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Abstract

Mappings between the sets of instances of database schemes are used to
define different degrees of equivalence. The available class of mappings and
the set of dependencies allowed for defining schemes deal here as parameters. A
comparison of the equivalences shows that there is only one natural kind of
equivalence. For various cases we prove its decidability or undecidability.
Besides we get a characterization of mappings expressible in the relational
algebra without the difference.

1. Introduction and Conventions

An intuitive definition of equivalence is given by [Gee]: "Two databases are
equivalent if they represent the same set of facts about a certain piece of
world”. We will try to get a more exact definition of what is meant by
equivalence. We will consider only relational databases.

The motivation for a comparison of the information capacity of database
schemes stems from different areas:

= design of conceptual schemes, especially the so-called database nor-
malization

= integration of different userviews into a single global scheme
= translations between different databases

- extensions and transformations of databases

= evaluation of different approaches in database theory.

We will develop a general model ( chapter 1 ) to formalize some kinds of
equivalence and to study differences between them ( chapter 2 ). Then we
are concerned with the decision problem for the chosen kind of equivalence. In
chapter 3 we present some decidable cases, whereas in chapter 4 we prove
various undecidability results.

We will neither assume a universal scheme assumption or a universal rela-
tion assumption ( see [AP] ), nor consider the update facilities used in a
database ( see [Codd] for update-equivalence ).
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More powerful mapping classes are NGEN* and FGEN*. They are related to the
" M-internal mappings ' of [Hull] and defined as follows:

ql € NGEN* iff SYMB(ql(Al)) € SYMB(A1) for all A1 € TYPES1
( " no generation of new values "' ), .

ql € FGEN* iff there exists a finite set M such that
SYMB(q1(A1)) - SYMB(A1) ¢ M for all A1 € TYPES1
( " generation of only a {jnite set of new values " ).

Every mapping class Q is assumed to contain the identity w.r.t. the set of
all states of an arbitrary database scheme and to be closed under composi-
tion, that means:

¥V ql: TYPE1 -> TYPER WV q2: TYPE2 -> TYPES:

ql € Q and q2 € Q ==> q20ql € Q.
These assumptions are obviously satisfied by RALG* RANP* RAND* NGEN*
and FGEN®.

We will also define two classes of database dependencies.

ALL denotes the set of dependencies which can be transformed into a sen-
tence in prenex-normalform without existential quantifiers. Often the
adjective "full” is used to characterize some subsets of ALL, see [FV] or [CLM].
Most prominent examples of such subsets are the functional dependencies,
sce e.g. [Ullm], the full inclusion dependencie€s, see [KCV], and the exclusion
dependencies of [CV].

EX denotes the set of dependencies which can be transformed to a sen-
tence in prenex-normalform without wuniversal quantifiers. Additionally
every predicate symbol other than "=" appears only under an even number of
negation signs. An example would be " 5 x1, x2, y1, y2: 1(x1,x2) and 1(y1,y2)
and ( x1 # yl or x2 # y2 ) ", which demands that the first relation should
contain at least two different tuples.

2. A Hierarchy of Equivalences

Most of the approaches to define equivalence of database schemes use the
ability to construct mappings between their states as a criterion ( see for
example [AABM], [Biller], [CV], [IL1], [Hull], [KK], [Koba], [Riss] ). Whereas the
intention of these papers is sometimes a very special one we will try to be as
general as it is possible. -

As usual we only want to consider instances instead of arbitrary states,
since there seems to be no reason to regard database states which do not
correspond to a possible real world. Furthermore, we will not consider arbi-
trary mappings for the definition of equivalence. For if two schemes both have
an infinite set of instances, then there always exists an (mostly pathological)
bijection between their instances. One way would be to consider only renaming
of values, but this seems much too restrictive.

Approaches which are engaged in database normalization ( as [BBG], [BMSU],
[IL1], [Riss] ) consider only mappings built up by natural join, projection and
selection. [Koba] uses four special kinds of mappings. [Hull] is interested in



Like we have done above, schemes will always be denoted as Si ( where i is a
subscript ), states as Ai, Bi or Ci, instances as Ii, Ji or Gi, the set of states as
TYPEI, the set of instances as INSi ( where the subscription shows to which
scheme they belong ). SYMB(Ai) stands for the set of all values appearing in the
state Ai.

For two states A1,B1 € TYPE1 Al C Bl holds iff for all i with 1 =i =< |S1| A1[i] ¢
B1[i] holds. The number of tuples of Al is denoted by |A1].

Database mappings are denoted by ql, p1, r1 : TYPE1 -> TYPER2 or q2, p2, r2:
TYPE2 -> TYPE1l. If not defined explicitly, the schemes S1 and S2 and the map-
ping class Q, to which all these mappings are assumed to belong, are given
globally. The obvious conventions about the subscriptioning holds if not
stated something else.

q1[i] should denote the i-th part of q1, that means q1 = < qi1[1], ..., q1[m] >
(for |S2| = m). '

Mapping classes or query classes are denoted by Q, Q1 or Q2. The most
interesting class is RALG®*, the set of sequences of queries expressed in the

relational algebra. More precisely q1 € RALG* iff for alli ql[i] € RALG holds,
where RALG is the usual relational algebra, see [Ullm]. The operators are
symbolized in the following way: :

- i " stands for the i-th relaﬁon scheme

- U " is the union sign

”"n

= - " is the difference sign

- " [ i1, ..., ik ] " symbolizes a projection
(ij are natural numbers, assumed to be different )

- "[i1->i2->...->ik-> i1 ] " symbolizes a permutation
(ij are different natural numbers )

= “[icomp_op j] " symbolizes a restriction
( here i, j are natural numbers, comp_op € { "="," # " })

- "[icomp_op 'c’']" symbolizes a selection
( here iis a natural number, comp_op € { "=","” # "} and ¢ € VALUES ).

If the arity of a subexpression is lower than the arity of a projection, permu-
tation, restriction or selection applied to it, or if the arities of the both subex-
pressions involved in a union or difference are not the same, or if "i" is greater
than the number of relations of the database schemes, we assume that the
expression always yields the empty relation state of arity 1. This is to avoid
partially defined mappings.

RANP* ( resp. RANP ) is the subclass of the relational algebra which do pot con-

tain any projection. RAND* ( resp. RAND ) contains the expressions without
the difference sign.

It should be noted, that, for notational convenience, we do not make a clear
distinction between an expression and the denoted mapping.
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Our general model is based on typed database schemes with dependencies
defined in a ( subset of the ) first-order logic. Both the class of dependen-
cies and the class of queries will play an important role in separating decid-
able and undecidable cases of the equivalence problem.

The following definitions and notations are used.

TYPES is the set of types, i.e. attribute domains allowed in the definitions of
database schemes. The following property holds:

N7 Pl T2s€ TYPES: Tl 8 T2 =i or TlrceT20or. T2 T
A type can be finite or infinite. It should be a countable set.

VALUES is the set of all values appearing in such a type, that means: VALUES =
}Yvie T: T € TYPES {.

A relation scheme R is a finite sequence of types: R1 = < T1, ..., Tk >, where all Ti
€ TYPES. A state of the relation scheme is a finite set of tuples, where each
tuple is a sequence of values corresponding to the types of that relation
scheme.

A database scheme S1 consists of a finite sequence of relation schemes and a
finite set of dependencies:

SiEEucRT S SRm >
€ ST T e > Kiml . Tma > : D >.

We use the notation |S1| = m, S1[i] = Ri, [S1[i]] = ai ( the arity of the i-th rela-
tion scheme of S1 ).

The set of dependencijes D of S1 is a finite set of first-order sentences over a
signature

- with the ai-ary predicate symbol "i” ( 1 <i=m ), which corresponds to the
i-th relation scheme S1[i] of S1,

= the binary identity sign, which always will be interpreted as the identity
over VALUES,

- a finite set of individual constants "cl1”, ..., "cn”, where all ci € VALUES;
such a constant "ci"” will always be interpreted by ci.

Quantifiers in such a sentence range over VALUES (and not over the set of
values appearing in a database state). Otherwise a sentence will be inter-
preted as usual, see [GMN], [Reiter] or [FV].

The set of states of S1 is given by TYPE1 = { < A1[1], ..., Al[m] > :
for all 1 <i<m the set Al[i] is a finite subset of Til * ... * Tia, {.

The set of jnstances of S1 is given by INS1 = {11 € TYPEL1 : I1 satisfies all depen-
dencies of D |. It is not assumed that a dependency is domain independent, see
[FV], but the set of instances of a scheme is assumed to be decidable.
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the whole relational algebra and shows the important role of the database
dependencies for the definition of equivalence. To cover all cases we will
define equivalence with respect to a given class of mappings Q. So our approach
is very similar to that of [ABM] and [AABM].

First we will define some properties of mappings between states of two database
schemes.

Definition 1

ql is consistent iff q1(INS1) C INS2.

ql is injective iff v 11, J1 € INS(S1): 11 # J1 ==> q1(I1) # q1(J1).
ql is surjective iff q1(INS1) 2 INS2.

q? is jnverse to ql iff V¥ 11 € INS1: q2(q1(I1)) = I1.

You should note that these properties depend on the set of instances of
both schemes. It is easy to show the following facts.

Theorem 2
1. 1If gqR isinverse to ql, then gl is injective.

2. If q2 is inverse to q1 and g2 is consistent, then ql is injective and q2 is
surjective.

3. 1If g2 is inverse to q1 and ql is surjective, then g2 is consistent and injec-
tive and ql is injective and inverse to g2.

Proof: omitted. .

Now we are able to present some kinds of conceptual inclusion and equivalence
of database schemes.

Definition 3
S1 <1< S2 wrt.Q iff there exists a consistent and injective ql1 € Q.
S1 <2< S2 wrt.Q iff there exists a surjective q2 € Q.

S1 <3< S2 wrt.Q iff there exits a consistent q1 € Q and a g2 € Q which is inverse
to ql.

S1 <4< S2 wrt.Q iff there exists a surjective q2 € Q and a ql1 € Q which is inverse
to g2.

Fori= 1,234 let
S1 =i= S2 wrt Q. iff: S1 <i< S2 wrt.Q and'S2 <i< S1 wrt Q.

S1 =5= S2 wrt.Q iff there exist consistent, injective and surjective ql, q2 € Q
each one being inverse to the other. .

Using the properties of a mapping class defined in chapter 1, it is easy to
show, that all of the =i= predicates are reflexive, transitive and symmetrical.
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The "weak - inclusion” of database schemes ( see [AABM] ) is exactly the same
as our " <2< ". The "inclusion”" of [AABM] is equivalent to " <3< " of our
definition.

Using theorem 2 and some examples showing distinctness we are able to
prove the following Hasse-diagram ( the strongest property is at the top) :

It seems that all of these predicates only consider the possibility of
translating any instance of one scheme into an instance of the other. A result
of [ABM] however can be used to show that this can be equivalent to a com-
parison of the set of answers to queries.

Theorem 4

Since Q is assumed to contain the identity ( on the set of states ) and is
closed under composition of mappings, the following holds: S1 <2< S2 wrt.Q iff
Vv ql €QJqg2 € Q V11 €INS1 512 € INS2: q1(I1) = q2(I2).

Proof: see [ABM], theorem 2.1 for the idea.

We reject equivalence =1=, because it is not compatible with such a com-
parison of answers to queries. But any of the equivalences =2=, =3=, =4=, =5=
is proved to be as restrictive as the query-equivalence of [Codd]. Which of them
should one choose?

An example will suggest us to reject the weakest of them.

Example 5

Let\® be RALG. , S1 := < <AB>. <BC>, <AC> 1 ¢ >,:52 ;= <. <AB>, <B>. <BC> ¢ >
and A, B, C € TYPES be disjoint.

Nobody would consider these schemes as being equivalent. But it turns out
that S1 =2= S2 wrt.Q holds. To show this we have to construct two surjective
mappings: .

gl =< (1*3) =3[ 1.2l “( 1 -~ (1" 1=3]1.2] M2l 2> :

q2 := < "1-(1*2)[2=3][1.2]", "3 - (2*3)[1=2][2,3]", " (1*2*3*)[2=3][3=4][1.5]" >

It should be noted, that none of the other equivalences holds.
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So we will choose only one of the equivalences =3=, =4= and =5= to be the
best. However, all our examples which show a difference between these proper-
ties look very unnatural. The next theorem states that for all usual query
classes there is no real choice.

Theorem 6
If Q is a subset of FGEN, then S1 =3= S2 wrt.Q iff S1 =5= S2 wrt.Q.

Proof:
"<==" follows directly by theorem 2.3.

fres ot
We may assume four mappings in Q:
= ql consistent and injective

- qR inverse to ql

- pR consistent and injective

= pl inverse to p2.

Using the theorem of Cantor and Bernstein, especially with the more construc-
tive proof of Koenig, one is able to construct a bijection between the set of
instances of the schemes, see e.g. [Sier]. For our purpose this does not
suffice, because we are looking for such a bijection in the class Q only. Further-
more, it must have an inverse mapping in Q.

In the following we will show that we don’'t need to construct a new map-
ping. It suffices to show, that

= ql is consistent, injective and surjective

= g2 is inverse to ql.

Using theorem 2 this implies S1 =5= S2 wrt.Q.

Let [INS1] denote the set of classes of the partition of INS1 generated by the
reflexive and transitive closure of the condition that two I1,J1 € INS1 with I1 =
p2(q1(J1)) belong to the same class ( symbolized by [11] = [J1] ).

Using ql o p2 (instead of p20 q1) we get a definition of [INS2] in an analogous
way.

Every class consists of only a finite number of instances. Any instance of a
class is mapped into another instance of the class by some iteration of p2 o q1
(respectively q1 o p2) and both p2 and ql1 belong to FGEN.

(1)

For every [11] € [INS1] the class [q1(I1)] € [INS2] is well-defined and q1([I1]) ¢
[q1(I1)].

[q1(11)] is well-defined since ql is consistent.

Now, let J1 € [I1], say J1=(p20 q1)™ (11).

Then q1(J1) = qlo(pRoql)o..o(pRoql) (I1) = (qlopl)o...o(qlop2) (q1(I1)),
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i.e. q1(J1) € [q1(11)].

(2)

For every [I2] € [INS2] the class [p2(I12)] € [INS1] is well-defined and p2([I2]) ¢
[p2(12)].

This can be proved in an analogous way.

(3)

For every [I2] € [INS2] it holds that qi([p2(12)]) = [I2].

{20
Using (1), respectively the definition of [INS2], we get qi1([p2(I2)]) <
[a1(p2(12))] ¢ [12].

Using (2) we get p2([12]) ¢ [p2(12)] and therefore we can conclude that
ql1(p2([12])) < q1([p2(12)]) holds. Using the " C " proof it follows that
q1(p2([12])) < q1([p2(I2)]) < [I2].
Because both q1 and p2 are injective and [I2] is a finite set, it follows that
these inclusions are really identities.

(4)
It follows directly from (3) that ql is surjective. Since ql is consistent and
injective and g2 is inverse to ql, we can finish this proof. .

We argue that is reasonable to consider only query classes which do not
contain mappings being able to generate an unrestricted set of new values.
Therefore our attention is now directed on =5=, the sharpest formalization of
equivalence. '

3. The Decidability of Equivalence

In this chapter we are concerned with cases in which the equivalence =5= is
decidable. One has to restrict both the set of dependencies in the schemes
and the queryclass Q which determines the sharpness of equivalence. First
we will introduce a simple algorithm.

Definition 7
Input: database schemes S1, S2; query class Q;
method:

FOR ALL q1 € Q1 DO
IF ql is consistent
THEN

FOR ALL g2 € Q2 DO
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IF g2 is consistent AND
g2 is inverse to q1 AND
ql is inverse to q2
THEN write ( "Proof of equivalence by", q1, q2 );
GOTO endmark;
Fi
0D;
K
oD ;
write ( “The schemes are not equivalent.” );
endmark:

The sets Q1 and Q2 must be subsets of Q.

Theorem 6 implies that a jump to the endmark only appears if S1 =5= S2 wrt.Q
holds. The converse is usually not true. To cover exactly the equivalence we
have to provide a lot more:

- an effective construction of Q1 and Q2

- which ensures that they are finite sets

= and contain mappings for the proof of equivalence iffi Q contains such
ones;

= an algorithm which 1s able to decide whether a mapping in Q is consistent;

= an algorithm which is able to decide whether a mapping is inverse to an
other mapping.

In the following subchapters we will show, that for schemes with dependencies
in ALL v EX and query classes included in RANP* or in RAND* all these
demands can be fullfilled.

The algorithm for consistency and the algorithm for inversion are based on
the following theorem of logic on the Bernay - Schoenfinkel Class (BSC) of
first-order logic sentences. The sentences of BSC are equivalent to sentences
in prenex normal - form with no existential quantifiers on the right of an
universal quantifier.

Theorem 8

There exists an effective algorithm which decides for an arbitrary finite
subset of BSC without equality and function symbols whether it has a finite
model] or not.

Proof: see [DG], pp. 79.

3.1 Algorithm for Consistency

The consistency is closely related with the implied constraint problem of [Klug]
and [JAK]. A mapping ql is consistent iff all the dependencies of scheme S2 are
satisfied for all states in q1(INS1).

In [Klug] the allowed dependencies are functional dependencies and the so-
called equality statements. The mappings are restricted to be in RAND®*.



- 58 -

[JAK] consider relational mappings built up by restrictions and products and
generalized dependency constraints, see [GJ], as allowed dependencies.

As [JAK] we will use theorem 8 but in a different way. For the following of this
chapter let D1 ¢ ALL U EX be the set of dependencies of S1, d € ALL U EX a
dependency of S2 and ql a mapping in RANP* or in RAND*. We have to decide
whether d is satisfied by all q1(I1) where I1 € INS1. To use theorem 8 we will
construct a set of sentences IC in BSC such that every finite model of IC
corresponds to an instance I1 € INS1 for which -d is satisfied by q1(I1) and vice
versa.

First we will mix -d and ql.
Let ql' be the transformation ( see [Ullm] ) of q1 into the domain relational
calculus:

ql’' =< {x11,...xim, : f,;(x11,.x1m §, .., { xnl,..xnm, : f (xnl,...xnm,) | >
Substitute every occurence of an "i(yl,..ymi)” in -d by the formula
"fi(yl....,ymi)" using appropriate renaming of variable symbols if needed. The
resulting sentence is denoted by -dql. If we add -dql as a dependency to
those of S1 then for every instance I1 of this new scheme its image q1(I1)
satisfy -d.

Now we want to show that -dql is expressible as a sentence in prenex normal-
form where no existential quantifier appears on the right of an universal
quantifier. If q1[i] € RANP then the substitution of f, doesn't change anything,
because in f. there are no quantifiers at all. If ql[i’] € RAND then in f. there
appear only existential quantifiers. If d € ALL, then in -~d there are only
existential quantifiers and no problems arise. In the other case, if d € EX then
in -d only universal quantifiers appear. The substitution of f. behaves well
because we assumed in the definition of EX that every "i(...)” appears only
under an even number of negations.

Set IC':=D1u { -dql {.

To get a set of sentences in BSC we have to

& avoid constant symbols ( as preinterpreted function symbols)

- simulate the typing of S1

- avoid the equality sign ( as a preinterpreted predicate symbol).

For the first task we will introduce a special predicate symbol ¢ of arity 1
for every constant ¢’ appearing in IC'.

Every sentence s of IC’ with constants cl,....ck will be transformed into

" 3 x1,...xk: c1(x1) and ... and ck(xk) and s " ( here xi is different from the
other variable symbols of s and from other xj ). To cover the semantics of con-
stants we add

" x: elx)",
"W x,y: ¢(x) and c(y) ==> x=y " and

" x,y: c¢(x) and d(y) ==> x#y " for every constant ¢’ (and every constant d’
different from c¢') to IC". ;

To simulate the concept of typed schemes we will introduce a special predi-
cate symbol T of arity 1 for every type T' in TYPES appearing in S1. Let
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{T1,...,Tn} be set of all these new predicate symbols.

We add the following sentences to IC':

ENhxe: T1(X) or.... or: Tnlx)™

" x: =Ti(x) or ~Tj(x) " forallTi' N Tj' = ¢.

ENxe-Tilx) ==>TiItx) " for Al TI"C T,

"V x1,....xm: i(x1,...,.xm) ==> Til(x1) and ... and Tim(xm) *
for all i with S1[i] = < Til, ..., Tim >.

For every finite type T' € TYPES ( with exactly n elements ) we need additional
sentences:

" 3 x1,....xn: T(x1) and ... and T(xn) and - ( x1=x2 or x1=x3 or ... or x1=xn or
x2=x3 or ... or x2=xnor ... or x(n-1)=xn ) ",

" x0,x1,....xn: T(x0) and ... and T(xn) ==> x0=x1 or x0=x2 or or x1=x2or ... or
x1=xn or ... or x(n-1)=xn ". <

At last we must bind constants to their types:

"V x: e(x) ==> T(x) " for all predicate symbols ¢ corresponding to the constant
¢’ and all types T which contain c’.

To handle the equality sign as a normal predicate symbol we will use the
axioms of equality of [Reiter]. Only universal quantifiers are needed here.

By construction it should be clear, that the resulting set IC of sentences is a
(finite) subset of BSC. It should also bfi clear, how to use this construction for
an algorithm for the decision of consistency. So we get :

Theorem 9

The consistency is effectively decidable with respect to
- mappings in RANP* or in RAND*

- schemes with dependencies in ALL v EX.

3.2 Algorithm for Inversion

The decision whether a mapping is inverse to another one can be handled as a
special case of the decision of the equivalence of two mappings ( exactly: of
their syntatical description ).

Definition 10
ql is equivalent to p1 iff WV I1 € INS1: q1(I1) = p1(I1).

Note that we use here equivalence restricted to the set of instances, in
[Klug] called 'equivalence’, and not equivalence with respect to all states, in
[Klug] called ’'strong equivalence’. [ASU] distinguish between ‘algebraic
equivalence’, 'weak equivalence' and ’'strong equivalence’ of mappings. The
last one as defined in [GM] is the same as our equivalence. All these



- 60 -

references present algorithms to decide equivalence in special cases. [SY]
generalize the results of [ASU]. [IL2] is concerned with the undecidability
of the equivalence of mappings, whereas [IL1] shows how to decide it under
the open-world assumption.

Theorem 11

g? is inverse to q1 iff (g2 Oql ) is equivalent to id_INS1. Here id_INS1 denote
the identity on INS1.

Proof: obvious.

Using the result of the previous chapter we easily get the following fact.

Theorem 12

The equivalence of relational mappings

= in RANP* or in RAND*

= between schemes with dependencies in ALL U EX is effectively decidable.

Proof:

Let q1, pl be given and let [S2| = n.

Befine. S53.:=<82[1], ... 52[n), S2[1]. ... 82[n] : D3 >

and rl := < qi[1], ..., q1[n], p1[1], ..., p1[n] >, where D3 consists of a set of
dependencies, such that

V. 13 € TYPES3: I3 € INS3 <==> W 1 <i=<n:I3[i] = 13[i+n]

holds. It is obvious,that D can be constructed as a set of full inclusion depen-
dencies, which can be expressed as " WV x1,..xn: i(x1,..,xn) ==> j(x1,..,xn) "
and thus D is in ALL. The mapping ri1: TYPE1 -> TYPE3 is constructed in a way,
such that q1 and pl are equivalent iff rl is consistent.

Since D3 is a subset of ALL U EX, the dependencies of S1 are assumed to be in
ALL v EX and rl1 is in RANP* or in RAND* we can finish this proof with a refer-
ence to Theorem 9. .

3.3 Finite Mapping Sets

The algorithm of definition 7 only works if we are able to construct finite
subsets Q1 and Q2 of Q which contain mappings for the proof of the
equivalence =5= ( if Q contains such mappings at all ). Our attention is
directed on RANP* and RAND®*. First we will define their normalforms.

Definition and Theorem 13
Every mapping q in RANP* is expressible in a way such that

- no selection refers to a subexpression in which a product appears ( for
short: selection before product )

= product before restriction
- restriction before permutation
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3

- permutation before difference

- difference before union

- no projection appears.

An expression of this form will be called to be in normalform ( for RANP* ).

Every mapping q in RAND* is expressible in a way such that

= selection before product

- product before restriction

= restriction before projection

- projection before union

= no permutation and no difference appears.

An expression of this form will be called to be in normalform ( for RAND* ).

Proof:
For the proof for RAND* see [Klug].

Then for RANP* it suffices to show how to shift the difference on its right place
( let Ei be arbitrary subexpressions ):
(E1 - E2) [i='v'] --> E1 [i='v'] - E2 [i="v']
(E1-E2)*E3 --> (E1 *E3) - (E2 * E3)
(E1-E2)[i=j] --> E1 [i=j] - E2 [i=j]
(E1-E2)[perm] --> E1[perm]-E2[perm],
where perm = " i1->i2->...->ik->il1"
(E1VE2)-E3 --> (E1 - E3) v (E2 - E3)
E1-(E2UE3) --> (E1-E2) - E3

Next we will show what must be assumed to get finite mapping classes.

Theorem 14
Let C ¢ VALUES be a finite set.

Then the set of mappings TYPE1l -> TYPE2 in RANP* with selections using
only constants of C is finite and can be enumerated in an effective way.

Proof:

The proof is based on the following observations, whereas the details are left
to the reader. Every such mapping has a normalform according to theorem
13. Since projection is not allowed the number of products is restricted by
TYPE1 and TYPEZ2. °

In chapter 3.4 we will show how to construct such a finite set C of values.

To get an analogous result for RAND* we have to make an additional
assumption to restrict the arity of a subexpression. For example there is a
state of a binary relation with 100 tuples, whose transitive closure ( see [AU]
) is expressible in RAND®*, but needs at least 99 product signs. So we would not
get a finite set of mappings if we don’t exclude such cases.
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Theorem 15
Let C ¢ VALUES be a finite set and |1 be a natural number.

Then the set of mappings TYPE1 -> TYPE2 in RAND* with selection constants
in C and no more than 1 product signs in every subexpression which doesn’t
contain a union sign or a difference sign is finite and can be enumerated
in an effective way.

Proof: Similar to the proof of theorem 14. ®

In chapter 3.5 we are concerned with the question how to get such a natural
number | with respect to the given schemes.

3.4 Reievant Selections

First we will characterize the selection constants appearing in a relational
expressing in a better way. In the following K, L, M are finite subsets of VALUES.

Definition 16

A mapping f : VALUES -> VALUES is called a K-isomorphism iff

= f is bijective and totally computable

= Vkek: f(k)=k

- VT € TYPES: {(T)=T. .

In the canonical way isomorphisms are extended to tuples, states and sets
of states. See [CH] or [Hull] for similar definitions. The following properties
hold:

= if f, g are K-isomorphisms, then fog, f 1 are K-isomorphisms
- for any scheme S1: {(TYPE1) = TYPEL.

Definition 17
A scheme mapping ql is compatible with K-isomorphisms iff for every K-
isomorphismf qlof =foql holds. .

In [Banc] and [CH] a similar property is used in the definition of completeness
of a query language. It is obvious that every relational expression whose selec-
tion constants are contained in K is compatible with K-isomorphisms. The
other direction is not as simple. This is because we allow types with a finite
number of values. The construction in the proof of theorem 19 shows how to
get a weaker result.

Corresponding to the compatibility of mappings we will formulate an
analogous property for database schemes.
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This property is related to the monotonicity (see e.g. [SY]) and the additivity
(see e.g. [AU]) of mappings. It should be noted, that every mapping with
breadth | is also monotone. The converse does not hold. The transitive closure
(see e.g. [AU]) is a prominent counterexample for it.

The next theorem will state how we can use the breadth to restrict the
number of products.

Theorem 21
Let TYPES contain only disjoint sets.

If there exist a natural number | and a finite subset M of VALUES, such that
gl is totally computable, compatible with M-isomorphisms, member of
NGEN and has breadth |

then q1 is expressible in the normalform of RAND*, where no more thanl + m
- 2 product signs appear in every of its subexpressions which have no
union or difference sign. Here m := max { [S2[j]|: 1 =j<|S2| }.

Proof:

Choose a finite set of states B1,....Bp € TYPE1 as substitutes of all instances
with no more than |1 tuples. That means:

{ Al e TYPEL:|Al|=< 1] ={f(Bi): fis an M-isomorphism, 1 <i<p |.

To do this one can define a finite set L ¢ VALUES - M ( where |[L| = max {
SYMB(A1) : A1 € TYPE(S1), |A1|<1}] ) and enumerate all states with values in
L UM and with no more than 1 tuples.

Then for every Al € TYPE1 :

ql(A1) = U U q1{f(Bi)) by construction of
l<i<p f is M-isom. B1,....Bp and since
f(Bi) € A1 ql has breadth 1
= U U f(q1(Bi)) since ql is compatible
l<isp f is M-isom. with M-isomorphisms
f(Bi) ¢ A1

sl SRR )

1<i<p fis M-isom. D ¢ q1(Bi)
f(Bi) C Al ID| =1

D € TYPE2
= U U U f(D) since f is a cano-
lsisp D¢ ql(Bi) - fis M-isom. nical extension
D] =1 f(Bi) c A1

D € TYPE2
For every 1 < j < |S2| then
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Now f is defined by exchanging every w € SYMB(A1) n( L- M) with its associ-
ated element, i. e.

w' if x =w € SYMB(A1)n(L-M)
f(x):= w if x=w with we SYMB(A1)n(L-M)

x else.

By definition f = f" ! holds.

(3)
We will show for an arbitrary I1 € INS1 : p1(I1) € INS2. Let f be the M-
isomorphism for 11 as constructed in (2).

Because of K ¢ M we get f(I1) € INS1 and f(INS2) ¢ INS2, since both
schemes are compatible with K-isomorphisms. So

p1(11) = p1(f(f(11)))
f(p1(f(I1))) ,since pl is compatible with M-isomorphisms

f(q1(f(I1))) ,using (1)
€ f(INS2) ,since ql is consistent
¢ INS2 (4)

We will show p2(p1(I1)) =11 for an arbitrary I1 € INS1.

Using the argumentation of (3) we know that p1(I1) = f(q1(f(I1)))
and so p2(p1(11)) = p2(f(q1(f(11)))).

Since p2 is compatible with M-isomorphisms we get

p2(p1(11)) = f(p2(q1(f(I11)))).

Because q1 € NGEN we know that SYMB(q1(f(I1)))n(L-M) =¢

and by (1) we get p2(p1(11)) = f(q2(q1(f(11)))).
Since g2 is inverse to q1  p2(p1(I1)) = f(f(I1)) = I1. .

Using theorem 6 we see that this approximation can also be used for =5=. In
the case of RANP* we then get finite Q1 and Q2 for the algorithm of definition 7
by theorem 14.

3.5 Number of Products

In chapter 3.4 we are concerned with the compatability with isomorphisms to
characterize the set of selections needed to describe a mapping as a rela-
tional expression. Now we will formulate a property which corresponds to
the number of products.

Definition 20
Let 1 be a natural number.
A mapping ql is of breadth | iff for all A1 € TYPE1

ql(A1l) = ql1(B) holds.
Be E1
B C Al
IBl<1
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Definition 18

A scheme S1 is compatible with K-isomorphisms iff for every K-isomorphism f
f(INS1) ¢ INS1 holds.

From our definition of database schemes ( especially of their dependencies ) it
follows that a scheme is compatible with K-isomorphisms. if in its dependen-
cies only constants out of K appears. Therefore we are able to construct such
a finite set of values for a given scheme in a simple way.

Now we are able to give the main theorem of this chapter.

Theorem 19

Let Q ¢ RALG* be a mapping class which contains the restriction ( e.g. RANP*
or RAND* ). Let K ¢ VALUES be a finite set and S1, S2 be both compatible with

K-isomorphisms.

Then we can effectively construct a finite set M, such that
S1 <3< S2 wrt. Q iff S1 <3< S2 wrt. M_Q,
where M_Q :={ q € Q: in q appears no selection constant not contained in M §.

Proof:

"<=="is trivial for every M.

ll==>l'

Let gl € Q be consistent and q2 € Q be inverse to q1. We will construct two new
mappings pl, p2 € M_Q having the same properties.

Let L:={w:wis a selection constant of q1 or g2 } and
M:=Ku{weT:TeTYPES, T appears in S1 or S2, T is finite §.

Both L and M are finite sets. Obviously ql and q2 are both compatible with L-
isomorphisms.

Let pl ( resp. p2 ) be the transformation of q1 (resp. q2 ) implied by the fol-
lowing rules:

r [i='w'] --> r[i#i] for we L- M, :
r[i#'w'] --> r for w€ L- M, here r stands for a relational subexpression.

Since in pl and p2 only selection constants of M appear, both of the mappings
belong to M_Q. So they are compatible with M-isomorphisms.

We have to show that pl is consistent and that p2 is inverse to p1.

(1)
Obviously qi(Ai) = pi(Ai) holds for all Ai € TYPEi (i = 1,2 ) with SYMB(Ai)n (L-
M)=¢.

(2)

For a given A1 € TYPE1 there exists a M-isomorphism f such that SYMB(f(A1)) n
(L-M)=¢

In order to define such a M-isomorphism we consider any w € SYMB(A1) n(L-

M ). Let T be the smallest type containing w. By definition of M T is infinite
and thus we can associate w with a new element w' € T- ((L-M ) u SYMB(A1) ).
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atan) i1 = UJ W, (U f(s))  holds.

1<isp s € ql(Bi)[j] fis M-isom.
sis a tupel f(Bi) ¢ Al

The number of different i and s in that formula is finite. Let i and s be fixed. It
suffices to show that the mapping

= U f(s) does not need more thanl + m- 2 product signs.

f is M-isom.

f(Bi) c A1
To do this we first choose an enumeration of the tuples of Bi such that
Bi =< ft11,..t1nd, [t21,...12n,0, ..., ftvl,.tvn ] >

Let't =< t11, .., ting 121, .. L85, i Wl vy >,

Define the sequence of products, corresponding to t, which maps Bi into t. Since
|IBi] = 1 there appear no more than l-1 product signs. Then use a sequence of
selections, so that

forallweMand 1 <i<|t|thereisa " [i="t[i]'] " iff t[i] € M,

and thereisa " [i# 'w']" iff t[i] ¢ M.

Finally we need a sequence of restrictions, such that forallij€{ 1,..,]t]},i<]j
thereisa”[i=j] " iff t[i] = t[j] and there

appearsa "[i#j]" iff t[i] # t[j].

Let p1 denote the constructed relational mapping.

Obviously WV Al € TYPEL: Bi ¢ A1 <==>t € pl(Al) holds.
Since p1 is compatible with M-isomorphisms f
W Al € TYPE1L: f(Bi) € Al <==> f(t) € p1(Al) holds.

Therefore we know that p1(Al) 2 U f(s) .
f is M-isom.
f(Bi) C A1

The other inclusion is obtained by

W Al € TYPEL: p1(A1) ¢ { f(t) : f is M-isomorphism }.

This only holds, because we have assumed that all types contain different
values. In this case we are able to construct a M-isomorphism f for a given t' €
p1(A1).

The last step of the construction of the relational mapping must build up f(s)
from f(t). Because of ql € NGEN, a projection usually suffices to describe it. But
if a value appears in s more times than it does in t,’we need additional pro-
ducts ( and restrictions to link such a copied tuple tij with t ). A simple
reflection shows that no more than m - 1 additional product signs are
needed. The normalform can be reached without new products. .

A simple induction would show that the converse implication of theorem 21 is
also true. So one would get a characterization of RAND* not using syntac-
tic criterions, provided that TYPES contains only disjoint sets of values.

We will now define a suitable property for database schemes.
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Definition 22

Let 1 be a natural number.
The database scheme S1 is of breadth 1iff

forall l1eINST I1= | JJ  holds.

J € INS1
Joc 11
=1

The breadth of a scheme is a special case of the locality of [IS] and the distri-
butivity of [IS]. Although looking similar the boundedness of [GV] and the
boundedness of [AV] are scarcely related to the breadth.

We will now formulate the main theorem of this chapter.

Theorem 23

Let S1 and S2 be database schemes with breadth 1.
Then one can effectively compute a natural number w such that

S1 =5= S2 wrt. NGEN* n { q is monotone | iff

S1 =5= S2 wrt. NGEN* n { q is monotone, totally computable and
has breadth w {.

Proof:

"<=="is trivial for every number w.

l'==>l'

Let ql1, g2 € NGEN* be monotone, consistent, injective and surjective, each
one being inverse to the other. :
Choose w such that

(1) w11 € INS1: |I1|=1 ==> |qi(I1) |<w and

(%) w12 € INS2: [I2| =1 ==> | q2(I2) |<=w holds.

One way to do this is the following:

msl := max { [SYMB(A1)|: A1 € TYPEL, |A1| <1}

wl ;= max { |A2|: |[SYMB(A2)| < ms1 }

Since q1 € NGEN* holds, wl can be used as w to fullfill (1).

In the same manner we get w2 to fullfill (2) and we finally set
w:= max { wl, w2 ] to fullfill both (1) and (2).

We will define substitutes pl1, p2 for q1, q2 which are in the demanded mapping
class:

forall A1 € TYPEL p1(A1):= () qi(B)

B € TYPE1
BcC Al
Bl = w

and
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forall A2 € TYPEZ p2(A2):= |_J q2(B) .
B € TYPE2

B C A2
Bl =w

It suffices to show that ql(I1) = pi1(I1) holds for all instances I1 € INS1
(but not necessarily for all states). The analogous result for p2 can be obtained
in the same way.

" C I':
Since ql is consistent and S2 has the breadth 1 we get for an
arbitrary I1 € INS1: qi(I1) = U G2
G2 € INS2
G2 ¢ qi(I1)
|G2| =1

Since ql is surjective each G2 is represented by q1(J1) for an J1 € INS1 :

q1(l1) = UJ a1w1)
ql(J1) € INS2
ql1(J1) ¢ qi(I1)
lg1(J1)| =<1
J1 € INS1

= U q1(J1) using (2), q2 is inverse to ql
ql(J1) € INS2 :
q1(J1) € q1(I1)
lq1(J1)| =1
J1 € INS1
1] =w

¢ L q101)

q1(J1) € INS2

q1(J1) ¢ q1(I1)
J1 € INS1
Ji|=sw

U ql(J1) using the monotonicity of q2,

ql1(J1) € INS2 which is inverse to q1
Jic I
J1 € INS1

Pil=w

U q1(J1) since ql is consistent

J1 € INS1
JC 4
Uil = w
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¢+ A ) since INS1 ¢ TYPE1

J1 € TYPE1
Jiec ]
i =w

= pi(I1)

'

' 2 ": By monotonicity of ql. -

The property of a scheme to have finite breadth is essentially a demand on its
dependencies. We must really restrict the class of allowed dependencies as the
following example will show.

Example 24

S := < <N,N>, <N,N>: { " V¥ x,y: 1(x,y) ==> 3 z: 2(x.,2) ",
" x.2: 2(x.2) ==> y: 1(y.2)" | >,
where N should denote the set of all natural numbers.

E=<i<nn>lsn=mi, [ <n-lin>:2=n=m}{>,
where m is a given natural number.

Any instance J with J ¢ I and <1,1> € J[1] is identical to 1. This is implied by
the two inclusion dependencies of S.

Therefore S cannot have breadthlif 1 < 2*m - 1.
Because m is choosen arbritrary S does not have finite breadth at all. o

If we restrict our attention on dependency classes already shown to be
good-natured with respect to the decision algorithms, we are able to com-
pute an approximation of the breadth of a scheme.

Theorem 25

Let S1 be a scheme with dependencies in ALL U EX. Let TYPES contain only dis-
joint sets.

Then one can effectively compute a number 1 such that S has breadth l.

Sketch of the proof:
Setl:=(m+k+e) **a, where
a is the number of attributes of S,
is the greatest number of attributes of a relation scheme of S1,
is the number of constants appearing in dependencies of S1,

o x 3

is the number of occurences of existential quantification in the depen-
dencies of S, provided they are written in prenex normalform.

Since forallll €e INS1 11 = U {B:BcI1,|B| =1, Be TYPEl ] holds, it suffices
to show that for given 11 € INS1, B € TYPEL, |B| = 1 there is an instance J1 €
INS1,sothat B¢ J1 ¢ I1 and |J1|<1 holds.

We will build a set of sentences in BSC to characterize such an J1. If they
have a finite model at all, they have a model with no more than m + k +
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e individuals. The correspondence of suc. - jel to a state with no more
than 1 tuplesis obvious.

K:={k:k € SYMB(B) or k appears as a constant in a dependency of S |
(1)

Let in_I € ALL be a sentence, such that for every finite model M there exist a
corresponding state Al € TYPE1 and a K-isomorphism f such that f(A1) ¢ I1.
These sentences can be constructed in an obvious manner. The proof of
theorem 21 contains a similar construction ( if translated into the rela-
tional calculus ). Only constants in K appear in this sentence.

(2)

Let B_in be a sentence without quantifier, so that every finite model M
corresponds to a state Al such that B € Al holds.

A sentence "i(vl,...,vk)" suffices, if <vl,..vk> € B[i]. Only constants of K
appear in B_in.

(3)

Let D be the set of dependencies of S. It is assumed that D ¢ ALL v EX.
Let E:=Dvufin_l, B_in|.

Every model of E corresponds to a state Al € TYPE], so that

r9-

- there exists a M-isomorphism f with f(A1) ¢ 11 ( by (1))
- A1€INS1 (byDCE)

- for the above chosen f f(A1) € INS1 holds ( since S is compatible with K-
isomorphisms )

- Bc At ( by (2))

- for the above chosen f B C f(Al) holds ( since SYMB(B) ¢ K and so f(B) =
B holds ).

Therefore we know of an f(A1) € INS1 with B ¢ f(A1) € I1 and must finally show
that there is a model of E with no more than m + k + e individuals.

(4)
- We want to use the theorem of Herbrand.

To do this we have to eliminate the equality and the constants as preinter-
preted objects.

First we will eliminate the constants. We build the conjunction of all sentences
of E, substitute every constant symbol with a new specific variable symbol,
bind these variables globally with existential quantifiers and add atoms which
demand that they all have different values. Let E' denote this new sen-
tence,

Since E € ALL v EX it is obvious that E’ belongs to BSC.

Every model of E is also a model of E'. For every model of E’ there is a model of
E having the same number of individuals.

Next we use the axioms of equality of [Reiter] to handle the equality symbol
as a normal predicat symbol. Let E"” ¢ BSC denote the constructed set of
sentences. Every model of E' is also a model of E'. For every model of E there
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is a model of E’ having no more individual symbols.

The number of existential quantification in E" is not greater than m + k + e.
This is also the number of terms of the Herbrand universe of E"”, since the
Skolemization of E' only generate function symbols with arity 0. This is
because E" is in BSC.

Using Herbrand's theorem we can conclude that there is a model of E with no
more than m + k + e individuals if there is a model at all. ©

3.6 Summary

Theorem 26

Let S1 and S2 be schemes with dependencies in ALL U EX.
Let TYPES contain only disjoint sets.
Let Q be a subset of RANP* or of RAND*, which contains the restriction.

Then the algorithm of definition 7 can be used to decide whether S1 =5= S2
wrt.Q or not.

Proof:

In chapter 3.1, theorem 9 we have suggested a way to decide if a mapping is
consistent. In chapter 3.2, theorem 12 we have shown how to decide the
equivalence of two mappings. Using theorem 11 it is obvious how to use this
for a decision whether a mapping is inverse to another mapping. In chapter 3.3,
theorem 14 it is shown how to enumerate finite sets Q1 and Q2 in the case of Q
C RANP* if we know a finite set of selection constants relevant for the proof of
equivalence. In chapter 3.4, theorem 19 can be used to get such a set of con-
stants. In chapter 3.3, theorem 15 we have seen, that in the case of Q C RAND*
we need additionally an approximation of the number of products to get finite
sets Q1 and Q2. In chapter 3.5, theorem 21 we have formulated the breadth
of a mapping as a sufficient criterion for this matter. In chapter 3.5, theorem
25 we suggested a way to approximate the breadth of a scheme. In chapter 3.5,
theorem 23 we finally have proved that there is no need to consider mappings
with a breadth not related to the breadth of the schemes. a

4. Undecidability of Equivalence

In chapter 3 we have only considered schemes with dependencies in ALL u EX
and mapping classes below the relational algebra. Now we want to show the rea-
son for these restrictions.

4.1 More Powerful Dependency Classes

In the following we will use “implication” as "finite implication” ( see
[CFP], [CLM] ), because we only deal with finite database states. We use a
known result concerning with the implication problem for database dependen-
cies.
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It is not decidable whether S1 =3= S2 wrt.Q holds

- where S1, S2 rangesover all schemes with functional dependencies and
( binary ) inclusion dependencies

= Q is a mapping class which includes the identity mapping ( as assumed in
chapter 1 ) and is contained in FGEN.

Proof:

See [Mitch] for the undecidability of the (finite) implication problem for func-
tional dependencies and binary inclusion dependencies.

Let D, {d} be arbitrary sets of dependencies of these classes, expressed in
the notation of chapter 1. It should be noted, that inclusion dependencies are
not included in ALL u EX.

Using the signature of both dependency sets it is simple to construct two
schemes S1 and S2 so that TYPE1 = TYPE2 and their set of dependencies is D
resp. D U {d]. Only one infinite type should appear in the scheme definitions.

We want to show that this is already a correct reduction of the implication
problem into the equivalence problem for database schemes.

lv==>u

If d is implied by D, then INS1 = INS2 holds. The identity mapping can be
used to prove S1 =3= S2 wrt.Q.

If S1 =3= S2 wrt.Q holds, then there is a mapping ql in Q which is consistent
and injective.

For finite subsets V ¢ VALUES let ( fori=1,2)

INSSYMB(Si,V) := { Ii € INSi: SYMB(li) ¢ V.

Since ql1 € FGEN there is a finite N ¢ VALUES such that ql only generates new
valuesin N.

Since ql is consistent for any finite V € VALUES

ql (INSCYMB(S1,VUN)) ¢ INSSYMB(SZ2,VUN).

By definition of S1 and S2 it is obvious, that

INSSYMB(S2,VUN) ¢ INSSYMB(S1,VUN).

Because ql is injective and INSSYMB(S1,VUN) is a finite set, it follows that
INSSYMB(S1,VUN) = INSSYMB(S2,VUN).

Clearly every instance of S1 is contained in INSSYMB(S1,VUN) for some finite V
(since any instance is assumed to be finite). So we get INS1 = INS2.

This means that d is implied by D.



4.2 More Powerful Mapping Classes

We are not aware of a result concerning the equivalence directly. We will
show the undecidability of the consistency, injectivity and the surjectivity of
mappings ranging over the whole relational algebra. The following theorem
deals as the base for it.

Theorem 28

Let T € TYPES be an infinite set.

It is not decidable whether q1(A1) = ¢ holds for all A1 € TYPE1, where

= S1 ranges over all database schemes without dependencies

= ql ranges over all mappings TYPE1l -> T in the relational algebra.
Proof:

A simple construction reduces the equivalence problem for relational
expressions on the above mentioned problem since we can use the difference
operator.

It is known that the equivalence problem of relational expressions is not
decidable, see [IL2]. [Klug] cites a result of [Solo] considering expressions
without selections. A direct way to prove it can be based on the undecidabil-
ity of the first-order logic ( finite models only ). .

Theorem 29

The consistency with respect to

> mappings in RALG

- from a database scheme without dependencies

= into a database scheme with one functional dependency, one exclusion
dependency ( see [CV] ), or one unary inclusion dependency ( see [KCV] )

is undecidable.

Proof:

Let q1: TYPE1 = INS1 -> T be given. We will construct a scheme S2 and a map-
ping p1, which is consistent iff q1(A1) = ¢ for all A1 € TYPEL. This suffices to use
theorem 28.

one functional dependency:

pl := < ( SYM * SYM * q1 )[1,2] >, where SYM is a relational expression which
supply the relation consisting of all values appearing in a state Al,

d ="WV x,y.2z: 1(x,y) and 1(x,2) ==> y =z ", which is a functional depen-
dency,

S =S < T T > 5d >

Then p1 is consistent iff p1(INS1) ¢ INS2 iff Vv I1 € TYPEL: | SYMB(I1) |= 1 or
qi(I1) = ¢.

Since we are able to decide whether q1(I1) = ¢ holds for all I1 € INS1 with
ISYMB(I1)| < 1, this suffices to use theorem 28.



one exclusion dependency:

pl:=<ql,ql >,
d :=" WV x: -1(x) or -2(x) ", which is an exclusion dependency,
BErs s €T 1.del >

Then p1 is consistent iff q1(I1) = ¢ for all I1 € INS1.
one unary inclusion dependency:

pl:=<ql,ql-ql >,
d :="WVx: 1(x) ==> 2(x) ", which is a unary inclusion dependency,
BT LT > d 1>, ;

Then p1 is consistent iff q1(I1) = ¢ for all 11 € INS1.

Theorem 30

The injectivity with respect to

- mappings in RALG

- schemes without dependencies
is undecidable.

Proof:
Let the mapping ql: TYPE1 = INS1 -> T be given, where w.l.o.g. |S1| = n, |S1[i]|
=il Clorr=i=n’).

for 1 <i<ndefine

pilil = (i* ¢(SYM - (SYM *q1 11) ) 1,2 ... al],

where SYM is the same as in the proof of theorem 35.

It is obvious, that for every Al € TYPE1 pi1(Al) € { ¢, Al ] holds.

Since p1 does not generate values we know that p1(¢) = ¢.

Therefore pl is injective iff p1(Al) = Al for all A1 € TYPEl. This means that
ql(A1l) = ¢ for all A1 € TYPE1 and theorem 28 can be used to show the undeci-
dability of injectivity.

Theorem 31

The surjectivity with respect to

= mappings in RALG

- schemes without dependencies
is undecidable.

Proof:
The same construction as for the proof of theorem 30 is used.

It is obvious that p1 is surjective
iffl p1(Al1) = Al for all A1 € TYPE1 holds, i.e.
iffl q1(A1) = ¢ for all Al € TYPEL1 holds.



5. Conclusions

There remain some open questions. Using theorem 21 ( and assuming that
the typing of database schemes is not of interest or behaves well ) we get an
exact characterization of mappings expressible by the relational algebra
without the difference operator. They are totally computable, are compatible
with M-isomorphisms ( where M is a finite set of values ), does not generate
new values and have finite breadth. There is no idea of a set of properties
characterizing the relational algebra without the projection operator.

When we considered the whole relational algebra in chapter 4 we have only
shown the undecidability of some properties necessary for equivalence. There
is no result dealing with the equivalence itself.

In chapter 3 we have shown the decidability of consistency and inversion. We do
not know whether there are algorithms for the injectivity and surjectivity,
too. [IL2] deals with the losslessness ( the same as injectivity ) under the
open-world assumption, but this is a much more weaker property than our
injectivity. Restricting the attention on the algebra without projection (and
schemes with dependencies in ALL U EX) the decidability of the surjectivity
can be proved in a similar manner as the decidability of the consistency.

In chapter 3 we only consider mappings in RANP* or in RAND*, but do not han-
dle with ( RANP U RAND )*, which would be the "mixing of both classes”. We do
not know how to change chapter 3.5 for this purpose.

Although defining TYPES as a hierarchy in chapter 1 in theorem 21 we have
assumed that it contains only disjoint sets of values. There are some possibili-
ties to change the definition of an M-isomorphism in a way that this assump-
tion would not be necessary, but other difficulties would appear elsewhere in
chapter 3.5.

At last it should be mentioned that this paper does not deal with very eflicient
ways to decide the equivalence. Full use of the typing of database schemes will
speed up our algorithm. Cardinality comparisons as described in [Hull] can
probably be used in more advanced decision algorithms.
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Ipo6yieMa SKBHBAJIEHTHOCTH B CXeMaXxX DPEeJIAUHOHHHX 6a3axX JaHHHX

W. Buckyn, Y. Pem .
Pe3swmMme

ABTOPH HCIIOJIB3YKHNT OTOOpaXeHHa MexIy CXeMaMH IJIg onpenelrie-
HHS SKBHUBAJIEHTHOCTH, M TakK CaMHe CXeMH HI'PalT pOoOJib IapaMeTpoOB.
OIOHMM M3 pPEe3yJLTATOB 3TOr'O Mnoagxola ecTh TO, YTO CymecTByeT TOJIb-
KO OIOHO eCTeCTBEHHOEe IMOHSATHE SKBUBAJIEHTHOCTH. OHHU H3y4YawT TakKxe
Pa3penmMMoOCTh HJIM Hepas3peuurMoCThb 3TOI'O IMOHATHSA, a TakKXe ONHCHBa-

0T OTOBpaXeHHUs KaK pPeNsglIUOHHYK anrebpy 6e3 nuddepeHIHH.

EKVIVALENCIA PROBLEMA A RELACIOS ADATBAZIS

SEMAKBAN

J. Biskup, U. Rdsch

Osszefoglald

Az adatbazis sémak eldforduladsai kdzdtti leképezéseket fel

lehet hasznalni az ekvivalencia kiilénb6zd fokainak definia-

lasara. Ez lehetdvé teszi, hogy maga a séma paraméterként

foghatdo fel. Az ekvivalenciak Osszehasonlitasai azt eredmé-

nyezték, hogy csak egy természetes ekvivalencia-fogalom 1lé-

tezik. Kiiloénbozd esetekben a szerzdk bebizonyitjak ennek

az ekvivalencia-fogalomnak az eldénthetdségét ill. elddnthe-
tetlenségét. Emellett a szerzdk a leképezéseket kiildnbség

nélkiili relacid-algebrak segitségével is jellemezték.
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