
2-level

Flemming Nielson *

A-lifting

Hanne R. Nielson t

Abstract

The process of A-lifting (or bracket abstraction) translates expressions in a typed A-calculus
into expressions in a typed combinator language. This is of interest because it shows that
the A-calculus and the eombinator language are equally expressive (as the translation from
combinators to A-expressions is rather trivial). This paper studies the similar problems for
2-level A-calculi and 2-level combinator languages. The 2-level nature of the type system enforces
a formal distinction between binding times, e.g. between computations at compile~time and
computations at run-time. In this setting the natural formulations of 2-level A-calculi and
2-level combinator languages turn out not to be equally expressive. The translation into 2-level
A-calculus is straight-forward but the 2-level A-calculus is too powerful for A-lifting to succeed.
We then develop a restriction of the 2-level),-calculus for which X-lifting succeeds and that is
as expressive as the 2-level combinator language.

1 I n t r o d u c t i o n

Modern functional languages are often built as enrichments of the A-calculus. In the implementation
of these languages various forms of combinators are useful, e.g. [15,16,3]. The success of this is due
to the process of ,~-lifting (or bracket abstraction) that allows to eliminate variables of a A-expression
thereby turning it into a combinator expression. The techniques used build on results developed by
[13,2] and a recent exposition of the ideas may be found in [1]. The approach is equally applicable
to typed and untyped languages and in this paper we shall only study the typed case. Following [1]
we shall consider a type system with types t given by

t : : = A i l t x t l t ~ t

where the Ai (for i E I) are certain base types, t × t is the product type and t --~ t is the function
type. It is possible also to add sum types and recursive types but for lack of space we shall not do
so.

The distinction between compile-time and run-time is important for the efficient implementation
of programming languages. In our previous work [10,11] we have made this distinction explicit by
imposing a 2-level structure on the typed A-calculus. The types tt will then be given by

t t : : = A i l A ~ l t t x - t t t t t ~ t t f t t = v t t l t t - ~ t t

The essential intuition will be that objects of type tt =v tt are to be evaluated at compile-time
whereas objects of type tt ~ tt are to be evaluated at run-time. So from the point of view of the
compiler it must perform the computations of type tt :=r tt and generate code for those of type
tt --~ tt.

A similar distinction is made for the expressions by having two copies of the A-notation. So
we shall e.g. have a A-abstraction ~xi[tt] for building functions of type tt ==r tt ~ and another

*Department of Computer Science, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
tDepartment of Mathematics and Computer Science, AUC, Strandvejen t9, DK-9000 Aalborg, Denmark.

329

A-abstraction Axi[tt] for building functions of type tt --~ tt'. The idea is here that we want the
compiler to generate code for the functions specified by A--abstractions whereas those specified by
~-abstractions should be interpreted at compile-time. Thus we shall be interested in transforn~dng
the A-calculus specifying run-time computations into combinator form while leaving the A-calculus
for the compile-time computations untouched. This process will be called 2-Ievel A-lifting (as we do
not want to distinguish inherently between comblnators and supercombinators [4]).

Let us illustrate the approach by an example. In the A-calculus the function select returning the
n'th element of a list 1 may be defined by

select _= fix (AS. An. A1. (=. 1. n) ~ (hd. 1), (S. (- . n. 1). (tl. 1)))

Assume now that the first parameter always will be known at compile-time and that the second will
not be known until run-time. In [11] we give an algorithm that will transform select into

select' = fi"~(~S. ~n. A_I.(=: 1: n)==~ (hd: 1),(St (- : n- !) : (tl: l)))

where again overlining indicates that the computations are performed at compile-time and under-
lining that they are performed at run-time. The purpose of the 2-level A-lifting will be to get rid of
the variable I but to keep S and n since they will be bound at compile-time. So we shall aim at an
expression like

select" = ~(XS. Xn. (=r lr n)=v hd,(S r (_r nr 1))o tl)

where [] denotes functional composition at the run-time level.
In our previous work we have studied the efficient implementation of two-level functional languages

where the compile-time actions are expressed in A-notation and the run-time actions in combinator
notation. In [8] we show how to generate code for abstract machines based on the von Neurr~nn
architecture and in [6,9] we study the application of data flow analyses within the framework of
abstract interpretation. The present paper can therefore be seen as filling in the gap between these
results and the techniques of [10,11] for imposing a 2-level structure on A-expressions. Finally,
the algorithms presented in this paper have been implemented in a test bed system designed to
experiment with various ideas related to 2-level functional languages.

2 R e v i e w o f t h e 1 = l e v e l c a s e

As an introduction to our approach to 2-level A-lifting we first review the usual concept of A-lifting
(or bracket abstraction). This does not add much to the explanations given in [1] but allows us to
fix our notation by means of the familiar case.

First we define the typed A-calculus DML, that has the types

t : : = A i] t x t l t ~ t

and expressions

e ::= lilt]) (e,e) I e ~j I Axi[tl.e I e , e t xi I fix e ! e -~ e , e

Here the f~[t] (for i • I) are constants of the type indicated. Next we have pairing, projection,
A-abstraction, application, variable, fixed point and conditional. As we are in a typed language these
expressions are subject to certain well-formedness conditions. The well-formedness predicate has the
form tenv f- e:t where tenv is a type environment (i.e. a map from a finite set of variables to types)
and says that e has type t. It is defined by

tenv ~- fi[t]:t

tenv ~- e$:t~ tenv t- e~:t~
tenv F" (el,e2):tlxt2

330

tenv ~- e: t lxt2 if j = 1,2
tenv ~- e ~[j:t i

tenv[xl ~-~ t] b e:t '
tenv }- Axi[tJ.e:t~t'

tenv b evt'--*t~ tenv ~- e~:t'
tenv t- el • e2:t

tenv }- xi:t if tenv(xi) = t

tenv F- e:t--~t
tenv }- fix e:t

tenv l- e:Aboob tenv b el:t~ tenv ~- e2:t
tenv ~- e --~ el~e2:t

Fac t 1 Expressions are uniquely typed, "i.e. if tenv i- e:tl and tenv i- e:tz then tl = t2. o

The proof is by induction on the inference of tenv ~- e:tl and tl = t2 means that the types are
syntactically equal.

In a similar way we define the typed combinator language DML,~. It has types

t : : = A i l t x t l t - * t

and expressions

e ::= fi[t] I tuple(e,e) I takej[t] I curry e I apply[t] I e [] e I fix[t] I cond(e,e,e) I const[t] e lid[t]

Here tuple and takej relate to the product type and the intention is that tuple(f,g)(v) is (f(v),g(v))
and takej[t](vl,v2) is vj. For the function space we have curry and apply and here curry(f)(u)(v)
is f(u,v) and apply[t](f,v) is f(v). Function composition is denoted by D, fix[t] is the fixed point
operator and the intended meaning of the conditional is that cond(f,g,h)(v) is g(v) if f(v) holds and
otherwise h(v). Finally const[t] ignores one of its arguments so const[t](f)(v) is f and id[t] is the
identity function.

The well-formedness predicate has the form }- e:t and is defined by

l- fi[t]:t

[- el:t--~tl ~" e~:t---~t 2
}- tuple(el,e:):'t-~('il xt2)

t- takej[t]:t~tj if t = t l x t : and j=1,2

}- e:(tl ×t2)--~t3
}- curry e:tl--~(t2--~ta)

apply[t]:((tl-~t~) ×tl)-~t2

L_evt2--~t3, t- e2:tz--~t~
}- e1 D e2:tl-+t3

fix[tl :(t--t)-~t

~- cv t -+A '~ob b e2"t-+t'~ }- ea ' t-+t '
• b , ~ "

b cond(ch,e2,e3):t-*t'

i- e:t '
t- const[t] e:t--~t'

F- id[t] : t~ t

if t = tl--+t2

331

We have added sufficient type information to the combinators tha t we have the following analogue
of Fact 1:

F a c t 2 Expressions are uniquely typed, i.e. if k- e:t~ and k- e:t2 then t~ = t2. []

From a pragmat ic point of view one might consider to constrain the type t of a constant flit] to
be of the form tl ~ t2. We shall not do so as for the subsequent development to make sense we
would either have to impose a similar constraint on constants of DML~ or else we should change the
functionality of constants in the transformation to follow.

We now turn to the relationship between DML~ and DML,~. The transformation from D M L ~
to DML~ amounts to the expansion of the combinators into)~-expressions. A minor complication is
that not all the necessary type information is explicitly present and we shall rely on Fact 2 in order
to obtain it. We therefore formulate the process as the definition of a function

c: { e • D M L m l 3 t . ~ -e : t } ~ { e l e • DML~ }

by means of the following equations which merely restate the intuitions about the combinators tuple,
takej[t] etc. in a formal way:

e[[fi[t]]]= f i n

c[[tuple(el, e~)]l= ax.[t]. (e[[elll" x~, e~e~]]- x,) where k- el : t -* t~

e[[takej[t]]]=)~x,[t]. x~ ~j

e[[curry el]= Ax~[h]. ;~xb[t~]. e[[e]]. (x=, xb) where F- e: (t l x t2) ---* t

g[[apply [t]]]=),xa[(tl--*t2)×tl]. (xa ~i). (x~ ~2) where t = tl -~ t2

e[[el [] e21]= tx,[t] , g[[el]]. (g[[e2] 1. xa) where ~- e2:t --* t '

e[[fix[t]]]= ax,[t - , t]. fix x~

e[[cond(el, e2, es)l]= tx.[t], e{Ie~]~, x~ --, e[[e2l]- x~, ages]I- x~ where I- el: t - , Aboo~

~[[const[q ell= ~x~[t]. ~[[el]

e[[id[t]]]= J~xa[t]. x~

To see tha t this is a correct translation we note that

F a c t 3 The transfornmtion s preserves the types of expressions, i.e. if ~- e:t then $ F e[[e]]:t. []

where 0 denotes the empty type environment. Hopefully it is intuitively clear tha t it also preserves
the semantics. If we were to be formal about this we could define reduction rules for DML~ and
DMLrn and use this as a basis for relating the semantics (see [1]). Alternatively, we could defihe a
denotat ional semantics with a suitable notion of interpretat ion of the primitives (along the lines of
[8,9]). However, we shall not pursue this further here.

Concerning the translat ion from DML~ to DMLm we consider an expression e of DML¢ that
has type t, i.e. that satisfies tenv ~" e:t. Assuming that tenv has a nonempty domain {xl, . . . , xn}
and maps xi to ti the type of the translated term will be of the form (. . "(tl x t2)x t3 ".. x t~) -* t. To
make this precise we shall let a position environment penv be a list of pairs of variables and types.
The underlying type environment then is

undefined if no penv~j~l is xi
p(penv) = ~xl. penvSj~2 if j is minimal s.t. penv~j~l is xl

and the product of the variable types is

undefined if penv = 0
t l (penv) = t if penv = ((x,t))

H(penv') x t if penv = ((x,t))^penv '

332

So if penv is ((xl,A1)(x2,A2)(x3,A3)) then p(penv) maps xi to Ai and H(penv) is (As xA2)×A1. The
intention is that the transformed version AP~V[[e]] has type H(penv) ~ t whenever p(penv) b e:t. We
shall not allow the case where penv = 0 and so if 0 b- e:t we must artificially add a dummy variable
and a dummy type. (This is in line with [1] but we shall need to be more careful when we come to
2-level A-lifting!) To assist in the definition of A p~v we need the function

undefined if no penvSj$1 is xj
id[II(penv)] if penv = ((xj,t)) ,

~r]~v = take2[H(penv)] if penv = ((xj,t))^penv

~r[~ ¢ o takel[H(penv)] if penv = ((xl,t))^penv ' and i # j

for locating the component in II(penv) that corresponds to xj. For the example above we have

P~= take,[(A3 xA2)xA1], 7r 1

p~v = take~[A3 xA2] [] takel[(A3 ×A2)xh l] 7r 2

p~,v id[As] [] takel[As xA2] [] takel[(A3 xA2) xA1] 7r 3 =

In analogy with the definition of e we shall use Fact 1 to define a function

AP~V: { e e DML¢ [St. p(penv) F e:t } ~ { e] e e DMLm }

whenever penv ~ 0 by

A p~v [[fiN]]= const[H(penv)] f i n

A p~v [[(el, e2)]]= tuple(A pen" [[ex]], A penv [[e~]])

A p~v [[e ~j]]= takej[t] [] A p~v [[e]] where p(penv) ~" e:t

A penv [[Axi[t].e]]= curry A ((xi't))^penv lie]]

A p ~ [[el' e2]]= apply [tl---*t2] [] tuple(A p ~ [[el]], A pen~ [[e2]]) where p(penv)F el:tl--*t2
p e n v A, °°v [[x~]]= ~

A p~v [[fix eli= fix[t] [] A p~v [[e]] where p(penv) F e:t ~ t

h ,~v [[el ~ e~, es]]= cond(A ~ [[el]I, A" ~ [[e~]], A ~ v [levi])

That this is a well-behaved definition that lives up to the claims is expressed by

Fac t 4 If penv # 0 and p(penv) F e:t then F A p ~ [[e]]:H(penv) ~ t. []

Hopefully, it is also intuitively clear that A p ~ preserves the semantics and as above we shall not be
more formal about this. Because of the lack of space we must refer to any standard textbook, e.g.
[1], for examples of the translation.

3 2 - l e v e l A - c a l c u l i a n d c o m b i n a t o r l a n g u a g e s

After the above review we can now approach 2-level A-lifting. In the 2-1evel notations we replace the
type system of the previous section with

t t : : = A - i [A, I t t - x ' t t [t t x t t [t t==vtt [t t - - -*t t

as was already mentioned in the Introduction. Here overlining is used to indicate early binding
and our prime example of this is compile-time and similarly underlining is used to indicate late
binding and here the prime example is run-time. The considerations of compile-time versus run-time
motivate defining the following well-formedness predicate F- tt:k for when a type t t is well-formed of
kind k E {c,r). Clearly c will correspond to compile-time and r to run-time. The definition is

333

t t b tt:c b t t : r

A~

tt~

tt~

tt~

tt~

~ tt2

tt2

tt2

---* tt2

true

false

P t t l :c A b tt2:c

false

~- t t v c A t- tt2:c

t- t t v r A b tt2:r

false

true

false

b t t v r A b tt2:r

false

F- t t v r A b tt2:r

Here no compile-time types can be embedded in run-t ime types; this is motivated by the fact
that compile-time takes place before run-time. A run-time type of the form t t l ~ tt2 is also a
compile-time type; this is motivated by the fact that a compiler may manipulate code (and code
corresponds to run-t ime computat ions) but not the actual values tha t arise at run-time. One may
of course consider variations in this definition but the present definition has been found useful for
abstract in terpreta t ion and code generation [6,8].

The idea with the 2-level notations is that we have a choice of using A-expressions or combinators
at the compile-t ime level and a similar choice at the run-t ime level. This gives a to ta l of four languages
but we shall restrict ourselves to the case where we always use A-expressions at the compile-time level.
The notat ion where we use A-expressions at both levels will be called TMLe and has expressions
given by

te : := fi[tt] [xl [be , te)] te ~-~] ~xi[tt].te I te r te t ~ te te ==r re, te
] (te, te~[te.~_..~jl A xi[t t] . tet t e : t e] f i x t e t e ~ t e , te

Again overlining is used for the compile-time level and underlining is used for the run-t ime level.
For the well-formedness predicate we propose the following generalization of the one for DML~. The
form of the predicate is tenv l- te : t t and the definition is

t env ~-

tenv ~-
tenv

tenv F- te:ttl x_.tt2
tenv ~- te J . j : t t i

tenv b fi[tt]:tt if 3k. }- t t :k

tenv ~- xi:tt if tenv(xl) = t t and 3k. t- t t :k

tenv b t e v t t ~ t env t- te2:tt~ if P t t l :c and b tt~:c
tenv ~" (tel , te~):tt l~' t t2

tenv b te:t~L~'tt ~
tenv b te]~ j : t t i i f j = 1,2

tenv[xl ~ tt] [- te : t t '
tenv t- ~xi[tt].te:tt==rtt ' if }- tt:c and b t t ' :c

tenv}- tch:tt'=:vtt~ tenv t- te2:tt '
tenv ~- tel -- te2:tt

tenv b te : t t=vt t
tenv t- fix te : t t

te:~boob tenv t- tevtt~ tenv b te2:tt
tenv F- te ==r te~, te2:tt

tel:tt1~ tenv ~" te2:tt2
F- (te l , t e2) : t t l×t t2 if ~- t t l : r and t- tt2:r

i f j = 1,2

334

tenv[xl ~-* tt] t- te:t t '
tenv ~- !xi[tt].te:tt-*_tt' if ~- t~:r and ~- t t ' : r

tenv ~- te~:tt~_.tt~ teuv ~ te~:tt ~_
tenv I- te~ : te2:tt

tenv ~- te:tt~__tt
tenv ~- fi__~x te:tt

tenv ~- t e : A . ~ , tenv t- te~:tt~ tenv I- te~:tt
tenv I- te ~ te~, te~:tt

With respect to the rules for DML~ one may note that essentially we have two copies of these
but we need to add additional side conditions of the form I- tt :k in order for the constructed types to
be well-formed. From an intuitive point of view it is unclear whether one should add the constraint
that ~ tt:r in the rule for te --~ te, te; however, in Section 4 we shall see a formal reason for imposing
this constraint. We have

Fac t 5 Expressions have welloformed types, i.e. if tenv k te:tt then 3k. ~- tt:k. D

and in analogy with Fact 1 we also have

Fac t 6 Expressions are uniquely typed, i.e. if tenv I- te : th and tenv I- te:tt2 then t h = tt2. []

Furthermore we claim that TML~ is a natural analogue of DML~ but for the 2-level case. Clearly one
can translate an expression in TML~ into one in DML~ (by removing all underlining and overlining)
and it is shown in [10,11] that it is also possible to translate expressions in DML~ into TML~.

Another 2-level notation is T M L , , where we use combinators at the run-time level. The types tt
are as above and so is the well-formedness predicate for types. For expressions the syntax is

t e : := f i [t t] I xll (te, te) l te~ '~i ~xi[tt].tel t e r t e l ~ 'x te l te=~' te , te
I tuple(te, te) I t ake~[tt] I curry te 1 apply[tt] I t e ~ te
[f ix te [cond(te, te , te)I const[tt] te 1 id_~[tt]

The well-formedness predicate has the form tenv ~ te:tt and is defined by

tenv ~- fi[tt]:tt if 3k. b t t :k]

: / as above
tenv ~- te:Aboob tenv F tei:tt~ tenv ~ te~:tt

tenv ~- te =v tel~ te2:tt

tenv ~- tel:tt~__th, tenv ~- te2:tt--~tt~
tenv ~- tuple(tel,te~):tt--~(th~tt2)

tenv ~- take j[tt]:tt--*ttj if ~- tt:r and tt = t h~ t t2 and j=1,2

tenv J- te:(ttl ×tt2)~___tt3
tenv ~- curry te:t~__(tt2---~__tts)

tenv I- apply[tt]:((ttl--~tt~)~th)--~___tt~

tcnv }- tel:tt2---~tts, tenv I- te2:ttl~__tt2
tenv I- tel cJ te~:th--~tts

tenv J- fi__xx[tt]:(tt---~tt)~_tt if ~- tt:r

tenv ~- tel:tt-~Ab~l~ tenv ~- te2:tt tt ~ tenv ~- tes:tt-~__tt'
tenv ~1 cppd(tel,te2,t'~3):tt-*__tt'

if t- tt:r and tt = ttl--~tt2

335

tenv F te : t t ' if ~- t t : r and ~- t t ' : r
~ n v F const[tt] te:tt~..m.tt'

tenv F id__~tt]:tt~..~_tt if F t t : r

The rules for well-formedness of the top-level terms are as in T M L , . In part icular we do not constrain
the types t t of the constants fi[tt] al though it might seem unfit to have constants of run-t ime types
that are not function types. (However, one may introduce the constraint F tt :c if desired and if also
the type t t of a conditional tel =:v te2,te3 is constrained in this way then TMLm would be a subset
of the language considered in [8].) In analogy with the results for T M L , we have

F a c t 7 Expressions have well-formed types, i.e. if tenv }- te : t t then 3k. F- tt:k. []

F a c t 8 Expressions are uniquely typed, i.e. if tenv ~- te : t t l and tenv ~- te:tt2 then t t l = tt2. O

As in the case of DML~ and DML,~ the expansion of combinators is ra ther straight-forward. So
we define a function

~t~v: { t e e WMLm I 3tt . tenvF- te: t t }---* { t e l t e e T M L , }

for each type environment tenv. We need the type environment because we shall rely on Fact 8 in
order to infer missing type information (just as we used Fact 2 in the l- level case). The definition is

Stenv [[fi[tt]~= fi[tt]

~,~v [[its, re2)]]= (~,~v [[tel]I, ~,~v ~t~]]~

s t y , [[te, r te2]]= e t a , [[tel]] r e t ~ [[te~]]

~t~n~ ~tuple(tel,te2)]]-- £x~[tt]. (et~v [[tel]I: x, , ~ t ~ he2]]: x~)_ where tenv ~ tel:tt---*ttl

~ t ~ [[takei[tt]]]= ~_x,[tt]. x , S j

~ t ~ [[curry tel]= ~x,[t t l] . A_xb[tt2]. ~ t ~ [[te]]: (__xa, Xb)_ where tenv ~- t e : (t t l x t t 2) - ~ t t

e t ~ [[apply[tt]]]= A_x~[(th~___tt2)xttl]. (x~_.l) : (x,,t__.2.) where t t = ttl--*tt2

e t ~ [[tel t~ te2]]= ~_x,[tt]. e , ~ [[tel]]: (e t ~ [[te2]]: x~) where tenv ~- te2:tt---~tt'

et~v ~fi.~tt]~= A_x,[tt--*tt]. fix x~

etenv [[cond(tel, re2, te3)~= ~_xa[tt]. ~t~av [[tell: Xa -'~ etenv [[te2~- xa, et~v ~te3~'_ Xa

where tenv F tel: t t ---* A_.bool

e t ~ ~const[tt] tel]= ~x~[tt]. ~ t ~ [[te]]

et~a~ [[i_.d_[tt]]]= ~_x~[tt]. x~

In these rules we have taken the l iberty of assuming that x~ and Xb are not in the domain of tenv.
To be precise we should have replaced a by m + l and b by m+2 where m is the largest index i such
that xl is in the domain of tenv. We may note tha t

F a c t 9 The t ransformation e preserves the types, tha t is, if tenv }- te : t t holds in TMLm then
tenv F ~ t ~ [[te]]: t t will hold in T M L , . []

Hopefully it is intuit ively clear that the semantics is preserved.

336

4 2 - l eve l +~-lifting

The translat ion from TML~ to TML,~, i.e. 2-level A-lifting, is not so straight-forward. To illustrate
the problem consider the well-formed TMLe expression

!×~[A_l--+ ~] . (~x~[A~-+ &].x~)= Xl (i)

Although this intuit ively wiI1 be equivalent to A_xl[A_ 4 =-*Al].X~ tha t corresponds to i d[A a -*A1]
in TMLm it would seem tha t one cannot t ranslate (1) in a compositional way into a combinator
expression of TML,~. The problem is that a variable, here xl, that is bound by a (underlined) A__
is passed inside the scope of overlined operators, here ~" and r . It would seem that there are no
ingredients in TMLm that could facilitate this. In fact, by looking at the definition of ¢ in the
previous section it would appear that an expression like (1) will never be produced.

To make these ra ther vague impressions more precise we shall define a suitable subset TMLt
of T M L , . This subset will be defined so as not to allow tha t A--bound variables are used inside
the scope of overlined operators (although there will be one exception). It will emerge that the
expression (1) will not be a well-formed expression of TMLI . We shall show tha t ¢ of the previous
section only produces well-formed expressions of TMLI and that A-lifting is possible when we restrict
our a t tent ion to TMLzl This then will be the formal version of our claim tha t for 2-level A-notations
the A-calculus (T M L ,) and the combinator language (TML,~) are not equally expressive.

The types and expressions of TMLt are as for TML~ and we only define a new well-formedness
predicate. Since we must distinguish between the variables bound by A__ and those bound by ~ the
well-formedness predicate will have the form

cenv, renv I- te : t t

where cenv is the type environment for ~-bound variables and renv is the one for A_-bound variables.
We shall enforce tha t the domains of cenv and renv are disjoint. The rules are adapted from those for
TML~ by "emptying" the type environment for A_-bound variables when we pass inside the "scope"
of (most) overlined operators. They are

cenv, renv t- f~[tt]:tt if 3k. !- t t :k and dom(cenv)Adom(renv) = 0

cenv, renv F xi: t t if 3k. F t t :k, cenv(xi)=t t or renv(x~)=tt and
dom(cenv)Cldom(renv) = 0

cenv~ 0 I- tel:tt t7 cenv~_0 ~- te~:tt~ if I- t t l :c and b- tt2:c
cenv, renv F (tel , te2):tt l~' t t2

cenv~ 0 K te:th-fftt2__ i f j = 1,2
cenv, renv F t e i j : t t j

cenv[xl +-+ tt], 0 i- te : t t ' if t- t t :c and }- t t ' :c
cenv, renv 1- ~xi[t t] . te : t t=~t '

cenv~. 0 I- tex:tt'=:rtt~ cenv+ 0~- te~:tt '
cenv, renv i- te~ r te2:tt

cenv~ 0 I- te:tt=~-tt
cenv, renv I- fix te: t t

cenv~ 0 F te:A--boob eenv~ renv t- tel:tt~ cenv~ renv t- te~;tt
cenv, renv k- te ~ - te~, te2:tt

cenv renv t- te f t t l~ cenv renv t- te~:tt2 ' ~ i f F t t l : r and l- tt~:r
cenv, renv I- (tel , t e @ t h x_tt2

337

cenv~ renv k" te: t t l x tt2
-cenv, renv P te ~ .l:"ttj if~ = !,2

cenvF(dom(cenv)-{xl}), renv[xi ~-+ tt] k- te: t t '
cenv~ renv ~- A__xi[tt].te:tt---~tt' if F tt:r and F- t t ' : r

cenv, renv k- tel:tt'--~.__tt 7 cenv~ renv F- te2:tt'
cenv~ renv t- tel : te2:tt

cenv~ renv k- te:tt---+tt
cenv, renv P fix te:t t

cenv~ renv P te:A__b~oh cenv~ renv P te~:tt~ cenv~ renv k- te2:tt
...... cenv, renv I- te ---* tel , te2:tt if F tt:r

In the rule for overlined conditional we have not emptied the type environment for A-bound
variables for the '%hen" and ~'else" branches. This is connected with the fact that we have not
restricted the type of the conditional to be of compile-time type and this is of importance when we
come to A-lifting. In the rule for underlined conditional we have restricted the type of the conditional
to be of run-t ime type. This is in accord with the restrictions implicit in the rule for cond in TML,~.
Finally we note that in analogy with Fact 7 and 8 we have

Fac t 10 Expressions have well-formed types, i.e. if cenv, renv F te:tt then 3k. F tt:k. D

Fac t 11 Expressions are uniquely typed, i.e. if cenv, renv ~- te:tt l and cenv, renv]- te:tt2 then
t t l=t t2 . []

In Fact i0 (and similarly in Fact 7) the kind k will be unique unless tt is of the form t t l ~___ tt2 in
which case k may be c as well as r. It is straightforward to verify that the expression (1) is not
well-formed in TMLt . It is also easy to see that any expression that is well-formed in TML~ also will
be well-formed in TML¢. That we have not gone too far in the definition of TML~ may be expressed
by

Fac t 12 The expansion ~ of combinators in TML,~ only produces expressions in TMLI, i.e. if
tenvF te:tt in TMLm then tenv, ~ F ¢tenv [[te]]:tt in T M L t . [3

Turning to 2-level A-lifting the intention will be to define a function

A~e~,: { te E T M L , t 3tt. cenv, p(penv) F te:tt } ---* { te I te E TML,~ }

whenever cenv is a type environment, penv is a position environment and the domains of cenv and
p(penv) are disjoint. Looking back to the l-level case we note that there we demanded that the
position environment could not be the empty list. It is evident from the well-formedness rules for
T1VILz that the emptying of the type environment for A-bound variables means that we cannot take
a similar cavalier a t t i tude here. So the idea will be to demand that cenv, p(penv) F- te:tt satisfies
that

penv = 0 =~ k tt:c

penv # 0 =er F tt:r

This means that when t t is t t l --*tt2 the position environment will tell us whether we want to regard
t t l ~ tt2 as a run-t ime data object (in case penv # 0) or as a run-t ime computat ion (in case
penv=0) . Thus we do not need to follow D.Schmidt [12] in making these distinctions in a syntactic
manner (by having essentially three kinds of function arrows rather than just two).

The definition of A~[[te]] will closely Follow the inference that cenv,p(penv)F te:tt for some tt.
We have already pointed out that in this inference we shall replace the type environment p(penv) by
the empty map ~ when we move inside the "scope" of (most) overlined operators. In the definition of

338

Ap¢~,[[te]] the analogue will be to replace the position environment penv by the empty list 0 . Since
this will entail ignoring some (run-time) arguments we define

te if penv = 0
~(penv) te = const[II(penv)] te if penv ~ 0

where H(penv) is defined as in Section 2 but now uses x in stead of x. If we also define

t t if penv = ()
A(penv, t t) = II(penv) --~ t t if penv ~ ()

we may note that if tenv F- te: t t holds in TMLm then also tenv P 5(penv) te :A(penv, t t) holds in
TMLm.

Similarly we may move into the "scope" of an underlined operator and there we cannot allow the
position environment to be the empty list (as is witnessed by our insistence on penv # 0 in the case
of l- level)~-lifting). This motivates defining

f penv if penv # 0
~(t t ,penv)

((x~,tt)) if penv = 0

for a dummy variable x~ so that ~(t t ,penv) is never the empty list. In connection with this we need

te if penv # 0
w(tt ,penv) te = apply[ttl~___tt2] o tuple(te,i.dd[ttl])

if penv = 0 and t t = ttl~___tt2

where we shall take care that the first argument to w always will have the proper form. One may
note tha t if penv = 0 and 0 b te:tt~..~_ttl---+tt2 then 0 t- w(ttl---+...._tt2,penv) te:tt~-+._._tt2 and it will be
clear from below tha t w will be used when we want to escape from the effects of having used ~. (This
will be done by taking an argument and supplying it to the function twice so tha t the addit ional
argument needed because of the introduction of the dummy variable will be catered for.)

Turning to the definition of A~,~ we use a version of ~rr ~ tha t is as in Section 2 but that uses
underlined combinators. It may be helpful to take a look at Fact 13 while reading through the
following equations

Ap~, [[fi[tt]]]= $(penv) fi[tt]

J" 6(penv) ~ if ~ e dom(cenv)
Ap~, [[x~]]=

P ~ if xi E dom(penv) 7r i

A;:~

A;%;
A;~;

A;%~
A;%~
A;'g;

[[(tel, t~)]]= (A~F ~ [[te,]], A~ nv [[te2]])

[[te ~-'~]= 6 (penv) (A~ nv [[te]]T-~)

[[~xi[tt].te]]= ~xi[tt].h~7 v[xi~'q Ete]]

[Ire1 : te2]]= 8(penv)(A('~ nv [[tel]] r A~ nv [[te2]D

[~ tel]= ~(penv) (~ ^,=v ~'0 [[te]])
[[tel ~ te2, te3]]= n~Fv [[teiH=r A;%~, [[te2]], h;o~?; [Item]]
[[(_tel, te4]]= tuple(A;~ [[tell], A ~ liter]I)
[Ire J. j.__]]= w(ttj ,penv)(take~[ttlxtt2] rn h~{%'~j,p~nv) [[te]])

where cenv, p(penv) }- t e : t t l~ t t2

339

A [(dom(. . . .) - { N })
h~,~ [[~_xi[tt].te]]= "((x~,t0) [[te]] if penv = 0

curry [[te]]) if penv # 0
"--((~i,tt)) p~

U cealv A~,~n~, [[tex :. tea]]= w(tta,penv)(apply[ttl-+_-~tt2] i3 tuple(h~o(tt.2,penv) rrt ri acenv

where cenv, p(penv) F- tevttl~___tt2

Ap~,: [fi~ tell= w(tt,penv)(fi._X_x[tt] c] A)(%~,p~) [[te]]) where cenv, p(penv) I- te:tt--~_.tt

Ap~: [[tel --* te2, te~]= w(tt,penv) cond(A~(~t~.p¢~,) [[tel]], A~(~t~,pe~v) [Item]i, A~(~t~,p~n~) [[tes]D

where cenv, #(penv)]- te2:tt

In these equations the intention is that the greek-letter operations should be "macro-expanded" as
they are really a shorthand for their defining equation and are not parts of TMLm. To illustrate the
use of 6 we shall consider the expression

~xl [AlkAli.f1 [AI-~A~]

When processing h[A_~A1] the position environment will not be empty and so we must use the
construct const[Al-~A1] (via ~) to get rid of the run-time argument corresponding to x~. To illustrate
the use of w we shall consider the expression

which is well-formed and of the compile-time type AI-*AI. So it would be natural to use an empty
position environment but then we cannot sequence the operations. (This is the same problem as in
Section 2.) Consequently, we use w and ~ to translate the expression as if the position environment
had not been empty and then later to get rid of the extra element in the position environment, tt
is vital for this technique to succeed that if t- tt:k holds for k = c as well as k = r then tt is of the
form ttl~___tt2 as may be seen from the definition of w. By way of digression it is worth observing
that 8(...) te roughly corresponds to te > in [1] and similarly w(-..) te roughly corresponds to te <.

The relationship between an expression and its A-lifted version is given by

Fact 13 Whenever the domains of cenv and p(penv) are disjoint the above equations define a func-
tion of the stated functionality and it satisfies

cenv F h ~ : [[te]]:A(penv,tt)

whenever cenv,p(penv) F te:tt and penv = 0 ==~ ~- tt:c and penv # 0 =~ P tt:r. I::1

Furthermore we shall claim that the semantics has been preserved. The importance of this fact is
that the combinator notation of TMLm is equivalent in expressive power to the proper subset TMLI
of the A-notation TML~.

Example : As an example of the use of the 2-tevel A-lifting consider the TMLz expression

select' _= ~'-x(~S I~==rList-~Int]. ~n[In~. ~l[aist].
(=[l-~==rI-n-t=v]-~]r l[I~nt]r n)=v (hd[List-Mnt!: 1),

(S r (- I~==ri-~=ari-~] = n: l[i'~])= (tl[.List-+ListJ= 1)))

where we e.g. write In'-~ for ~Int, l[In~ for fl[A-i~,] and n for xn. First we get

a IIsele t']] =]

340

because the initial position environment is empty. The equation for compile-time),-abstraction then
gives

Ag[~S[i-n-T=rList--,Int]. ~'n[[-~]. A_t[Llst___]]1 =
xs I[I[~=rList-~Int]. AIS~ ..-1 [~n[In--2]. hi[List]...]] = • , , ()

AS[rn-t=rList~Int 1. ~n[i-~]. A~ ~ [[hi[List] 11

where eenv abbreviates [S~-* r~==rList--~Int; n~-* I'~]. Since the position environment still is empty
the equation for run-time A-abstraction gives

1 ~ " [[~_l[Llst].(...):=r (. . .) , (...)]] = h ; ~ ; [[(...)=r (. . .) , (. . .)1]

where penv is ((1,List)). Using the equation for compile-time conditional we see that

A~av[[=[Int==rInt=vInt]: :t[r~]= hi],

C e l l V " hpe~v[~ad[L~st Intl._ 111

and

@~[[S- (- [i-~=~i-~=~i-~].- n 7 1[i-~])- (tl[List~List]- 1)]]

must be calculated.
For the condition we get

a~;~[[=[~=~=~m---q -" ~[r~]- n]] = AT"[[=[. . .]]]- A~ 'q [q~]]] : a~'~[[n]] =
--[Int=vInt=mdnt]: l[In--~: n

so the expression is unchanged. For the true-branch of the conditional we get

v] e n v • ~ Apenv[[hd[Ltst Int]: 1]] = apply[List---~Int] o tuple(Ap~:[[hd[...]]], A~,[[1]]) =
appl~:[List---~Int] o tuple(const[List] hd[List--*Int],i~List])

The false-branch of the conditional is more interesting. Similar to above we get

A~[[tl[List--*List]: 1]] = apply[List-+List] [] t u p l e (c o n s t [~ tl[List--~List],id[List])

C o n e " c e n v - - - ermng Ap=v[[S- (- [. . .]. n. 1[...])]] the expression should be computed at compile4ime but the
position environment is non-empty so it is supposed to take a run-time parameter. We use the const
expression (via 3) to get rid of the run-time parameter:

A;~?;[[S- (- [i~=ri -~=ri -~] - - n: lira])]] =
const.[List] (A~nv[[S]] ." A~V[[-[Int=rInt=vInt]: n= l[i'~]]])

and it is now straightforward to show that

A[7'*[[S]] = S

and

a ~ " [[-[int=~-Int=rInt].- n: 1[i-~]]] = - [i '~=rr~=~i-@: n: l [i~]

so for the false-branch we get

A;~;[[S: (-[i -~=~l-~=;i~]: n: 1[i-~]): (tl[List--*List]: 1)]] =
apply[List~Inq u tuPle(const[List] (St (- I[i-~=rt--h-t~In-ff/]: n: 111-~])),

apply[List~List] u tuple(const[List] tl[List-~List],i_d_[List]))

Putt ing things together we get

341

A~[[select'] =
h-~(:~S[]-~==rList--+Int]. ~n[Fn't]. (=[I-~:=r~'t=vIn~ - 1 [~] - n)=v

apply[List-*Int] D tuple(£onst[List] hd[List---~!nt],id[aist]),
apply[List--~Int] o tuple(const[List] (S: (-[~'t=zr~'t=~-I-~]: n r l [In~)) ,

apply[List---~List] ~ tup!e(const[List] tl[List-+List],i_d[Li_~])))

The A-lifting is specified in a syntax directed manner and this is the reason for the complicated
form of the expression above. Semantically

apply.[tt--~tt'] D tuple(const[tt] te,i_d[tt]) -= te

and

apply[tt--~tt '] • tuple(const[tt] te, te ') = te D te'

so by performing a l i t t le part ia l evaluation [10] we can replace the expression above by

h--~(XS I[l~=rList~Int.] . Xn I[i-~]. (--[L-h-t=rl-~=rIn-~: i [i ~] r n)=r
hd[List-*Int], (S= (- I ~ ' I - ~ n ' ~] r n: 111-~])) o tl[L ist--*List])

which is the expression called select" in the Introduction.

5 A p p l i c a t i o n s in d e n o t a t i o n a l s e m a n t i c s

In our previous work [7] we have studied the application of a variant of TMLm as a meta-language
for denotat ional semantics. One motivation for this is that the informal semantics of a language often
makes a distinction between those computations that are performed at compile-time and those that
are performed at run-time. An example is Tennent 's dist inction between stat ic expression procedures
and expression procedures in Pascal-like languages [14]. Another motivation is that the automatic
generation of compilers from denotat ional definitions will benefit from the distinction between binding
times in that code only will be generated for the run-t ime level [8].

In [7] we s tudy a Pascal-like language with e.g. declarations~ commands and expressions. We do
not have the space to give all the details so let us concentrate on the impor tant semantic domains:

Dv =ALoc + "" denotable values
Env = Aia¢ --* Dv environments
Ev =ALoc + --- expressible values
S = ALoe --'+ "'" stores
Ans = • • • answers
Cc = S --* Ans command continuations
Ec = Ev ~ Cc expression continuations

As an example, in a s tandard continuation style semantics the semantic function £ for expressions
(Exp) could have the functionali ty

E: Exp ~ Env ~ Ec --~ Cc

As mentioned above we want to distinguish between compile-time and run-time. The Men will
therefore be to rewrite the semantics using the 2-level meta-language T M L , bew_ause this will make
the binding times explicit. The operat ional intuit ion is tha t environments and denotable values will
be compile-t ime objects whereas stores, answers and expressible values will be run-t ime objects. This
gives rise to the following semantic domains

342

Dv = A'Loc T "-:-: (kind c)
Env = Aia~ ==r Dv (kind c)
Ev = A_~o ~ + - - - (kind r)
S = A_A_Lo~ --* "'" (kind r)
Ans = - . (kind r)
Cc = S --* Ans (both kind r and c)
Ec = Ev --* Cc (both kind r and c)

and the semantic function ~ will now have the functionality

E: Exp ==r Env =v Ec ==r Cc

The semantic equations of DML~ can now be rewritten in a similar way. As an example consider
the following semantic equation (from [7])

£[[el+e:]] =)`r[Env]Ak[Ec].~[[el~ • r-(),v1[Ev].g[[e2]]" r . ()`v2[Ev].k • (O[[+]]. (vl,v2))))

where O[[-t-~: Ev x Ev ~ Ev. It may now be replaced by the following semantic equation of TMLe:

E[[el+e2]] = ~r[Env].~k[Ec].g[[e~: r = (A_Vl [Ev].g[[e2]]= r - (~v2[Ev].k : (O[[+]]: (v~,v~))))

We note that the environment and the expression continuation are passed as compile-time arguments
whereas the "intermediate values" vl and v2 occur at the run-time level. In [11] we have given
algorithms that will perform this transformation given information about the 2-level type of the
semantic function. We refer to that paper for the details.

In the compiler we shall want to generate code for the run-time computations and the technique
of 2-level),-lifting will show us how to generate combinator code. This code can then be transformed
into code for other abstract machines as described in [8]. Thus the remaining step will be to transform
the semantic equations in TML~ into semantic equations in TML,~. As witnessed by the results
of Section 4 this will only be straightforward if the semantic equations are in TMLI rather than
TML, . For the example language this will indeed be the case for most semantic equations (see [7])~
but the above equation for E[[el+e2]] will be an exception. To see this note that the compile-time
function application in the body of ~_v~ [Ev].... r (~_v2[Ev].-..) implies that v~ must not occur free in
the subexpression ~v2[Ev]... • but unfortunately it does! So the well-formedness conditions of TMLt
are not fulfilled. This then explains that our inability in [7] to provide semantic equations in TML~
is a necessary (although undesired) consequence of the nature of TML,~. Thus one would have to
study heuristics for how to pass from TML~ to TMLt. Possible candidates are the rewriting of
a continuation style semantics into a direct style semantics (as done in [7]) or the rewriting of a
continuation style standard semantics into a continuation style store semantics (in the sense of [5]).

6 C o n c l u s i o n

We have extended the notion of),-lifting to 2-level languages using A-notation at the top-level and
)`-notation or combinator-notation at the bottom-level. The development has been performed for a
2-level type system with products and function spaces but recursive types and sum types may be
incorporated as well. Unlike the l-level case it turns out that the natural formulations of the two sorts
of 2-level languages are not equally expressive in that the mixed notation (TML,~) corresponds to a
proper subset of the pure A-notation (TML~). For the purposes of the implementation of functional
languages in general, and semantics directed compiling in particular, this gives a clear formulation of
some of the problems involved in achieving efficiency: The efficient implementation of a functional
language (or a semantic notation) inevitably involves making a distinction between run-time and
compile-time. In [11] it is shown how this distinction may be introduced in a mostly automatic way
into a),-calculus. However, this paper shows that the result (which is an expression in TML~) is
not necessarily in a form (namely TMLt) where one may vary the interpretations of the combinators
(as in e.g. [8]). This calls for further research into how TML,~ can be extended so as to correspond
more closely to TML, .

343

R e f e r e n c e s

[1] P.-L.Curien: Categorical Combinators, Sequential Algorithms and Functional Programming,
Pitman, London, 1986.

[2] H.B.Curry, R.Feys: Combinatory Logic, vol.1, North-Holland, Amsterdam, 1958.

[3] R.J.M.Hughes: Super-combinators, a new implementation method for applicative languages,
Conf. Record of the 1982 ACM Symposium on LISP and functional programming, 1982.

[4] T.Johnson: Lambda lifting - transforming programs to recursive equations, Functional Pro-
gramming Languages and Computer Architecture, Springer LNCS 201, 1985.

[5] R.Milne, C.Strachey: A Theory of Programming Language Semantics, Halstead Press, 1976.

[6] F.Nielson: Abstract interpretation of denotational definitions, STACS 1986, Springer LNCS 210,
1986.

[7] H.R.Nielson, F.Nielson: Pragmatic aspects of two-level denotational meta-languages, ESOP
1986, Springer LNCS 213, 1986.

[8] H.R.Nielson, F.Nielson: Semantics directed compiling for functional languages, Proceedings of
the 1986 ACM Conf. on LISP and Functional Programming, 1986.

[9] F.Nielson: Strictness analysis and denotational abstract interpretation (extended abstract), Pro-
ceedings from the 1987 ACM Conf. on Principles of Programming Languages, 1987. A full version
is to appear in Information and Computation.

[10] F.Nielson: A formal type system for comparing partial evaluators, The Technical University
of Denmark, 1987. To appear in proceedings from Workshop on Partial Evaluation and Mixed
Computation, North Holland, 1988.

[11] H.R.Nielson, F.Nielson: Automatic binding time analysis for a typed A-calculus, to appear in
Proceedings from the 1988 ACM Conf. on Principles of Programming Languages, 1988.

[12] D.Schmidt: Static properties of partial reduction, Kansas State University, 1987. To appear
in proceedings from Workshop on Partial Evaluation and Mixed Computation, North Holland,
1988.

[13] M.Schoenfinkel: (lber die Bausteine der mathematischen Logik, Mathematische Annalen, vol.92,
1924.

[14] R.D.Tennent: Principles of Programming Languages, Prentice Hall, 1981.

[15] D.A.Turner: A new implementation technique for applicative languages, Software - Practice
and Experience, vol.9, 1979.

[16] D.A.Turner: Another algorithm for bracket abstraction, The Journal of Symbolic Logic, vol.44,
1979.

