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Abstract 

The process of A-lifting (or bracket abstraction) translates expressions in a typed A-calculus 
into expressions in a typed combinator language. This is of interest because it shows that 
the A-calculus and the eombinator language are equally expressive (as the translation from 
combinators to A-expressions is rather trivial). This paper studies the similar problems for 
2-level A-calculi and 2-level combinator languages. The 2-level nature of the type system enforces 
a formal distinction between binding times, e.g. between computations at compile~time and 
computations at run-time. In this setting the natural formulations of 2-level A-calculi and 
2-level combinator languages turn out not to be equally expressive. The translation into 2-level 
A-calculus is straight-forward but the 2-level A-calculus is too powerful for A-lifting to succeed. 
We then develop a restriction of the 2-level ),-calculus for which X-lifting succeeds and that is 
as expressive as the 2-level combinator language. 

1 I n t r o d u c t i o n  

Modern functional languages are often built as enrichments of the A-calculus. In the implementation 
of these languages various forms of combinators are useful, e.g. [15,16,3]. The success of this is due 
to the process of ,~-lifting (or bracket abstraction) that allows to eliminate variables of a A-expression 
thereby turning it into a combinator expression. The techniques used build on results developed by 
[13,2] and a recent exposition of the ideas may be found in [1]. The approach is equally applicable 
to typed and untyped languages and in this paper we shall only study the typed case. Following [1] 
we shall consider a type system with types t given by 

t : : = A i l t  x t l t ~ t  

where the Ai (for i E I) are certain base types, t × t is the product type and t --~ t is the function 
type. It is possible also to add sum types and recursive types but for lack of space we shall not do 
so. 

The distinction between compile-time and run-time is important for the efficient implementation 
of programming languages. In our previous work [10,11] we have made this distinction explicit by 
imposing a 2-level structure on the typed A-calculus. The types tt will then be given by 

t t : : = A i l A ~ l t t x - t t  t t t ~ t t  f t t = v t t l t t - ~ t t  

The essential intuition will be that objects of type tt =v tt are to be evaluated at compile-time 
whereas objects of type tt  ~ tt  are to be evaluated at run-time. So from the point of view of the 
compiler it must perform the computations of type tt :=r tt and generate code for those of type 
tt --~ tt. 

A similar distinction is made for the expressions by having two copies of the A-notation. So 
we shall e.g. have a A-abstraction ~xi[tt] . . . .  for building functions of type tt ==r tt ~ and another 
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A-abstraction Axi[tt] .... for building functions of type tt --~ tt'. The idea is here that we want the 
compiler to generate code for the functions specified by A--abstractions whereas those specified by 
~-abstractions should be interpreted at compile-time. Thus we shall be interested in transforn~dng 
the A-calculus specifying run-time computations into combinator form while leaving the A-calculus 
for the compile-time computations untouched. This process will be called 2-Ievel A-lifting (as we do 
not want to distinguish inherently between comblnators and supercombinators [4]). 

Let us illustrate the approach by an example. In the A-calculus the function select returning the 
n'th element of a list 1 may be defined by 

select _= fix (AS. An. A1. (=. 1. n ) ~  (hd. 1), (S. ( - .  n. 1). (tl. 1))) 

Assume now that the first parameter always will be known at compile-time and that the second will 
not be known until run-time. In [11] we give an algorithm that will transform select into 

select' = fi"~(~S. ~n. A_I.(=: 1: n)==~ (hd: 1),(St ( - :  n- ! ) :  (tl: l))) 

where again overlining indicates that the computations are performed at compile-time and under- 
lining that they are performed at run-time. The purpose of the 2-level A-lifting will be to get rid of 
the variable I but to keep S and n since they will be bound at compile-time. So we shall aim at an 
expression like 

select" = ~(XS. Xn. (=r lr n)=v hd,(S r (_r  nr 1))o tl) 

where [] denotes functional composition at the run-time level. 
In our previous work we have studied the efficient implementation of two-level functional languages 

where the compile-time actions are expressed in A-notation and the run-time actions in combinator 
notation. In [8] we show how to generate code for abstract machines based on the von Neurr~nn 
architecture and in [6,9] we study the application of data flow analyses within the framework of 
abstract interpretation. The present paper can therefore be seen as filling in the gap between these 
results and the techniques of [10,11] for imposing a 2-level structure on A-expressions. Finally, 
the algorithms presented in this paper have been implemented in a test bed system designed to 
experiment with various ideas related to 2-level functional languages. 

2 R e v i e w  o f  t h e  1 = l e v e l  c a s e  

As an introduction to our approach to 2-level A-lifting we first review the usual concept of A-lifting 
(or bracket abstraction). This does not add much to the explanations given in [1] but allows us to 
fix our notation by means of the familiar case. 

First we define the typed A-calculus DML, that has the types 

t : : = A i ] t x t l t ~ t  

and expressions 

e ::= lilt] ) (e,e) I e ~j I Axi[tl.e I e ,  e t xi I fix e ! e -~ e ,  e 

Here the f~[t] (for i • I) are constants of the type indicated. Next we have pairing, projection, 
A-abstraction, application, variable, fixed point and conditional. As we are in a typed language these 
expressions are subject to certain well-formedness conditions. The well-formedness predicate has the 
form tenv f- e:t where tenv is a type environment (i.e. a map from a finite set of variables to types) 
and says that e has type t. It is defined by 

tenv ~- fi[t]:t 

tenv ~- e$:t~ tenv t- e~:t~ 
tenv F" (el,e2):tlxt2 



330 

tenv ~- e: t lxt2 if j  = 1,2 
tenv ~- e ~[j:t i 

tenv[xl ~-~ t] b e:t ' 
tenv }- Axi[tJ.e:t~t'  

tenv b evt'--*t~ tenv ~- e~:t' 
tenv t- el • e2:t 

tenv }- xi:t if tenv(xi) = t 

tenv F- e:t--~t 
tenv }- fix e:t 

tenv l- e:Aboob tenv b el:t~ tenv ~- e2:t 
tenv ~- e --~ el~e2:t 

Fac t  1 Expressions are uniquely typed, "i.e. if tenv i- e:tl and tenv i- e:tz then tl = t2. o 

The proof is by induction on the inference of tenv ~- e:tl and tl = t2 means that the types are 
syntactically equal. 

In a similar way we define the typed combinator language DML,~. It has types 

t : : = A i l t  x t l t - * t  

and expressions 

e ::= fi[t] I tuple(e,e) I takej[t] I curry e I apply[t] I e [] e I fix[t] I cond(e,e,e) I const[t] e lid[t] 

Here tuple and takej relate to the product type and the intention is that tuple(f,g)(v) is (f(v),g(v)) 
and takej[t](vl,v2) is vj. For the function space we have curry and apply and here curry(f)(u)(v) 
is f(u,v) and apply[t](f,v) is f(v). Function composition is denoted by D, fix[t] is the fixed point 
operator and the intended meaning of the conditional is that  cond(f,g,h)(v) is g(v) if f(v) holds and 
otherwise h(v). Finally const[t] ignores one of its arguments so const[t](f)(v) is f and id[t] is the 
identity function. 

The well-formedness predicate has the form }- e:t and is defined by 

l- fi[t]:t 

[- el:t--~tl ~" e~:t---~t 2 
}- tuple(el,e:):'t-~('il xt2) 

t- takej[t]:t~tj  if t = t l x t :  and j=1,2 

}- e:(tl ×t2)--~t3 
}- curry e:tl--~(t2--~ta) 

apply[t]:((tl-~t~) ×tl)-~t2 

L_evt2--~t3, t- e2:tz--~t~ 
}- e1 D e2:tl-+t3 

fix[tl :( t--t)-~t 

~- cv t -+A '~ob b e2"t-+t'~ }- ea ' t-+t '  
• b , ~  " 

b cond(ch,e2,e3):t-*t' 

i- e:t '  
t- const[t] e:t--~t' 

F- id[ t ] : t~ t  

if t = tl--+t2 
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We have added sufficient type information to the combinators tha t  we have the following analogue 
of Fact  1: 

F a c t  2 Expressions are uniquely typed,  i.e. if k- e:t~ and k- e:t2 then t~ = t2. [] 

From a pragmat ic  point  of view one might  consider to constrain the type  t of a constant  flit] to 
be of the form tl  ~ t2. We shall not do so as for the subsequent development to make sense we 
would either have to impose a similar constraint on constants of DML~ or else we should change the 
functionality of constants in the transformation to follow. 

We now turn to the relationship between DML~ and DML,~. The transformation from D M L ~  
to DML~ amounts  to the expansion of the combinators into )~-expressions. A minor complication is 
that  not all the necessary type information is explicitly present and we shall rely on Fact 2 in order 
to obtain it. We therefore formulate the process as the definition of a function 

c: { e •  D M L m l 3 t .  ~ -e : t }  ~ {  e l e •  DML~ } 

by means of the following equations which merely restate  the intuitions about  the combinators tuple, 
takej[t] etc. in a formal way: 

e[[fi[t]]]= f i n  

c[[tuple(el, e~)]l= ax.[t]. (e[[elll" x~, e~e~]]- x,) where k- el : t  -* t~ 

e[[takej[t]]]= )~x,[t]. x~ ~j 

e[[curry el]= Ax~[h]. ;~xb[t~]. e[[e]]. (x=, xb) where F- e: ( t l  x t2) ---* t 

g[[apply [t]]]= ),xa[(tl--*t2)×tl]. (xa ~i). (x~ ~2) where t = tl -~ t2 

e[[el [] e21]= tx,[ t ] ,  g[[el] ]. (g[[e2] 1. xa) where ~- e2:t --* t '  

e[[fix[t]]]= ax,[t - ,  t]. fix x~ 

e[[cond(el, e2, es)l]= tx.[t],  e{Ie~]~, x~ --, e[[e2l]- x~, ages]I- x~ where I- el: t - ,  Aboo~ 

~[[const[q ell= ~x~[t]. ~[[el] 

e[[id[t]]]= J~xa[t]. x~ 

To see tha t  this is a correct translation we note that  

F a c t  3 The  transfornmtion s preserves the types of expressions, i.e. if ~- e:t then $ F e[[e]]:t. [] 

where 0 denotes the empty  type environment. Hopefully it is intuitively clear tha t  it also preserves 
the semantics. If we were to be formal about  this we could define reduction rules for DML~ and 
DMLrn and use this as a basis for relating the semantics (see [1]). Alternatively, we could defihe a 
denotat ional  semantics with a suitable notion of interpretat ion of the primitives (along the lines of 
[8,9]). However, we shall not  pursue this further here. 

Concerning the translat ion from DML~ to DMLm we consider an expression e of DML¢ that  
has type t, i.e. that  satisfies tenv ~" e:t. Assuming that  tenv has a nonempty domain {xl, . . . ,  xn} 
and maps xi to ti the type of the translated term will be of the form ( . .  "(tl x t2)x t3 "..  x t~) -* t. To 
make this precise we shall let a position environment penv be a list of pairs of variables and types. 
The underlying type  environment then is 

undefined if no penv~j~l is xi 
p(penv) = ~xl. penvSj~2 if j is minimal s.t. penv~j~l is xl 

and the product  of the variable types is 

undefined if penv = 0 
t l (penv)  = t if penv = ((x,t)) 

H(penv')  x t if penv = ((x,t))^penv ' 
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So if penv is ((xl,A1)(x2,A2)(x3,A3)) then p(penv) maps xi to Ai and H(penv) is (As xA2)×A1. The 
intention is that  the transformed version AP~V[[e]] has type H(penv) ~ t whenever p(penv) b e:t. We 
shall not allow the case where penv = 0 and so if 0 b- e:t we must artificially add a dummy variable 
and a dummy type. (This is in line with [1] but  we shall need to be more careful when we come to 
2-level A-lifting!) To assist in the definition of A p~v we need the function 

undefined if no penvSj$1 is xj 
id[II(penv)] if penv = ((xj,t)) , 

~r]~v = take2[H(penv)] if penv = ((xj,t))^penv 

~r[ ~ ¢  o takel[H(penv)] if penv = ((xl,t))^penv ' and i # j 

for locating the component in II(penv) that corresponds to xj. For the example above we have 

P~= take,[(A3 xA2)xA1], 7r 1 

p~v = take~[A3 xA2] [] takel[(A3 ×A2)xh l ]  7r 2 

p~,v id[As] [] takel[As xA2] [] takel[(A3 xA2) xA1] 7r 3 = 

In analogy with the definition of e we shall use Fact 1 to define a function 

AP~V: { e e DML¢ [ St. p(penv) F e:t } ~ { e ] e e DMLm } 

whenever penv ~ 0 by 

A p~v [[fiN]]= const[H(penv)] f i n  

A p~v [[(el, e2)]]= tuple(A pen" [[ex]], A penv [[e~]]) 

A p~v [[e ~j]]= takej[t] [] A p~v [[e]] where p(penv) ~" e:t 

A penv [[Axi[t].e]]= curry A ((xi't))^penv lie]] 

A p ~  [[el' e2]]= apply [tl---*t2] [] tuple(A p ~  [[el]], A pen~ [[e2]]) where p(penv)F el:tl--*t2 
p e n v  A, °°v [[x~]]= ~ 

A p~v [[fix eli= fix[t] [] A p~v [[e]] where p(penv) F e:t ~ t 

h ,~v [[el ~ e~, es]]= cond(A ~ [[el]I, A" ~ [[e~]], A ~ v  [levi]) 

That  this is a well-behaved definition that  lives up to the claims is expressed by 

Fac t  4 If penv # 0 and p(penv) F e:t then F A p ~  [[e]]:H(penv) ~ t. [] 

Hopefully, it is also intuitively clear that A p ~  preserves the semantics and as above we shall not be 
more formal about this. Because of the lack of space we must refer to any standard textbook, e.g. 
[1], for examples of the translation. 

3 2 - l e v e l  A - c a l c u l i  a n d  c o m b i n a t o r  l a n g u a g e s  

After the above review we can now approach 2-level A-lifting. In the 2-1evel notations we replace the 
type system of the previous section with 

t t : : = A - i [  A, I  t t - x ' t t  [ t t x t t  [ t t==vtt  [ t t - - -*t t  

as was already mentioned in the Introduction. Here overlining is used to indicate early binding 
and our prime example of this is compile-time and similarly underlining is used to indicate late 
binding and here the prime example is run-time. The considerations of compile-time versus run-time 
motivate defining the following well-formedness predicate F- tt:k for when a type t t  is well-formed of 
kind k E {c,r). Clearly c will correspond to compile-time and r to run-time. The definition is 
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t t  b tt:c b t t : r  

A~ 

tt~ 

tt~ 

tt~ 

tt~ 

~ tt2 

tt2 

tt2 

---* tt2 

true 

false 

P t t l :c  A b tt2:c 

false 

~- t t v c  A t- tt2:c 

t- t t v r  A b tt2:r 

false 

true 

false 

b t t v r  A b tt2:r 

false 

F- t t v r  A b tt2:r 

Here no compile-time types can be embedded in run-t ime types; this is motivated by the fact 
that  compile-time takes place before run-time. A run-time type of the form t t l  ~ tt2 is also a 
compile-time type; this is motivated by the fact that  a compiler may manipulate  code (and code 
corresponds to run-t ime computat ions)  but  not the actual  values tha t  arise at  run-time. One may 
of course consider variations in this definition but  the present definition has been found useful for 
abstract  in terpreta t ion and code generation [6,8]. 

The idea with the 2-level notations is that  we have a choice of using A-expressions or combinators 
at the compile-t ime level and a similar choice at  the run-t ime level. This gives a to ta l  of four languages 
but  we shall restrict  ourselves to the case where we always use A-expressions at  the compile-time level. 
The notat ion where we use A-expressions at both  levels will be called TMLe  and has expressions 
given by 

te : := fi[tt] [ xl [ be ,  te)  ] te ~-~ ] ~xi[tt].te I te r te t ~ te te ==r re, te 
] (te,  te~[ te.~_..~jl A xi[t t] . tet  t e : t e ]  f i x t e  t e ~ t e ,  te 

Again overlining is used for the compile-time level and underlining is used for the run-t ime level. 
For the well-formedness predicate we propose the following generalization of the one for DML~. The 
form of the predicate  is tenv l- te : t t  and the definition is 

t env  ~- 

tenv ~- 
tenv 

tenv F- te:ttl x_.tt2 
tenv ~- te J . j : t t  i 

tenv b fi[tt]:tt if 3k. }- t t :k  

tenv ~- xi:tt  if tenv(xl) = t t  and 3k. t- t t :k  

tenv b t e v t t ~  t env  t- te2:tt~ if P t t l :c  and b tt~:c 
tenv ~" (tel ,  te~):tt l~' t t2 

tenv b te:t~L~'tt ~ 
tenv b te ]~ j : t t  i i f j  = 1,2 

tenv[xl ~ tt] [- te : t t '  
tenv t- ~xi[tt].te:tt==rtt ' if }- tt:c and b t t ' :c  

tenv}- tch:tt'=:vtt~ tenv t- te2:tt '  
tenv ~- tel  -- te2:tt 

tenv b te : t t=vt t  
tenv t- fix te : t t  

te:~boob tenv t- tevtt~ tenv b te2:tt 
tenv F- te  ==r te~, te2:tt 

tel:tt1~ tenv ~" te2:tt2 
F- ( te l ,  t e2) : t t l×t t2  if ~- t t l : r  and t- tt2:r 

i f j  = 1,2 



334 

tenv[xl ~-* tt] t- te:t t '  
tenv ~- !xi[tt].te:tt-*_tt' if ~- t~:r and ~- t t ' : r  

tenv ~- te~:tt~_.tt~ teuv ~ te~:tt ~_ 
tenv I- te~ : te2:tt 

tenv ~- te:tt~__tt 
tenv ~- fi__~x te:tt 

tenv ~- t e : A . ~ ,  tenv t- te~:tt~ tenv I- te~:tt 
tenv I- te ~ te~, te~:tt 

With respect to the rules for DML~ one may note that  essentially we have two copies of these 
but we need to add additional side conditions of the form I- tt :k in order for the constructed types to 
be well-formed. From an intuitive point of view it is unclear whether one should add the constraint 
that ~ tt:r  in the rule for te --~ te, te; however, in Section 4 we shall see a formal reason for imposing 
this constraint. We have 

Fac t  5 Expressions have welloformed types, i.e. if tenv k te:tt  then 3k. ~- tt:k. D 

and in analogy with Fact 1 we also have 

Fac t  6 Expressions are uniquely typed, i.e. if tenv I- te : th  and tenv I- te:tt2 then t h  = tt2. [] 

Furthermore we claim that TML~ is a natural analogue of DML~ but for the 2-level case. Clearly one 
can translate an expression in TML~ into one in DML~ (by removing all underlining and overlining) 
and it is shown in [10,11] that it is also possible to translate expressions in DML~ into TML~. 

Another 2-level notation is T M L , ,  where we use combinators at the run-time level. The types tt 
are as above and so is the well-formedness predicate for types. For expressions the syntax is 

t e : := f i [ t t ]  I xll  (te, te) l te~ '~i  ~xi[tt].tel t e r t e l  ~ 'x te l  te=~' te ,  te 
I tuple(te, te) I t ake~[tt] I curry te 1 apply[tt] I t e  ~ te 
[ f ix te  [ cond(te, te , te)I  const[tt ] te 1 id_~[tt] 

The well-formedness predicate has the form tenv ~ te:tt and is defined by 

tenv ~- fi[tt]:tt if 3k. b t t :k ] 

: / as above 
tenv ~- te:Aboob tenv F tei:tt~ tenv ~ te~:tt 

tenv ~- te =v tel~ te2:tt 

tenv ~- tel:tt~__th, tenv ~- te2:tt--~tt~ 
tenv ~- tuple(tel,te~):tt--~(th~tt2) 

tenv ~- take j[tt]:tt--*ttj if ~- tt:r and tt  = t h~ t t2  and j=1,2 

tenv J- te:(ttl ×tt2)~___tt3 
tenv ~- curry te:t~__(tt2---~__tts) 

tenv I- apply[tt]:((ttl--~tt~)~th)--~___tt~ 

tcnv }- tel:tt2---~tts, tenv I- te2:ttl~__tt2 
tenv I- tel cJ te~:th--~tts 

tenv J- fi__xx[tt]:(tt---~tt)~_tt if ~- tt:r 

tenv ~- tel:tt-~Ab~l~ tenv ~- te2:tt tt ~ tenv ~- tes:tt-~__tt' 
tenv ~1 cppd(tel,te2,t'~3):tt-*__tt' 

if t- tt:r and tt = ttl--~tt2 
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tenv F te : t t '  if ~- t t : r  and ~- t t ' : r  
~ n v  F const[tt] te:tt~..m.tt' 

tenv F id__~tt]:tt~..~_tt if F t t : r  

The rules for well-formedness of the top-level terms are as in T M L , .  In part icular  we do not constrain 
the types t t  of the constants fi[tt] al though it might seem unfit to have constants of run-t ime types 
that  are not  function types. (However, one may introduce the constraint  F tt :c if desired and if also 
the type t t  of a conditional tel =:v te2,te3 is constrained in this way then TMLm would be a subset 
of the language considered in [8].) In analogy with the results for T M L ,  we have 

F a c t  7 Expressions have well-formed types, i.e. if tenv }- te : t t  then 3k. F- tt:k. [] 

F a c t  8 Expressions are uniquely typed,  i.e. if tenv ~- te : t t l  and tenv ~- te:tt2 then t t l  = tt2. O 

As in the case of DML~ and DML,~ the expansion of combinators is ra ther  straight-forward. So 
we define a function 

~t~v: { t e e  WMLm I 3tt .  tenvF- te: t t  }---* { t e l  t e e  T M L ,  } 

for each type environment tenv. We need the type environment because we shall rely on Fact  8 in 
order to infer missing type information (just as we used Fact 2 in the l- level  case). The definition is 

Stenv [[fi[tt]~= fi[tt] 

~,~v [[its, re2 )]]= (~,~v [[tel]I, ~,~v ~t~]]~ 

s t y ,  [[te, r te2]]= e t a ,  [[tel]] r e t ~  [[te~]] 

~t~n~ ~tuple(tel,te2)]]-- £x~[tt]. (et~v [[tel]I: x, ,  ~ t ~  he2]]: x~ )_ where tenv ~ tel:tt---*ttl 

~ t ~  [[takei[tt]]]= ~_x,[tt]. x ,  S j  

~ t ~  [[curry tel]= ~x,[ t t l ] .  A_xb[tt2]. ~ t ~  [[te]]: (__xa, Xb)_ where tenv ~- t e : ( t t l x t t 2 ) - ~ t t  

e t ~  [[apply[tt]]]= A_x~[(th~___tt2)xttl]. (x~_.l) : (x,,t__.2.) where t t  = ttl--*tt2 

e t ~  [[tel t~ te2]]= ~_x,[tt]. e , ~  [[tel]]: ( e t ~  [[te2]]: x~) where tenv ~- te2:tt---~tt' 

et~v ~fi.~tt]~= A_x,[tt--*tt]. fix x~ 

etenv [[cond(tel, re2, te3)~= ~_xa[tt]. ~t~av [[tell: Xa -'~ etenv [[te2~- xa, et~v ~te3~'_ Xa 

where tenv F tel: t t  ---* A_.bool 

e t ~  ~const[tt] tel]= ~x~[tt]. ~ t ~  [[te]] 

et~a~ [[i_.d_[tt]]]= ~_x~[tt]. x~ 

In these rules we have taken the l iberty of assuming that  x~ and Xb are not in the domain of tenv. 
To be precise we should have replaced a by m + l  and b by m+2 where m is the largest index i such 
that  xl is in the domain of tenv. We may note tha t  

F a c t  9 The  t ransformation e preserves the types, tha t  is, if tenv }- te : t t  holds in TMLm then 
tenv F ~ t ~  [[te]]: t t  will hold in T M L , .  [] 

Hopefully it is intuit ively clear that  the semantics is preserved. 
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4 2 - l eve l  +~-lifting 

The translat ion from TML~ to TML,~,  i.e. 2-level A-lifting, is not so straight-forward. To illustrate 
the problem consider the well-formed TMLe expression 

!×~[A_l--+ ~] . (~x~[A~-+ &].x~)= Xl ( i )  

Although this intuit ively wiI1 be equivalent to A_xl[A_ 4 =-*Al].X~ tha t  corresponds to i d[A a -*A1] 
in TMLm it would seem tha t  one cannot t ranslate  (1) in a compositional way into a combinator 
expression of TML,~.  The problem is that  a variable, here xl, that  is bound by a (underlined) A__ 
is passed inside the scope of overlined operators,  here ~" and r .  It would seem that  there are no 
ingredients in TMLm that  could facilitate this. In fact, by looking at  the definition of ¢ in the 
previous section it would appear  that  an expression like (1) will never be produced. 

To make these ra ther  vague impressions more precise we shall define a suitable subset TMLt  
of T M L , .  This subset will be defined so as not to allow tha t  A--bound variables are used inside 
the scope of overlined operators (although there will be one exception). It will emerge that  the 
expression (1) will not be a well-formed expression of TMLI .  We shall show tha t  ¢ of the previous 
section only produces well-formed expressions of TMLI  and that  A-lifting is possible when we restrict 
our a t tent ion to TMLzl This then will be the formal version of our claim tha t  for 2-level A-notations 
the A-calculus ( T M L , )  and the combinator language (TML,~) are not equally expressive. 

The types and expressions of TMLt  are as for TML~ and we only define a new well-formedness 
predicate. Since we must distinguish between the variables bound by A__ and those bound by ~ the 
well-formedness predicate will have the form 

cenv, renv I- te : t t  

where cenv is the type environment for ~-bound variables and renv is the one for A_-bound variables. 
We shall enforce tha t  the domains of cenv and renv are disjoint. The rules are adapted  from those for 
TML~ by "emptying" the type environment for A_-bound variables when we pass inside the "scope" 
of (most) overlined operators.  They are 

cenv, renv t- f~[tt]:tt if 3k. !- t t :k  and dom(cenv)Adom(renv) = 0 

cenv, renv F xi: t t  if 3k. F t t :k,  cenv(xi)=t t  or renv(x~)=tt and 
dom(cenv)Cldom(renv) = 0 

cenv~ 0 I- tel:tt t7 cenv~_0 ~- te~:tt~ if I- t t l :c  and b- tt2:c 
cenv, renv F (tel ,  te2):tt l~' t t2 

cenv~ 0 K te:th-fftt2__ i f j  = 1,2 
cenv, renv F t e i  j : t t j  

cenv[xl +-+ tt], 0 i- te : t t '  if t- t t :c  and }- t t ' :c  
cenv, renv 1- ~xi[ t t ] . te : t t=~t  ' 

cenv~. 0 I- tex:tt'=:rtt~ cenv+ 0~- te~:tt '  
cenv, renv i- te~ r te2:tt 

cenv~ 0 I- te:tt=~-tt 
cenv, renv I- fix te: t t  

cenv~ 0 F te:A--boob eenv~ renv t- tel:tt~ cenv~ renv t- te~;tt 
cenv, renv k- te ~ -  te~, te2:tt 

cenv renv t- te f t t l~  cenv renv t- te~:tt2 ' ~ i f F  t t l : r  and l- tt~:r 
cenv, renv I- ( tel ,  t e @ t h  x_tt2 
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cenv~ renv k" te: t t l  x tt2 
-cenv, renv P te ~ .l:"ttj if~ = !,2 

cenvF(dom(cenv)-{xl}), renv[xi ~-+ tt] k- te: t t '  
cenv~ renv ~- A__xi[tt].te:tt---~tt' if F tt:r and F- t t ' : r  

cenv, renv k- tel:tt'--~.__tt 7 cenv~ renv F- te2:tt' 
cenv~ renv t- tel : te2:tt 

cenv~ renv k- te:tt---+tt 
cenv, renv P fix te:t t  

cenv~ renv P te:A__b~oh cenv~ renv P te~:tt~ cenv~ renv k- te2:tt 
...... cenv, renv I- te ---* tel ,  te2:tt if F tt:r 

In the rule for overlined conditional we have not emptied the type environment for A-bound 
variables for the '%hen" and ~'else" branches. This is connected with the fact that  we have not 
restricted the type of the conditional to be of compile-time type and this is of importance when we 
come to A-lifting. In the rule for underlined conditional we have restricted the type of the conditional 
to be of run-t ime type. This is in accord with the restrictions implicit in the rule for cond in TML,~. 
Finally we note that  in analogy with Fact 7 and 8 we have 

Fac t  10 Expressions have well-formed types, i.e. if cenv, renv F te:tt then 3k. F tt:k. D 

Fac t  11 Expressions are uniquely typed, i.e. if cenv, renv ~- te:tt l  and cenv, renv ]- te:tt2 then 
t t l=t t2 .  [] 

In Fact i0 (and similarly in Fact 7) the kind k will be unique unless tt  is of the form t t l  ~___ tt2 in 
which case k may be c as well as r. It  is straightforward to verify that  the expression (1) is not 
well-formed in TMLt .  It  is also easy to see that  any expression that  is well-formed in TML~ also will 
be well-formed in TML¢. That  we have not gone too far in the definition of TML~ may be expressed 
by 

Fac t  12 The expansion ~ of combinators in TML,~ only produces expressions in TMLI,  i.e. if 
tenvF te:tt in TMLm then tenv, ~ F ¢tenv [[te]]:tt in T M L t .  [3 

Turning to 2-level A-lifting the intention will be to define a function 

A~e~,: { te E T M L ,  t 3tt.  cenv, p(penv) F te:tt  } ---* { te I te E TML,~ } 

whenever cenv is a type environment,  penv is a position environment and the domains of cenv and 
p(penv) are disjoint. Looking back to the l-level case we note that there we demanded that the 
position environment could not be the empty list. It is evident from the well-formedness rules for 
T1VILz that the emptying of the type environment for A-bound variables means that we cannot take 
a similar cavalier a t t i tude here. So the idea will be to demand that  cenv, p(penv) F- te:tt satisfies 
that 

penv = 0 =~ k tt:c 

penv # 0 =er F tt:r 

This means that  when t t  is t t l  --*tt2 the position environment will tell us whether we want to regard 
t t l  ~ tt2 as a run-t ime data object (in case penv # 0)  or as a run-t ime computat ion (in case 
penv=0) .  Thus we do not need to follow D.Schmidt [12] in making these distinctions in a syntactic 
manner  (by having essentially three kinds of function arrows rather than just  two). 

The definition of A~[[ te ] ]  will closely Follow the inference that  cenv,p(penv)F te:tt  for some tt. 
We have already pointed out that  in this inference we shall replace the type environment p(penv) by 
the empty map ~ when we move inside the "scope" of (most) overlined operators. In the definition of 
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Ap¢~,[[te]] the analogue will be to replace the position environment penv by the empty list 0 .  Since 
this will entail  ignoring some (run-time) arguments we define 

te if penv = 0 
~(penv) te = const[II(penv)] te if penv ~ 0 

where H(penv) is defined as in Section 2 but  now uses x in stead of x.  If we also define 

t t  if penv = () 
A(penv, t t )  = II(penv) --~ t t  if penv ~ () 

we may note that  if tenv F- te: t t  holds in TMLm then also tenv P 5(penv) te :A(penv, t t )  holds in 
TMLm. 

Similarly we may move into the "scope" of an underlined operator and there we cannot allow the 
position environment to be the empty list (as is witnessed by our insistence on penv # 0 in the case 
of l- level )~-lifting). This motivates defining 

f penv if penv # 0 
~( t t ,penv)  

((x~,tt)) if penv = 0 

for a dummy variable x~ so that  ~( t t ,penv)  is never the empty list. In connection with this we need 

te if penv # 0 
w(tt ,penv) te = apply[ttl~___tt2] o tuple(te,i.dd[ttl]) 

if penv = 0 and t t  = ttl~___tt2 

where we shall take care that  the first argument to w always will have the proper  form. One may 
note tha t  if penv = 0 and 0 b te:tt~..~_ttl---+tt2 then 0 t- w(ttl---+...._tt2,penv) te:tt~-+._._tt2 and it will be 
clear from below tha t  w will be used when we want to escape from the effects of having used ~. (This 
will be done by taking an argument and supplying it to the function twice so tha t  the addit ional 
argument needed because of the introduction of the dummy variable will be catered for.) 

Turning to the definition of A~,~ we use a version of ~rr ~ tha t  is as in Section 2 but  that  uses 
underlined combinators.  It may be helpful to take a look at  Fact  13 while reading through the 
following equations 

Ap~,  [[fi[tt]]]= $(penv) fi[tt] 

J" 6(penv) ~ if ~ e dom(cenv) 
Ap~,  [[x~]]= 

P ~  if xi E dom(penv) 7r i 

A;:~ 

A;%; 
A;~; 

A;%~ 
A;%~ 
A;'g; 

[[(tel, t~)]]= (A~F ~ [[te,]], A~ nv [[te2]]) 

[[te ~-'~]= 6 (penv) (A~  nv [[te]]T-~) 

[[~xi[tt].te]]= ~xi[tt].h~7 v[xi~'q Ete]] 

[Ire1 : te2]]= 8(penv)(A('~ nv [[tel]] r A~ nv [[te2]D 

[ ~  tel]= ~(penv) ( ~  ^,=v ~'0 [[te]]) 
[[tel ~ te2, te3]]= n~Fv [[teiH=r A;%~, [[te2]], h;o~?; [Item]] 
[[(_tel, te4]]= tuple(A;~ [[tell], A ~  liter]I) 
[Ire J. j.__]]= w(ttj ,penv)(take~[ttlxtt2] rn h~{%'~j,p~nv) [[te]]) 

where cenv, p(penv) }- t e : t t l~ t t2  
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A . . . .  [(dom( . . . .  ) - { N } )  
h~,~ [[~_xi[tt].te]]= "((x~,t0) [[te]] if penv = 0 

curry [[te]] ) if penv # 0 
"--((~i,tt)) p~ 

U cealv A~,~n~, [[tex :. tea]]= w(tta,penv)(apply[ttl-+_-~tt2] i3 tuple(h~o(tt.2,penv ) rrt ri acenv 

where cenv, p(penv) F- tevttl~___tt2 

Ap~,: [fi~ tell= w(tt,penv)(fi._X_x[tt] c] A)(%~,p~) [[te]]) where cenv, p(penv) I- te:tt--~_.tt 

Ap~: [[tel --* te2, te~]= w(tt,penv) cond(A~(~t~.p¢~,) [[tel]], A~(~t~,pe~v) [Item]i, A~(~t~,p~n~) [[tes]D 

where cenv, #(penv) ]- te2:tt 

In these equations the intention is that the greek-letter operations should be "macro-expanded" as 
they are really a shorthand for their defining equation and are not parts of TMLm. To illustrate the 
use of 6 we shall consider the expression 

~xl [AlkAli.f1 [AI-~A~] 

When processing h[A_~A1] the position environment will not be empty and so we must use the 
construct const[Al-~A1] (via ~) to get rid of the run-time argument corresponding to x~. To illustrate 
the use of w we shall consider the expression 

which is well-formed and of the compile-time type AI-*AI. So it would be natural to use an empty 
position environment but then we cannot sequence the operations. (This is the same problem as in 
Section 2.) Consequently, we use w and ~ to translate the expression as if the position environment 
had not been empty and then later to get rid of the extra element in the position environment, tt 
is vital for this technique to succeed that if t- tt:k holds for k = c as well as k = r then tt is of the 
form ttl~___tt2 as may be seen from the definition of w. By way of digression it is worth observing 
that 8(...) te roughly corresponds to te > in [1] and similarly w(-..) te roughly corresponds to te <. 

The relationship between an expression and its A-lifted version is given by 

Fact 13 Whenever the domains of cenv and p(penv) are disjoint the above equations define a func- 
tion of the stated functionality and it satisfies 

cenv F h ~ :  [[te]]:A(penv,tt) 

whenever cenv,p(penv) F te:tt and penv = 0 ==~ ~- tt:c and penv # 0 =~ P tt:r. I::1 

Furthermore we shall claim that the semantics has been preserved. The importance of this fact is 
that the combinator notation of TMLm is equivalent in expressive power to the proper subset TMLI 
of the A-notation TML~. 

Example :  As an example of the use of the 2-tevel A-lifting consider the TMLz expression 

select' _= ~'-x(~S I~==rList-~Int]. ~n[In~. ~l[aist]. 
(=[l-~==rI-n-t=v]-~]r l[I~nt]r n)=v (hd[List-Mnt!: 1), 

(S r ( -  I~==ri-~=ari-~] = n: l[i'~])= (tl[.List-+ListJ= 1))) 

where we e.g. write In'-~ for ~Int, l[In~ for fl[A-i~,] and n for xn. First we get 

a IIsele t']] = ] . . . .  
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because the initial position environment is empty. The equation for compile-time ),-abstraction then 
gives 

Ag[~S[i-n-T=rList--,Int]. ~'n[[-~]. A_t[Llst___] . . . .  ]1 = 
xs I[I[~=rList-~Int]. AIS~ ..-1 [~n[In--2]. hi[List]...]] = • , , ( )  

AS[rn-t=rList~Int 1. ~n[i-~]. A~ ~ [[hi[List] . . . .  11 

where eenv abbreviates [S~-* r~==rList--~Int; n~-* I'~]. Since the position environment still is empty 
the equation for run-time A-abstraction gives 

1 ~ "  [[~_l[Llst].(... ):=r ( . . . ) ,  (...)]] = h ; ~ ;  [[(... )=r ( . . . ) , ( . . .  )1] 

where penv is ((1,List)). Using the equation for compile-time conditional we see that 

A~av[[=[Int==rInt=vInt]: :t[r~]= hi], 

C e l l V  " hpe~v[~ad[L~st Intl._ 111 

and 

@~[[S-  ( -  [i-~=~i-~=~i-~].- n 7 1[i-~])- (tl[List~List]- 1)]] 

must be calculated. 
For the condition we get 

a~;~[[=[~=~=~m---q  -" ~[r~]- n]] = AT"[[=[. . .  ]]]- A~ 'q [q~] ] ] :  a~'~[[n]] = 
--[Int=vInt=mdnt]: l[In--~: n 

so the expression is unchanged. For the true-branch of the conditional we get 

v ] e n v  • ~ Apenv[[hd[Ltst Int]: 1]] = apply[List---~Int] o tuple(Ap~:[[hd[... ]]], A~,[[1]]) = 
appl~:[List---~Int] o tuple(const[List] hd[List--*Int],i~List]) 

The false-branch of the conditional is more interesting. Similar to above we get 

A~[[tl[List--*List]: 1]] = apply[List-+List] [] t u p l e ( c o n s t [ ~  tl[List--~List],id[List]) 

C o n e  " c e n v  - - - ermng Ap=v[[S- ( - [ . . .  ]. n. 1[... ])]] the expression should be computed at compile4ime but the 
position environment is non-empty so it is supposed to take a run-time parameter. We use the const 
expression (via 3) to get rid of the run-time parameter: 

A;~?;[[S- ( - [ i~=ri -~=ri -~] - -  n: lira])]] = 
const.[List] (A~nv[[S]] ." A~V[[-[Int=rInt=vInt]: n= l[i'~]]]) 

and it is now straightforward to show that 

A[7'*[[S]] = S 

and 

a ~ "  [[-[int=~-Int=rInt].- n: 1[i-~]]] = - [ i '~=rr~=~i-@: n: l [ i~]  

so for the false-branch we get 

A;~;[[S: (-[ i -~=~l-~=;i~]:  n: 1[i-~]): (tl[List--*List]: 1)]] = 
apply[List~Inq u tuPle(const[List ] (St ( -  I[i-~=rt--h-t~In-ff/]: n: 111-~])), 

apply[List~List] u tuple(const[List] tl[List-~List],i_d_[List])) 

Putt ing things together we get 
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A~[[select'] = 
h-~(:~S[]-~==rList--+Int]. ~n[Fn't]. (=[I-~:=r~'t=vIn~ - 1 [ ~ ] -  n)=v 

apply[List-*Int]  D tuple(£onst[List] hd[List---~!nt],id[aist]), 
apply[List--~Int] o tuple(const[List] (S: (-[~'t=zr~'t=~-I-~]: n r l [In~)) ,  

apply[List---~List] ~ tup!e(const[List] tl[List-+List],i_d[Li_~]))) 

The A-lifting is specified in a syntax directed manner and this is the reason for the complicated 
form of the expression above. Semantically 

apply.[tt--~tt'] D tuple(const[tt] te,i_d[tt]) -= te 

and 

apply[tt--~tt ']  • tuple(const[tt] te, te ')  = te D te'  

so by performing a l i t t le part ia l  evaluation [10] we can replace the expression above by  

h--~(XS I[l~=rList~Int.] .  Xn I[i-~]. (--[L-h-t=rl-~=rIn-~: i [ i ~ ]  r n)=r  
hd[List-*Int],  (S= ( -  I ~ ' I - ~ n ' ~ ] r  n:  111-~])) o tl[L ist--*List]) 

which is the expression called select" in the Introduction. 

5 A p p l i c a t i o n s  in  d e n o t a t i o n a l  s e m a n t i c s  

In our previous work [7] we have studied the application of a variant of TMLm as a meta-language 
for denotat ional  semantics. One motivation for this is that  the informal semantics of a language often 
makes a distinction between those computations that  are performed at  compile-time and those that  
are performed at  run-time. An example is Tennent 's dist inction between stat ic expression procedures 
and expression procedures in Pascal-like languages [14]. Another  motivation is that  the automatic 
generation of compilers from denotat ional  definitions will benefit from the distinction between binding 
times in that  code only will be generated for the run-t ime level [8]. 

In [7] we s tudy a Pascal-like language with e.g. declarations~ commands and expressions. We do 
not have the space to give all the details so let us concentrate on the impor tant  semantic domains: 

Dv =ALoc + ""  denotable values 
Env = Aia¢ --* Dv environments 
Ev =ALoc  + --- expressible values 
S = ALoe --'+ "'" stores 
Ans = • • • answers 
Cc = S --* Ans command continuations 
Ec = Ev ~ Cc expression continuations 

As an example,  in a s tandard  continuation style semantics the semantic function £ for expressions 
(Exp) could have the functionali ty 

E: Exp ~ Env ~ Ec --~ Cc 

As mentioned above we want to distinguish between compile-time and run-time. The Men will 
therefore be to rewrite the semantics using the 2-level meta-language T M L ,  bew_ause this will make 
the binding times explicit. The  operat ional  intuit ion is tha t  environments and denotable  values will 
be compile-t ime objects  whereas stores, answers and expressible values will be run-t ime objects. This 
gives rise to the following semantic domains 
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Dv = A'Loc T "-:-: (kind c) 
Env = Aia~ ==r Dv (kind c) 
Ev = A_~o ~ + - - -  (kind r) 
S = A_A_Lo~ --* "'" (kind r) 
Ans = - .  (kind r) 
Cc = S --* Ans (both kind r and c) 
Ec = Ev --* Cc (both kind r and c) 

and the semantic function ~ will now have the functionality 

E: Exp ==r Env =v Ec ==r Cc 

The semantic equations of DML~ can now be rewritten in a similar way. As an example consider 
the following semantic equation (from [7]) 

£[[el+e:]] = )`r[Env]Ak[Ec].~[[el~ • r-(),v1[Ev].g[[e2]]" r .  ()`v2[Ev].k • (O[[+]]. (vl,v2)))) 

where O[[-t-~: Ev x Ev ~ Ev. It may now be replaced by the following semantic equation of TMLe: 

E[[el+e2]] = ~r[Env].~k[Ec].g[[e~: r = (A_Vl [Ev].g[[e2]]= r - (~v2[Ev].k : (O[[+]]: (v~,v~)))) 

We note that the environment and the expression continuation are passed as compile-time arguments 
whereas the "intermediate values" vl and v2 occur at the run-time level. In [11] we have given 
algorithms that  will perform this transformation given information about the 2-level type of the 
semantic function. We refer to that paper for the details. 

In the compiler we shall want to generate code for the run-time computations and the technique 
of 2-level ),-lifting will show us how to generate combinator code. This code can then be transformed 
into code for other abstract machines as described in [8]. Thus the remaining step will be to transform 
the semantic equations in TML~ into semantic equations in TML,~. As witnessed by the results 
of Section 4 this will only be straightforward if the semantic equations are in TMLI rather than 
TML, .  For the example language this will indeed be the case for most semantic equations (see [7])~ 
but the above equation for E[[el+e2]] will be an exception. To see this note that the compile-time 
function application in the body of ~_v~ [Ev].... r (~_v2[Ev].-..) implies that v~ must not occur free in 
the subexpression ~v2[Ev]... • but unfortunately it does! So the well-formedness conditions of TMLt 
are not fulfilled. This then explains that our inability in [7] to provide semantic equations in TML~ 
is a necessary (although undesired) consequence of the nature of TML,~. Thus one would have to 
study heuristics for how to pass from TML~ to TMLt. Possible candidates are the rewriting of 
a continuation style semantics into a direct style semantics (as done in [7]) or the rewriting of a 
continuation style standard semantics into a continuation style store semantics (in the sense of [5]). 

6 C o n c l u s i o n  

We have extended the notion of ),-lifting to 2-level languages using A-notation at the top-level and 
)`-notation or combinator-notation at the bottom-level. The development has been performed for a 
2-level type system with products and function spaces but recursive types and sum types may be 
incorporated as well. Unlike the l-level case it turns out that the natural formulations of the two sorts 
of 2-level languages are not equally expressive in that the mixed notation (TML,~) corresponds to a 
proper subset of the pure A-notation (TML~). For the purposes of the implementation of functional 
languages in general, and semantics directed compiling in particular, this gives a clear formulation of 
some of the problems involved in achieving efficiency: The efficient implementation of a functional 
language (or a semantic notation) inevitably involves making a distinction between run-time and 
compile-time. In [11] it is shown how this distinction may be introduced in a mostly automatic way 
into a ),-calculus. However, this paper shows that the result (which is an expression in TML~) is 
not necessarily in a form (namely TMLt) where one may vary the interpretations of the combinators 
(as in e.g. [8]). This calls for further research into how TML,~ can be extended so as to correspond 
more closely to TML, .  
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