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A uniform treatment of algebraic specification is proposed to formalise data, programs, trans- 
formation rules, and program developments. It is shown by example that the development of 
an efficient transformation algorithm incorporating the effect of a set of transformation rules is 
analogous to program development: the transformation rules act as specifications for the 
transformation algorithms. 

1 .  Introduction 

Various authors have stressed the need for a formalisation of the software development process: the need 
for an automatically generated transcript of a development "history" to allow re-play upon re-development 
when requirements have changed, containing goals of the development, design decisions taken, and 
alternatives discarded but relevant for re-development [ t]. A development script is thus a formal object that 
does not only represent a documentation of the past but is a plan for future developments. It can be used 
to abstract from a particular development to a class of similar developments, a development method, 
incorporating a certain strategy. Approaches to formalise development descriptions contain a kind of 
development program [1], regular expressions over elementary steps [2], functional abstraction [3], and 
composition of logical inference rules [4, 5]. 

In Program Development by Transformation [6-8], the approach taken in the PROSPECTRA project [9, 
10], an elementary development step is a program transformation: the application of a transformation rule 
that is generally applicable; a particular development is then a sequence of rule applications. The question 
is how to best formaiise rules and application (or inference) strategies. 

The approach taken in this paper is to regard transformation rules as equations in an algebra of programs 
(chapters 2, 3), to derive basic transformation operations from these rules (chapter 4), to allow 
composition and functional abstraction (chapters 5, 6), and to regard development scripts as (compositions 
of) such transformation operations (chapter 7). Using all the results from program development based on 
algebraic specifications we can then reason about the development of transformation programs or 
development scripts in the same way as about programs: we can define requirement specifications 
(development goals) and implement them by various design strategies, and we can simplify ("optimise") a 
development or development method before it is first applied or re-played. 

2 .  T h e  Algebra of  Programs 

2.1. The Algebra of Data and the Algebra of Programs 

In the PROSPEGTRA project, loose algebraic specifications with partial functions and conditional 
equations [11, 12] are used to specify the properties of data and associated operations in PAnndA-S, the 

1 The research reported herein has been partially funded by the Commission of the European Communities 
under the ESPRIT Programme, Project #390, PROSPECTRA (PROgram development by SPECification 
and TRAnsformation) 
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PROSPECTRA Anna/Ada specification language [9, 10]. For example, the fact that, for the mathematical 
integers tNT, (INT, *, 1) is a monoid could be specified as in (2.1-1). 

Similarly, we can define the Abstract Syntax of a programming language such as pAnndA-S by an 
algebraically specified Abstract Data Type: trees in the Abstract Syntax correspond to terms in this algebra 
of (PAnndA-S) programs, non-terminals to sorts, tree constructor operations to constructor operations, 
etc. Most constructor operations are free, except for all operations corresponding to List or Sequence 
concatenation, see & in (2.1-2). In the case of STMT_SEQ, Empty corresponds to null; in Ada and & 
would correspond to ; in the concrete syntax for Pascal-like languages; cf. [13]. 

(2.1-1) Example: Algebra of Data: Monoid (INT, *, 1) 

axiom V X,Y,Z : INT 
(X* Y)*Z = X* (Y* Z), I*X=X, X*l =X 

(2.1-2) Example: (Syntactic) Algebra of Programs: Monoid (STMT_SEQ, &, Empty) 

laxlom V S. T STMT SEQ R, 
(R&S)&T=R&(S&-I), Empty&R =,R, R&Empty =R 

2 .2 .  Concrete and Abstract Syntax; Notation 

Although we are interested in the abstract syntactic algebra of programs, it is often more convenient to use 
a notation forphrases (program fragments with schema variables) of the concrete syntax corresponding to 
appropriate terms (with variables) in the algebra, see (2.2-1). Schema variables (such as P, E, EList, V) are 
written with capital initials in the sequel, auxiliary and transformation functions in italics (cf. Occursln in 
(3.3-2) and section 4.1). The brackets[J are used whenever a (nested) fragment of concrete syntax is 
introduced. Variables correspond in the example, repetition of (possibly distinct) actual parameter 
expressions Ein [ {E, } J corresponds to the list Etist of expressions (simplified parameter associations), 
etc. In this paper, we are not concerned with notational issues at the concrete syntax level nor with the 
(non-trivial) translation of  phrases from concrete to abstract syntax. Also, the typing and universal 
quantification of variables in equational axioms is usually omitted for brevity; it should be apparent from 
the context. The suffixes List and Seq are used to avoid ambiguity with variables for elements,, and ; are 
used to indicate list and sequence concatenation in the concrete syntax. 

(2.2-1) Example: Correspondence between Concrete and Abstract Syntax: Procedure Call 
i i i  

r P({E, ~ v); j  = Call(P, EList& Exp(V)) ] 
f 

2 .3 .  Algebraic Semantics 

In the approach of the algebraic definition of the semantics of a programming language (cf. [14]), an 
evaluation function or interpretation function from syntactic to semantic domains is axiomafised. The 
equational axioms of such functions induce equivalence classes on (otherwise free) constructor terms. In 
other words, we can prove that two (syntactic) terms are semantically equivalent, in a context-free way or 
possibly subject to some syntactic or semantic pre-conditions. Such a proof can of course also be made 
with respect to some other style of semantic definition for the language. Thus we obtain a semantic algebra 
of programs in which transformation rules are equations as a quotient algebra of the abstract syntactic 
algebra in which only equations for & exist. 

Note that the semantic specification may be intentionally loose, that is some semantic aspects such as the 
order of evaluation of expressions in a call may be intentionally left unspecified. From an algebraic point 
of view this means that several distinct semantic models exist for the loose semantic specification. Usually, 
these form a lattice between the initial model on top (where all terms are distinct that cannot be proven to 
equal) and the terminal model at the bottom (where all terms are the same that cannot be proven to differ). 
In some cases, unique initial and terminal models may not exist: if expressions may have side-effects, for 
example, several (quasi-terminal) models exist according to particular sequentialisations of evaluation (see 
sections 3.3, 3.5 below). Each choice of model (each choice of sequenfialisation by a compiler) is 
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admissible. (In Ada, a program is erroneous, if the quasi-terminal semantic models for this program do not 
coincide.) 

3.  Transformation Rules 

3. I .  Examples of Transformation Rules 

Consider the examples below; the transformation rules specify part of the transition from an applicative to 
an imperative language style, cf. [15-18]: the mapping of a function declaration to a procedure declaration 
with an additional result parameter (out), and the transformation of all calls (the body is not treated here). 

(3.1-1) is actually a specialisation of a more general rule for the (arbitrary) Introduction ~ Elimination of a 
Declaration: here an additional declaration of a procedure P is introduced in the beginning of the 
transformation process, and an analogous rule would eliminate the declaration of F at the end.. Rule (3.1- 
2) transforms function calls on the right-hand-side of an assignment statement into procedure calls with out 
parameters. Rule (3.1-3) unnests expressions that might contain a call to F such that rule (3.1-2) can be 
applied. We are assuming a (sub)language (of Ada) where expression have no side-effects (see also 
section 3.2). Note that, in a proper formulation for these rules, the context has to be taken into account, for 
example to ensure that (3.1-2) is applied in the context of declarations for F and P as introduced by (3.1- 
1), or that the compatibility of declarations can be checked, for example the proper introduction of a new 
identifier P or X in (3.1-1). For lack of space, we are ignoring these considerations here; see [17,t8] for a 
particular approach to a specification of context in an algebraic framework. 

(3.1-1) Trafu Rule: Introduction ~ Elimination of Procedure Declaration 

declare 
{DI~ 
functlon F({FP1;~) return R; 

{D2} 
begin 

{s} 
end; 
such that 
• P does not occur in any of the D2, S 

P is not in conflict with other declarations 

declare 
{DI} 
function F({FP1; ~) return R; 
procedure P({FP1; }X: out R); 
{D2} 

begin 
{s~ 

end; 

(3.1-2) Trafo Rule: Assignment with Function Call ¢0 Procedure Call with out Parameter 

I v := Fi'~E, }); ...... I IP({E,,} v); 

(3.1-3) Trafo Rule: Nested ~ Sequential Evaluation of Expressions in Statements 

return E; 
If E then {Sl}  Eelse {S2) ] end if; 
while E loop {Sl}  end loop; 
W := G({E1, } E {, E2}); 
Q({E1, } E {, E2}); } ....... 

;uch that 
• Vdoesnotoccur inanyof the El, E, E2, $1, $2 

V is not in conflict with other declarations 

declare 
V: T; 

begin 
V:= E; 
return V; 
If V then {Sl}  [else {S2} ~ end If; 
while V loop {$1} V := E; end loop; 
W := G({E1, ~ V {, E2}); 
Q({E1, } V {, E2});) 

.=nd; 
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Assuming suitable context conditions (in particular for (3.1-2)), each rule is applicable by itself and correct 
as an individual rule. In a combined transformation (or "development"), all these rules are taken together 
and applied exhaustively in reverse order; they will then transform the function F and all its calls to the 
procedure P and F can be eliminated, Before we come to the issue of application strategies etc. in chapter 6, 
let us consider some rules in more detail. 

3 .2 .  Uni-Directional Rules: Relations 

If the evaluation of an expression might have side-effects, that is for a semantics with distinct quasi- 
terminal models (see section 2.2 above), the rules (3.1-1) to (3.1-3) would have to be interpreted from left 
to right. A uni-directional transformation rule is a relation between semantic models such that each model 
in the range is a robustly correct implementation of some model in the domain; thus it corresponds to a 
semantic inclusion relation in a model-oriented sense. Again this notion is taken from the theory of 
algebraic specification (cf. [11]) and formalises the intuitive notion of correctness with respect to some 
implementation decision that narrows implementation flexibility or chooses a particular implementation. 
These rtdes are of course not invertible (a decision cannot be reversed) and, interpreted as rewrite rules, 
are not confluent in general. In this paper, we restrict our attention to bi-directional rules although most 
considerations generalise. 

3 .3 .  Bi-Direetional Rules: Equations 

The major kind of transformation rules we are interested in is the bi-directional transformation rule, a pair 
of semantically equivalent terms (in sense of section 2.2 above): an equation in the algebra of programs 
that is provable by deductive or inductive reasoning against the semantics. All rules in this paper are of this 
kind (indicated by w). All considerations about interpreting equations as rewrite rules apply (confluence, 
termination, completion [12], etc.), cf. section 4.2. 

(3.3-1) shows rule (3.1-2) as an equation and as a translation of the concrete syntax to terms in the 
semantic algebra of programs, cf. also (2.2-1); a similar translation for (3.1-1) would look very involved. 
(3.3-2) shows the assignment case of (3.1-3); applicability conditions have been formalised using 
auxiliary functions; they make the equation conditional (cf. section 4.1 for auxiliary functions having an 
implicit context parameter, such as TypeNameOf or TypeOf). 

(3.3-1) Trafo Rule: Assignment with Function Call ¢, Procedure Call: as Equation 

jAssiQnStrnt(V, Call(F r EList)) = Call(P,"El_ist& Exp(V)) ..... 

If V':= v ( EUst ); J= r P ( EUst, V ); J 

(3.3-2) Trafo Rule: Collateral ~ Sequential Evaluation of Expressions 

[ ~ Occurs/n( v, r 'EUst l ,  E, EUst2 J) ̂  TypeNameOf( E ) = T ^-~ EqName(V, W ) -> [ 
C w "= G ( EListl, E, EList2 ); J= r declare V: T; begin V "= E; W,!= G ( EListl, V, EList2 ); end; .J 

3 .4 .  Sets of Transformation Rules 

We may have already noticed in section 3.1 that each rule in a set of rules achieves a certain (sub)goal 
(possibly only when applied exhaustively) that makes another rule applicable. We will come back to this 
issue in section 7.2. For the time being let us consider different sets of rules that achieve the same effect. 

(3.3-2) is a rule analogous to a rule for the sequentiaiisation of collateral (or multiple) assignments into 
sequences of individual assignments (cf. [19]).The efficiency of the result depends on the sequence of 
application to subexpressions, and on the choice between two alternatives if an alternative analogous to 
(3.4-3) is added. 
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(3.4-1) is a simple-minded specialisation that forces a sequendalisation from left to right. This way, it does 
not avoid auxiliary variables, but it has the advantage of being simple to apply, with a fixed non- 
deterministic strategy (see section 7). 

(3.4-1) Trafo Rule: Collateral ~ Sequential Evaluation of Expressions (Left to Right) 

-= Occursln(V, F vust, E, EList J))A TypeNameOf(E ) = r A tsVarList(VlJst ) A-~ IsVar(E ) 

F W := G ( VList, E, EList );.l=J F declare V: T; begin V := E; W := G ( VList, V, EList ); end; J 

(3.4-2) is a generatisation of (3.3-2) that combines its effect with an "elimination" of common 
subexpressions in (3.5-1). If the desired goal is to unnest aU function calls, then the effect is achieved by 
either rule (if applied exhaustively); (3.4-2), however, yields a more efficient result. Similarly, (3.4-3) 
combined to a rule set with (3.4-2), or, analogously, with (3.4-1) or (3.3-2), further enhances efficiency. 

(3.4-3) is a specialisation of the assignment case that avoids introduction of variables. It is typical that a 
further strengthening of an applicability condition might lead to a specialisation that allows an improvement 
in efficiency. One might wish to add an additional condition --, IsVar( E ) in (3.3-2), 3.4-2, 3), (3.5-1, 2) 
that restricts the application of the rule such that no trivial assignments (corresponding to renamings of 
program variables) are produced. 

(3.4-2) Trafo Rule: Nested ¢, Sequential Evaluation of Expressions 

Occursln( E, Exp ) A "10ccursln(V, Exp ) A TypeNameOf( E ) = T A-~ EqName( V, W ) 
[ r w := Exp; J= [" declare V: T; begi n,,V := E; W := SubstByln( E, V, Exp ); end; J 

(3.4-3) Trafo Rule: Nested ** Sequential Evaluation of Expressions (Re-Use of Variables) 

Occurs/n( E, Exp ) A -~ Occurs/n( V, Exp ) A rypeOf( E) = TypeOf( V ) I 
F v := Exp; J = r v := E; V := SubstByln( E, V, Exp ); J, I 

The important observation is that all these (sets of) roles, when applied exhaustively, yield semantically 
equivalent sequentlalisafions. With respect to some efficiency metrics where minimisation of assignments 
and variable usage is a concern, however, they behave quite differently. Moreover, the order of application 
of a general rule (rather than simple-minded application from left-to-right) becomes of great importance. 
Each application strategy fields a different syntactic (normal) form. 

3 . 5 .  Derivation of Transformation Rules 

Let us now derive (3.4-2) from the generally applicable rule (3.5-1) as a start, see (3.5-2). We apply the 
usual derivation steps of substitution, application of an equational law, renaming of variables, etc. 

(3.5-1) Trafo Rule: Multiple ,~ Single Evaluation of Same Subexpression 

IsSimpfeStmt(S ) A Occursln(E, S ) A-~ Occursln(V, S ) A TypeNameOf(E ) = T ~ [ 
I S = [" declare v: T; begin V := E; Substeyln ( E, V, S ) end; .] I 
(3.5-2) Trafo Rule Derivation: Nested ¢, Sequential Evaluation of Expressions 

IsSimple'Stmt(r W "= Exp; J) A Occursln( E, r w := Exp; J) A --10ccursln(V, 'r w := Exp; J) 
A TypeNameOf(E) = T --~ 

I {" W := Exp; _j= r declare v:, T; begin V := E; SubstByln( E, V, r w := Exp; _J) e,nd; j ......... t 
I Occursln( E, Exp ) ^ -~ Occursfn( V, Exp ) A-~ EqName( V, W ) A TypeNameOf( E ) = T --> 

r w .= Exp; .J= [" declare V: T; begin V := E; W := SubstByln( E, V, Exp ); end; .J .... i 
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We continue in (3,5-3) by instantiating E in (3.5-2) by a call to F and therefore restricting the application of 
the general rule to only those cases that are necessary for the subsequent application of rule (3.3-1). 

(3.5-3) Trafo Rule Derivation: Nested ~ Sequential Evaluation of Call to F 

[Occursln(~ ( ) ], Exp ) ^ ~ Occursln(V, Exp ) ̂  -1EqName(V, ) ^ TypeNameOf(r F ( EList ) .]) = T F EList W 

r w := Exp; J= r declare V: T; begin V := F ( EList ); W := SubstByln( i- F ( EList ) ], V, Exp ); end; .~ 

Now we apply an equational law, namely the transformation rule (3.3-1), to the function call to F on the 
fight hand side. This way we finally end up with rule (3.5-4) that combines the effect of rules (3.1-2) and 
(3.1-3). 

(3.5-4) Trafo Rule Derivation: Nested Evaluation of Function Call ¢, Procedure Call 

[Occursln(r F ( EList ) .], Exp ) ^ -~ Occursln(V, Exp ) ^ -~ EqName(V, W ) ^ TypeNameOf(r F ( EList ) ]) = T 

1 rW:=Exp;J=FdeelareV:T;beglnP(EList, V);W:=SubstByln(FF(EList)J,V, Exp);end;] ] 

4. Transformation Operations 

4.1. Auxiliary Operations, Applicability Predicates 

We note a number of auxiliary functions and predicates in the above equations, such as Occursln or 
TyoeOL These can be structurally defined (cf. [19]) and must hold over subterms or over a larger context 
of the actual rule application. Such functions correspond to derived or inherited attributes, resp., in an 
implementation of transformation rules by attributed tree transformations. They could be considered as 
auxiliary functions and predicates that are pre-defined in a transformation system for the language in 
question. The precise role of the implicit context parameter in these equations is presently unresolved (see 
also [17]) 

Analogously, additional auxiliary functions and predicates can be defined and tailored to the transformation 
rules and operations under consideration. Consider (4.1-1) and (4.1-2): they define applicability 
conditions of the rules (3.3-1) and (3.5-3), resp. In (4.1-2), the occurrence of a call to F (F shall be fixed 
by the context of the rule application) with some actual parameter list EList is postulated in X; in effect, 
EList is existentially quantified. 

(4.1-1) Auxiliary Operation: Applicability Predicate IsAssignFGalt 

IsAssignFCall( [" V := G( ELisI ) .P EqName(F, G), 
~lsCall(Exp) --, IsAssignFCalt( i 'V := ExpJ) = FALSE, 

IsAssignStmt( Stmt ) --> IsAssignFCall( Stmt ) = FALSE 

(4.1-2) Auxiliary Operation: Applicability Predicate ContainsNestedFCall 

[ ContainsNestedFCall(X) Occursln( r F( EUst ) ], X) 

4.2. Transformation Operations: Homomorphisms 

An elementary transformation operation can be constructed from (transformation rules, that is) equations in 
the semantic algebra in a straightforward way as a partial function in the abstract syntactic algebra, see 
(4.2-1): it maps to a normal form in the quotient algebra corresponding to the equations. Each equation is 
considered as a rewrite rule from left to fight (or from right to left), and, if the system of rewrite rules is 
confluent, yields a corresponding normal form. The function corresponds to an identity in the semantic 
algebra and achieves a normalisation in the syntactic algebra. 
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(4.2-I) Trafo Operation: Assignment with Function Call to Procedure Call 

[ TFCalIToProc( [" V := F ( EUst ); j ) = r P ( EUst, v ); .j 

4.3. Extension of the Domain 

If we want to apply elementary transformations over a larger context with some tactics (see chapter 6.2, 
7), we need to extend the domain of a partial function to larger terms, as in (4.3-1) for TFCallToProc. The 
first equation corresponds to the previous definition for TFCallToProc. The second extends the definition to 
the identity over STMT, negating the applicability condition denoted by the predicate IsAssignFCall, see 
(4.1-1); cf. also Try in section 7.3. 

(4.3-I) Trafo Operation:  Extension to STMT 

J TFCallToProc( [" V := F ( EList ); .J ) = [" P ( EList, V ); J, 
-~ IsAssignFCall~ Strut ) -> TFCallToProc(Stmt ) = Stmt 

5. Development of Transformation Operations 

5.1. Loose Specification 

(5.1-1) Trafo Operation: Extension to STMT (Loose Specification) 

l( TFCalIToProc( r v := F ( EList ); J ) = r P ( EL!st, v ); j ) v (rFCat lToProc(Stmt) = Strut ) 

Compared with (4.3-1), the compact definition of (5.1-1) is also semantically correct since TFCalIToProc is 
a homomorphism and therefca'e all values in the equivalence class denoted by the original rule are accept- 
able. Loose specifications allow several distinct (that is non-isomorphic) models. In this case the v oper- 
ator between equations has been used to allow an additional degree of freedom over classical horn-clause 
specifications, analogous to non-determinacy (for one approach cf. [20]). This version specifies a class of 
functions (one being the "syntactic" identity in the term algebra); the more explicit definition of (4.3-1) 
specifies a single function mapping to a canonical form: for each non-trivial application the function call is 
actually changed to a procedure call. 

Such a simple definition is often convenient at the start of the development of a transformation operation to 
characterise its effect before turning to considerations of termination, efficiency etc. 

5.2. Requirement and Design Specifications 

In general, we would like to start with a requirement specification of a transformation operation before 
considering a particular design specification, possibly several design alternatives (cf. also section 3.5). 
The same kind of reasoning as in program development can be applied. Any of the designs is then either 
formally derived from or proved to be a (robustly) correct implementation of the requirement specification 
(el. [10-12]). 

As an example, consider the extension of the effect of TFCallToProc over STMT_SEQ. We can characterise 
the desired effect as in (5.2-1): TFCallToProc should be applied to every element of a sequence 
(alternatively: to some arbitrary element). (5.2-2) and (5.2-3) show two divide and conquer strategies for 
achieving this (of. [21]), depending on the basic operations available on STMT__SEQ, a partition or left 
linear structural decomposition strategy is applied. In fact, we can abbreviate such strategies by functional 
abstraction using a functional as in (5.2-4), see section 6.1. 

(5.2-1) Trafo Operation: Extension over STMT_SEQ: Requirement Specification 

I TFCallStmts (Empty) = Empty, ' I 
0 < I ̂  I < Length(SSeq) --) Select (TFCallStmts (SSeq), I) = TFCallToProc (Select (SSeq, I)) ..... 
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(5.2-2) Trafo Operation: Extension over STMT_SEQ: Design Specification: Partition 

TFCallStmts (Empty) = Empty, ] 
I TFCallS'tmts (SSeql & 9 & SSeq2) = TFCallStmt~ (SSeql} & TFCaflToProc (S) &,TFCallStmts (SSeq2) I 
(5.2-3) Trafo Operation: Extension over STMT._SEQ: Design Specification: Linear Decomposition. 

i TFCallStmts (Empty) = Err~,4ttY, 1 ,TFCa/IStmts (Add(S R)) Add(TFCallToProc (S) TFCallStmts (R)) / 

(5.2-4) Trafo Operation: Extension over STMT_SEQ: Design Specification: Functional 

[ TFCaltStmts (SSeq) = MapStrntSeq(rFCal/ToProc }(SSeq} [ 

6.  Functionals  

6.1.  Restricted Functionals 

Let us focus on this issue of functional abstraction in more detail. Higher order functions allow a 
substantial reduction of re-development effort (in analogy to parameterised data type specifications), just as 
in program development (cf. [22-24]). 

Thus we can abstract the homomorphic extension over statement sequences in (5.1-1) to (5.1-3) to a 
(partially parameterised or "Curry'd") functional MapStmtSeq. (6.1-1) shows the signature, an abstract 
requirement specification and a particular design specification by partition. 

(6.1-1) Funetionah Extension over STIdT SEQ 

function gapStmtSeq ( G: function (S: STMT) return 'STMT ) 
return iunctlon (SSeq: STMT SEQ) return STMT.SEQ; 

axiom for all G: function (S: STMT) return STMT; SSeq, SSeql, SSeq2: STMT_SEQ; h NATURAL 
MapStmtSeq (G)(Ernpty) = Empty, 
0 < I ̂ 1<_ Length(SSeq) ~ Select(MapStmtSeq(G)(SSeq), I),= G (Se/ect(SSeq I)); 

m 

MapStrntSeq ( G ) (Empty) = Empty, 
MapStmtsoq (G)ISSeql & S & SSeq2 t = MapStmtsoq (G)(SSeql) & G(S) & MapStrntSeq (G)(SSeq2) .... 

It is an interesting observation that most definitions of such functionals have a restricted form: the 
functional argument is unchanged in recursive calls. A functional together with its (fixed) functional 
parameters can then always be considered as a new function symbol (corresponding to an implicit 
instantiation), or it can be explicitly expanded; therefore the conformance to the theory of algebraic 
specification is evident in the restricted case. (Functionals of this restricted form can be transformed to Ada 
generics; instantiation is then explicit, cf. [19].) In the sequel, we will restrict ourselves to this case. In the 
presence of overloading, a functional that is locally defined to a parameterised specification has the same 
effect as a polymorphie functional. 

6.2. Homomorphic Extension Functionals 

In fact, most of these functionals have the nature of homomorphic extension functionals (see [25]), in this 
case the structural extension of the effect of a (local) transformation or predicate over larger terms. In (6.2- 
2,3), Somewhere and SomeWherePred extend a total function For  predicate P on simple statements over 
compound statements and statement sequences; they would be similarly defined for, and over, other kinds 
of terms. SomeWhere is a homomorphic extension functional from terms to terms, and SomeWherePreg 
from terms to BOOLEAN. 

Compare the differences in the definition of the homomorphic extension functionals SomeWhere and 
EveryWhere: note that the v operator between equations has been used (of. section 5.1) to indicate arbitrary 
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choice between then or else part, for example. Thus the function deno'dng a particular occurrence of an 
application of Fis  in the specified class of functions. AnyWherePred is analogous to SomeWherePred but 
uses and instead of or. 

(6.2-2) Funct ional :  SomeWhere over Statements 

IsSimpleStmt(Stmt) --> SomeWhere (F) (Strut) = F (Stmt), 
SomeWhere(F)( r SSeql; SSeq2 J) = [ SomeWhere (F) (SSeql); SSeq21) v 
(SomeWhere (F)( ~ SSeql; SSeq2_~ = F SSeql; SomeWhere (1=) (SSeq2) J ), 

SomeWhere (F)( ~ If B then SSeql else SSeqE end if; _[ ) = 

1" if B then  SomeWhere (F) (SSeql) else SSeq2end if; J ) v 

( SomeWhere(F)( r if B t h e n  SSeql else SSeq2 end I t ;J )  = 

r If B then  SSeql else SomeWhere (F) (SSeq2) end if; J ), 

~omeWhere (F)( r while B loop SSeq end loop; _! ) = 

l" whi le B loop SomeWhere (F) (SSeq) end loop; l 

(6.2-3) Funct ional :  SomeWherePredover Statements 

IsSimpleStmt(Stmt) --> SomeWherePred (P) (Stmt) = P (Stmt), 
SomeWherePred (P)(F SSeq 1; SSeq2 ~) = 

SomeWherePred (P) (SSeql) or SomeWherePred (P) (SSeq2), 
SomeWherePred (P)( r If Bthen SSeql else SSeq2 end if; .1) = 

SomeWherePred (P) (SSeql) o r  SomeWherePred (P) (SSeq2), 
SomeWherePred (P)(r whi le B loop SSeq end loop; _l ) = SomeWherePred (P) (SSeq) 

(6.2-4) Funct ional :  EveryWhere over Statements 

IsSimpleStmt(Stmt) -~ EveryWhere (F) (Stmt ) = F (Stmt), 
EveryWhere (F)( r SSeql ; SSeq2.]) = r EveryWhere (F) (SSeql) ; EveryWhere (F) (SSeq2) I 

EveryWhere (F)( r if B then SSeql else SSeq2 end If; J ) = 

]- if B then EveryWhere (F) (SSeql) else EveryWhere (F) (SSeq2) end if; J,  

EveryWhere (F)( r while B loop SSeq end loop; j ) = 

r while B loop EveryWhere (F) (SSeq) end loop; l 

7. Deve lopments  

7 . 1 .  Development Scripts: Composite Transformation Functions 

Since we can regard every elementary program development step as a transformation, we may conversely 
define a development script to be a composition of transformation operations (including application strate- 
gies for sets of elementary transformation operations). In this view we regard a development script as a 
development transcript (of some constant program term) to formalise a concrete development history, pos- 
sibly to be re-played, or as a development method abstracting to a class of analogous programs. 

7.2. Development Goals: Requirement Specifications 

We have already stated in chapter 3.6 that the application of some set of hales often requires the satisfaction 
of some pre-condition established by (exhaustive application of) some other set of rules. Conversely, this 
condition can be considered to be a required post-condition of the previous set of rules, or a characteristic 
predicate for the respective transformation function. Let us call such a condition a development goal: it is a 
requirement specification for a function yet to be designed; see example in section 7.5 below. 
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If these conditions can be defined structuraIly (or "syntactically"), as we indeed hope will mostly be the 
case, then they characterise certain normal forms. This leads to a substantial improvement in the 
modularisation of sets of rifles and separation of concerns, consequently ease of verification. Note that 
intermediate conditions never need to be checked operationally as long as it can be shown that they are 
established by previous application of other rules. Transformation functions having structural normal 
forms as applicability conditions correspond to Wile's syntax directed experts [26]. 

7.3.  Development Tactics: Transformals 

In analogy to tacticals in [27], we might call some transformation functionaIs transformals since they 
embody application tactics or strategies, cf. SomeWhere and EveryWhere in section 6.2 above. Consider 
for example (7.3-1): if some transformation function F and its applicability condition C (including 
structural applicability, see section 7.2) are given, then Try provides a totalisation or extension to identity if 
Cdoes not hold (cf. section 4.3). 

(7.3-1) Funct ional :  Try 

c(x) -~ r~(F, ¢) (X):F(X) . . . . . . . . . . . . .  

ltoratoWhilo can be used to apply a transformation function Fas long as some condition C holds. Similarly, 
lteratoSomeWhilo iterates a local transformation function F as long as some local condition C holds 
somewhere. 

(7.3-2) Functional:  ItoratoWhilo, ItorateSomoWhi/o 

t 
-1 C(X) ~ IterateWhile'(F, C) (X)= X, . . . . . . . . . . . . .  

C(X) ~ tterateWhile (F, C) (X) = IterateWhite (F, C) (F(X)) 
TrySomeWhere(F, C) (X) = SomeWhere(Try (F, C)) (X), 
IterateSomeWhile (F, C) (X) = IterateWhile (TrySomeWhere(F, C), SomeWherePred(C}) (X] 

Note that we are dealing with loose specifications here (see section 5.1 above). Fis applicable iff C holds 
and Try yields the identity otherwise. Thus SomeWhere(Try (F, C)) includes a lot of unwanted identity 
solutions even if F was applicable somewhere since SomeWhere may not pick the right position for the 
application of F.  We would expect a stronger specification such as rrysomeWhere in (7.3-3) which does 
indeed yield a proper application of F i f  it is applicable anywhere, that is a kind of 
rry(SomeWhere(F),SomeWherePred(C)) in which SomeWhere(F) is always well-defined. Note that 
TrySomeWhere is still loosely specified if, for example, F can be successfully applied in several sub- 
sequences; also, it still yields the identity if F can nowhere be applied. This conforms with the original 
specification and intentions. 

(7.3-3) Functional:  TrySomeWhere over Statements 

--~SomeWherePred(C) (X) -~ TrySomeWhere (F, C) (X) = X, .......... 
IsSimpleStmt(Stmt) ^ C(Stmt) ~ TrySomeWhere (F) (Stmt) = F (Stmt), 
(SomeWherePred(C) (SSeql) -~ 

TrySomeWhere (F, c)(r  sseql;  SSeq2 ~) = r TrySomeWhere (F, C) (SSeql); SSeq2 J) v 
( SomeWherePred(C) (SSeq2) -~ 

TrySomeWhere (F, C)(r SSeql; SSeq2 J) = ~ SSeql; TrySomeWhere (F, C) (SSeq2) J ), 
... and so on analoc/ous y ..... 

As far as possible, we would like to achieve the same strategic effect (the same development goal) by 
t ransformals such as IterateSomeWhile(F, C), Sweep(Try (F, C)) or  even EveryWhere(Try (F, C)) by di f ferent ,  
increasingly more efficient, application tactics (cf. (7.3-3, 4), (6.2-3)). A transformation from one tacdc to 
another ~is possible by development rules, see the next section and an example in section 7.5. 
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(7.3-4) Functional: Sweep over Statements 

IsSimpleStmt(Stmt) --> Sweep (F) (Slmt ) = F (Strut), 
Sweep (F)( f SSeql ; SSeq2.]) = F (~ sweep (F) (SSeql) ; Sweep (F) (SSeq2) .J ), 
Sweep (F)( r if B then SSeql else SSeq2 end If; J ) = 

F( r I! B t h e n  Sweep (F) (SSeql) else Sweep (F) (SSeq2) end If; .J ), 
Sweep (F)( r while B loop SSeq end loop; J ) = 

F( r while B loop Sweep (F) (SSeq) end loop; .I ) 

7.4.  Development Rules: Equational Properties 

Development rules, that is equational properties of development scripts, allow us to express and to reason 
about design alternatives or alternative development tactics (see (7.5-4) below), and to simplify 
developments by considering them as algebraic terms in the usual way. (7.4-1) gives us some simple 
properties of Try. The second follows immediately from the associativity of AND. Similarly, (7.4-2) 
follows from the definition of Try and Iterate. (7.4-3) shows the development of such a rule step by step, 
using rule (7.4-2). It may be used to simplify iterated application into bottom-up one-sweep application. 

(7.4-1) Development Rule: "Associativity" of Try 

I Try(Try(F, AND(Cl,' C2))' (X) = Try(Try(F, Cl), C2) (X), I 
AND(C1, C2) (X) = CI(X~ and C2(X) . . . . . .  
Try(Try(F, C12, C2) (~  = Try(Try(F, C22, Cl) ()~ 

(7.4-2) Development Rule: Elimination of Try and IterateWhile 

I C(X) A~ C(F(X)) .--> Try (F, C) (X) = F(X), ! 
C(X) A-~ C(F(X)) -~ tterateWhite (F, C) (X) = F(X) I 
(7.4-3) Development Rule Derivation: Iterate ¢, Sweep 

[ Iterate Some While (F, C ) '( X) = Iterate While (TrySorne Where(F~ C ), Some WherePred( C ) } (X} 

I lterateSomeWhile (F, C) (X} = IterateWhile(Sweep(Try(F, C)), SomeWherePred(C}} (X) 

l SomeWherePred(C) (X) A ~ SomeWherePred(C) (Sweep(Try(F, C)) (X)) 
IterateWhile(Sweep(Try(F, C)~, SomeWherePred(C~) (X~ = sweep(Try(F, C~ (X) 

SomeWherePred(C) SomeWherePred(C) (Sweep(Try(F, C)) (X) ) --> (x) A 

IterateSorneWhile (F~ C) (X) = Sweep(Try(F, C}~ (X) 

(7.4-4) shows an example: Swaplf swaps the then and else parts of a conditional if the condition is of the 
form not B. If B is not normalised, that is if it may contain further not prefixes, then an iteration is 
necessary. Otherwise a sweep suffices; we can prove the pro-condition of (7.4-3), that is that a single 
application at every node is enough. 

(7.4-4) Trafo Function: Swaplf 

swaplf(  F if not Bthen SSeql else SSeq2 end if; l )  = 

1" if B then SSeq2 else SSeql end If; J 

SwaplfApplicable ( f If B then SSeql else SSeq2 end If; J ) -- IsUnaryNotExp(B), 
SwaptfApprtcable ( l ' w h l l e  B loop SSeq end loop; .J) = FALSE . . . .  

SwapEverylf(X) = IterateSomeWhile (Swaplf, SwapIfApplicable} (X) 
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I-~ SomeWherePred (severalNots) (X) --> SwapEverylf(X) = Sweep (Try(Swaplf, SwaplfApplicable)) (X) q 

(7.4-5) shows the transition from sweep application to application at the "leaves" of a term only, if (we can 
prove that) the applicability condition of a transformation fianction Fimplies that it is applicable at "leaves" 
only (denoted by IsSimple). Here, a "leaf" is a subterm that is not further broken down by EveryWhere. 
EveryWhere is simpler than Sweep since the (structure of the) term itself is untouched and needs not be 
reconstructed, only "leaves" are transformed. We can think of it as simukaneous application at all "leaves", 
and, indeed, a parallel implementation would be possible. 

(7.4-5) Development Rule: Sweep e~ EveryWhere over Simple Construct 

I Sweep(Try(F~ tsSimple}} (X~ = EveryWhere(F~ (X~ ,, , 
Sweep(Try(Try(F, C), IsSirnple)),(X~,,= Ever/Where(Tr/(F, C)) (X~ 

(7.4-6) looks not very meaningful just by itself. However, we may be able to simplify considerably by 
introducing specialised functions with local iteration tactics for each case, see example (7.5-5) below, tn 
particular, local iteration can then often be expressed by explicit structural recursion in the range of one 
iteration step. 

(7.4.6) Development Rule: Global ¢. Local Iteration 

[ IterateSomeWhile ,(Fr, ,C~ (X~ = Sweep(IterateSomeWhile (F~ C)~ (X~ ....... 

7.5. A Development of a Development Script 

As an example of a particular development, consider the development goals in (7.5-1), based on the 
applicability predicates in (4.1-1, 2). NoNesteaCatl(F) is a development goal for a transformation functional 
TUnnestEveryCall(F) in (7.5-2) corresponding to exhaustive application of rule (3.1-3) or the various rules 
for unnesting of expressions in the assignment statement, (3.3-2) to (3.4-3). These are not specific for F, 
but achieve the desired goal nevertheless since they urmest every call. (3.5-3) is specific; it could be made 
even more specific by insisting in NoNestecICallon nestedness, excluding that the assigned expression is a 
direct call to E This way, the goal is satisfied with minimal changes. 

At the same time, NoNestedCall(F) is part of NoCaII(F) and thus pre-condition for YE/iraFunctDecl(F). We can 
easily prove that TEveryCallToProc(F, P) and IntroProcDecl(F, P) are invariant w.r.t. NoNestedCall(F), thus it 
is satisfied as a pre-condition of  TElimFunctDecl(F). This way, TFunctToProc(F, P) is correctly defined in 
(7.5-2) as a composition of the separate transformation functions. We assume that F is well-defined in 
Block. 

(7.5-1) Development Goals: Function to Procedure 

I NoNestedCall(F)(X)= -~ SomeWherePred(ContainsNestedCall(F))(~: ....... [ 
NoCalI(F)(X) = NoNestedCall(F)(X) ^-~ SomeWherePred(IsAssignCall(F))(X) ............. 

(7.5-2) Development Script: Function to Procedure 

TUnnestEveryCall(F)(Block) - IterateSomeWhile (TUnnestCalt(F), ContainsNestedCall(F))(Btock), 
TEveryCallToProc(F, P)(Block) = IterateSomeWhile (TCallToProc(F, P), IsAssignCall(F))(Block), 
NoCa//(F)(B/ock) -~ 

TElimFunctDec/(F)(Block) = SomeWhere (TE/imDec/(F))(B/ock) 
TFunctToProc(F, P)(Block)= 

TE/imFunctDecl(F) ( TEveryCallToProc(F, P} (/ntroProcDec/(F~ P) (~nnestEveryCa//(F) (B/ock) ))~ 

Let us now try to apply some of the development rules of section 7.4 above to simplify iteration. Indeed, 
TEveryCa/IToProc carl be simplified to EveryWhere iteration on simple statements since we can show that 
IsAssignCallimplies IsAssignStmt, therefore IsSimpleStmt, see (4.1-1) and (7.5-3). 
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(7.5-3) Development Script Derivation: Simplification of TEveryOaltToProc 

[ TEverTCallToProc(F ~ P) (Block) = EveryWhere(Try(TCaltToProc(F, P), IsAssiqnCatt(F?)) (Block) I 

We can try to specialise to local iteration analogously to (7.4-6), see (7.5-4) for the major cases. Note that 
explicit recursion on TOnnest instead of "deep" iteration is used for loops, /nit, and particularly for 
assignments. As a minor point, TUnnest is not yet quite complete since the obligation to find some Fthat is 
not in conflict still has to be fulfilled. Improvements analogously to (3.5-3) could still be made, avoiding 
the unnesting of the whole expression in favour of those subexpressions containing a call to F. 

(7.5-4) Functional: TUnnestEveryCall: Local Iteration 

TUnnestEveryCall(F) (Block) = Sweep('l-ry(TUnnest(F}, ContainsNestedCall(F2) ) (Block~ 
ContainsNestedCall(F) (E) ̂  -~ Occursln(V, E) --) 

TUnnest(F) (F return E; J ) = Init(v, E) ( r  return V;J ), 
ContainsNestedCalf(F) (E) ̂ -~ Occursln(V, E) ̂  ~ Occurstn(V, SSeql ) ^-~ Occursln(V, SSeq2 ) - ,  

TUnnest(F) ( r  if Ethen SSeql else SSeq2 end If; J) -- 

Init(v, E) ( r  If Vthen SSeql else SSeq2 end If; l ), 
ContainsNestedCall(F) (E) ^ ~ Occursln(V, E)^-~ Occursln(V, SSeq ) -~ 

TUnnest(F) ( r  while E loop SSeq end loop; J ) = 

Init(v, E) ( r  wlaile V loop SSeq; TUnnest(F) ( r v := E; J ) end loop; .[ ), 
Occursln(r F(EList)  I,, Exp) ^-~ Occursln(V, Exp) 

TUnnest(F) ( r  w:= Exp; I ) = Init(v, r F(EList)  J,) ( r  w:= SubstByln(r F(EList)  .], V, Exp); J), 
... analogously for procedure call 
-~ Occursln(V, E) ̂ -~ Occursln(V, Stmt)^ TypeNameOf( E) = T - )  

tnit(V, E) (Strut) = r declare v :  7; begin TUnnest(F) ( r V:= E; J) Strnt end; j )  

We note that it makes no difference in (7.5-2) whether to introduce the procedure declaration before or 
after normalisation of the function calls. This can been expressed by a re-ordering property as in (7.5-4). 
Thus we can combine TEveryCalIToProc(F, P) TUnnestEveryCall(F) into one functional by unfold-fold of 
TEveryCallToProc, in other words by applying TEveryCallToProc to every call to F in the range of 
TUnnestEveryCall directly. This combination had been done for assignments in (3.5-4); the only change in 
(7.5-4) would be to unfold/nit in the assignment case and to replace the assignment to V by a procedure 
call. 

(7.5-5) Development Rule: Reordering Property of Transformations 

I TUnnestEveryCall(F) ( IntroProcOecf(F~ P) (Block)) = fntroProcOect(F, P) ( TUnnestEveryCalI(F} (Block)) [ 

We have converged more and more to the development of a complete specification of a set of efficient 
transformation functions that can be directly translated into a recursive applicative program in some 
language, cf. [9,10,15]. Intermediate loose specifications could be made operational by some functional 
language with non-deterministic pattern matching and backtracking. Such a language is presently designed 
and implemented in the PROSPECTRA project; see [16] for a first approach. 

8. Conclusion 

It has been demonstrated that the methodology for program development based on the concept of algebraic 
specification of data types and program transformation can be applied to the development of transformation 
algorithms; in the semantic algebra of programs, equations correspond to bi-directional transformation 
rules. Starting from small elementary transformation rules that are proved correct against the semantics of 
the programming language, we can apply the usual equational and inductive reasoning to derive complex 
rules; we can reason about development goals as requirement specifications for transformation operations 
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in the syntactic algebra and characterise them as structural normal forms; we can implement transformation 
operations by various design alternatives; we can optimise them using algebraic properties; we can use 
composition and functional abstraction; in short, we can develop correct, efficient, complex transformation 
operations from elementary rules stated as algebraic equations. 

Moreover, we can regard development scripts as formal objects: as (compositions of) such transformation 
operations. We can specify development goals, implement them using available operations, simplify 
development terms, re-play developments by interpretation, and abstract to development methods, 
incorporating formalised development tactics and strategies. The abstraction from concrete developments 
to methods and the formalisation of programming knowledge as transformation rules + development 
methods will be a challenge for the future. 

Many questions remain open at the moment. One is a suitable separation of a large set of known rules into 
subsets such that each can be handled by dedicated tactics with an improved efficiency over the general 
case, and coordinated by an overall strategy; these con-espond to the "syntax-directed experts" of [26]. 
Another is the strategy questions: the selection of a development goal (sometimes expressible as a normal 
form) based on some efficiency or complexity criteria. 

There is a close analogy to the development of efficient proof strategies for given inference rules (trans- 
formation rules in the algebra of proofs). Perhaps the approach can be used to formalise rules and 
inference tactics in knowledge based systems. 

Since every manipulation in a program development system can be regarded as a transformation of some 
"program" (for example in the command language), the whole system interaction can be formalised this 
way and the approach leads to a uniform treatment of programming language, program manipulation and 
transformation language, and command language. 
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