use remark 4 in the construct given in proposition 4, replacing Et by its minimal 

elements, we have to characterize these minimal elements of a set Et. This is done in the following 

lermna. 

L e m m a  2 With the notations of the proposition 4, assume given t E EMik such that t ~ Pk-i+l. 

Let t' E Et and denote by uo the occurrence where t' is incompatible with pk-i+l. Then t ~ is 

minimal in Et if and only if ~(t ' )  = ~(t)  U {u;u < uo}. 

Proof : To get a partial term less than t ~, we have to replace in t the subterm at an occurrence 

u E ~-(t ~) by ft. If we want that the result remains greater than or equal to t, we must choose 

u ¢ ~( t ) .  If u is a prefix of u0, the resulting partial term is compatible with Pk-i+l. If u is not 

a prefix of Us, the result is still an element of Et. • 

4 Restr ic t ing  the Set  of Constructors  

We present in this section a way of improving the pattern matching compilation by restricting 

the set of symbols one has to place in an extended pattern at a given occurrence. 

As was previously stated, only the symbols that appear in the initial patterns accessible from 

a partial term M, are useful when building the minimally extended patterns greater than M : if 

we find, during the pattern matching process, another constructor in the value to be matched, 

it only excludes from the accessible patterns all those which have not an n at the occurrence we 

just looked at. This does not depend on the symbol we found, only on the fact that it does not 

appear at this occurrence in the patterns accessible from the prefix we have already scanned. 

This point relies on using infinite data types in patterns, such as I n t e g e r  or S t r ing .  In such 

a case one cannot assume that the signature is finite, an assumption that we used when proving 

that the set E M P n  is computable. However~ the preceding remark gives the answer : When 

dealing with infinite data types we collect all the values that appear in the initial patterns and 

group the other values as a single one (denoted "otherwise" in ~). In such a way we get a finite 

signature. The same method gives us a restriction on the set of useful constructors : Rather 

than using all the constructors in the types that appear in the initial patterns, we only deal with 

the constructors that are present in the patterns which are accessible from the already scanned 

prefix. Of course we have to add the "otherwise" cases each time that not all the constructors 
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of a type appear in the patterns list : the other ones may be present in the values which will be 

given to the pattern matching algorithm. 

The way to restrict the set of constructors we just described has a disadvantage : one has 

to handle some bookkeeping of the accessible patterns all along the building of the minimally 

extended patterns. This may be avoided, using weaker restrictions over the sets of constructors 

to be tested. We give here two restrictions which may be set only looking at the set of initial 

patterns. They may be combined, but the resulting constraint remains weaker than it could be 

done. 

Us ing  t y p i n g  i n f o r m a t i o n  

The type constraints of the ML system require that the patterns of a pattern matching 

definition have a common most general (polymorphic) type. This implies that every prefix of 

one of these patterns has a type more general than this one. Moreover, the typechecker of the 

ML system ensures that when we have looked at a prefix M of some ML value v, we may find 

the type of each constructor that may appear in v at an occurrence u belonging to 0n(M). It 

is the (common) type of all the constructors that appear at occurrence u in the initial patterns 

accessible from M. Hence, we don't  have to worry about constructors belonging to other types. 

Us ing  occur rences  i n f o r m a t i o n  

A simple way to restrict the set of constructors to deal with, is building an A-list which 

associates each occurrence with the set of all the constructors appearing at that occurrence in at 

least one of the initial patterns. There is of course no reason to consider any other constructor 

to fill an occurrence when building the extended patterns (assuming the use of an ~otherwisa" 

case which groups all other constructors). 

R e m a r k  5 Even combining the last two restrictions does not eliminate all useless extended 

pattern as shows the following example. Of course these useless patterns do not affect lazyness ; 

moreover, cases where there arise, are rather uncommon. One has here to make a choice between 

compile-time and run-time efficiency. 

E x a m p l e  The following pattern matching is part of a function (see page 15) which performs 

some optimizations over the CAM code generated by the CAML compiler ("::" is the infix 

notation CAML uses for the CONS function) : 

function (Push :: Car :: Swap :: _) -> 1 

i (Push :: quote _ :: App :: _) -> 2 

I c - >  3 ; ;  

If we try to generate the minimally extended patterns greater than (Push : : Car : : • : : 

~) we have to replace the first l~. Typing constraints give here no restriction, since all the 
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patterns are lists of instructions. Using occurrence's information restricts the set of constructors 

to {Swap. App} (and "otherwise"). It is a real improvement (the type "instruction" has about 

15 constructors, 5 of them appearing in the patterns list). However it could be sufficient to 

consider Swap and ~otherwise'. 

5 Efficiency results 

5 . 1  C o m p i l e  t i m e  

Efficiency's assessment has been done by using various examples of pat tern matching defini- 

tion. These examples have been taken from the CAML system itself (this system is written in 

CAML and bootstrapped,  see [12]). Using definitions that  were written before our implementa- 

tion work, we ensure that  these examples are not biased toward or against our algorithms z. 

The bigger example is the following one (there are 74 cases but we do not explicitly state all 

of them) : 

function [] -> I 

(Push::Quote O::Swap::CC) -> 2 

(Push::Quote <<'()>>::Branch(_,Pop::F)::CC) -> 3 

(Push::quote _::Branch(Pop::T,_)::CC) -> 4 

(Push::Quote O::App::CC) -> 5 

(Push::Quote O::Call(2,fn)::CC) -> 6 

(Push::Quote <<(quote mOO . ~Z)>>::CCO) -> 7 

(Push::Car::Swap::CC) -> 8 

(Push::Cdr::Swap::CC) -> g 

(Push::Acc O::Swap::CC) -> 10 

(Push::Rest l::Swap::CC) -> II 

(Push::Swap::CC) -> 12 

(Push::Cons::CC) -> 13 

(Push::Rplacl 0::Pop::CC) -> 14 

(Push::Pop::CC) -> 15 

(Push: :CO) -> 16 

I (Push_trap(xl,Cl)::_ as CC) -> 74; 

It is a function that  performs some optimizations over the CAM code generated by the CAML 

compiler. Hence, the patterns are lists of CAM instructions representing various code structures° 

In order to only study the pattern-matching process, we replaced the right hand side expressions 

by integer constants representing the rule number. 

2at least not intentionnaly 
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We did not try to evaluate the improvement due to the restrictions over the set of construc- 

tors to deal with : it may be very important, but is easy to implement and is obviously an 

improvement. 

However this improvement is not sufficient to get an effective implementation. For example, 

we generated the set of minimally extended patterns, using only the theoretical existence algo- 

ri thm and the restrictions on the constructors, for the above function definition. The generation 

used more than two hours of C.P.U. time on a Vax 11-780 !! 

In order to study the effect of the other improvements given in this paper, we compare 

compilation time of some parts of this same function. 

First, we give results of compiling the complete function. If we generate all the minimally 

extended patterns, using the incremental building method given in section 3.3 but without the 

restriction of the set of initial patterns given in section 3.2~ the compilation took 373 seconds 

on a Vax 11-780 (of which about 230 seconds are G.C. time). Including the restriction, the 

compilation took only 160 seconds (with about 90 seconds of G.C. time). 

In order to see the effect of the restriction method, we compiled with and without it, some 

parts of the function above. Keeping only rules 3, 4 and 7 we get an highly ambiguous pattern 

matching in which the method of section 3.2 does not reject any rule before looking at a set 

of extended patterns. In fact the two compilations need comparable time (40 seconds vs. 37 

seconds), with a slight gain since in the second case the generation process does not start from 

but from a more precise partial term (corresponding to (Push : : Quote _ : : _)). 

Keeping now the following pattern matching : 

ftmction [ ]  -> 1 

(Push::quote 0::Swap::CC) -> 2 

(Push::Quote <<'O>>::Branch(_.Pop::F)::CC) -> 3 

(Push::Quote _::Branch(Pop::T,_)::CC) -> 4 

(Push::Quote 0::Call(2,fn)::CC) -> 6 

(Pueh::Quote <<(quote "00 . "Z)>>::CCO) -> 7 

(Push::Car::Swap::CC) -> 8 

(Push::Acc O::Swap::CC) -> IO 

(Push::Swap::CC) -> 12 

(Push::Rplacl O::Pop::CC) -> 14 

(Push::CC) -> 16;; 

the difference between the two compilation times is 101 seconds vs. 49 seconds. The second 

method needs generating six sets of minimally extended patterns~ one from four of the initial 

patterns, the other five from only two of the original patterns. 

The experiments we made with other pattern matching definitions lead to results of the same 

order of magnitude. 
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We tried to compare the compilation times needed by our algorithms with those needed by 

the compiler of the CAML system. These comparisons are made using various pattern matching 

definitions from the CAML system itself. They are not perfectly precise since the work of the 

CAML compiler has to be distinguished from the typechecking, and these two processes are 

somewhat interleaved in the present system. 

Depending on the kind of pattern matching (numerous ambiguity cases or not, number of 

constructors, size of the patterns . . .) ,  our compilation needs from 2/3 of the time used by the 

present compiler up to three times this time. It is not clear which are the most important 

features in these differences between the various cases. However, the comparisons with the 

present CAML compiler are essentially intended to ensure that our algorithms run fast enough 

to be incorporated in a future version of the system, which is now the case. 

5.2 R u n  t i m e  

The same comparisons as in the testing of compile time efficiency, have been run. We looked 

at two kinds of measurement : size of the generated code, and the time needed to recognize 

which rule has to be applied. 

Concerning the second point, precise comparison would need to define some kind of average 

value to be matched. We did not try to do such a work. However, with various attempts, the 

two codes do the pattern matching using about the same amount of time. 

Concerning the size of the generated code, we estimate it by the number of instructions in 

the generated CAM code. This is a machine independent value, and it does not depend on 

other parts of the CAML system. The number of CAM instructions, in the code given by our 

algorithms, is about two third of the number of CAM instructions in the code generated by the 

present compiler. The gain comes from more efficient access to parts of the value, and from a 

less number of testing instructions to provide. The gain on the number of testing instructions 

is about 20 % in all the cases we tried. For example, in the ease of the function given page 15 

our compiler gives a code with 1011 CAM instructions and 203 test versus 1490 instructions and 

242 tests with the present system. 

However, the values we give here are only approximate ones. One may build specific ML 

pattern matching and values which do not fit with these estimates. This is the main reason 

why we used pattern matching of the CAML system in order to make our comparisons. Thus, 

since we did not use ad hoc examples, we mean that the values we give here are a rather correct 

estimate of the efficiency one may expect from our algorithms. 

6 C o n c l u s i o n  

The compiler we used all along this paper is not actually implemented in the CAML system. 

There are two main reasons for this fact. The first one is that we want to do more experiments 



315 

on some features of this compiler (it may be modified to use its da ta  structures in the binding of 

the pat terns '  variables, it could be useful to implement some heuristics to deal with cases where 

no index exists in a part ial  term . . .  ). The second one is that  we have to provide an interface 

with the whole compiler and the typechecker and it is likely that  these processes will have to 

be somewhat adapted according to which features we eventually retain in our pat tern matching 

compiler. 

However, the work we present in this paper shows that  it is effectively possible to use lazy 

pat tern matching in a functional language. This is a needed feature in a lazy system. We show 

that  this may be a useful one even in a strict version : it gives a more compact object code 

without toss of run-time performance and with a quite acceptable compile-time performance. 

This is an incitement to further study the possible uses of this kind of mechanism. 
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