
On the Adequate Support of Communication Interfaces in Distributed
Systems

Prof. Dr. J. Nehmer
Universit~t Kaiserslautem, Fachbereich Informatik

Erwin-Schr6dinger-Str., 6750 Kaiserslautern

Abstract

Existing experimental distributed systems usually support a single mechanism for message-based

communication. It is argued that different needs at the operating system level and at the application

level make it highly desirable to support several, possibly incompatible communication interfaces in

the same distributed system.The resulting problems are investigated and appropriate architectural

solutions are proposed. As an example we demonstrate how the two different distributed languages

LADY and CSSA with their distinct communication models are implemented in the INCAS project

and discuss some problems encountered during the system design.

Key Phrases
Distributed system, message communication, distributed operating system kernel

1. Introduction

Existing research projects on distributed systems are usually based on a single communication model

for structuring distributed programs. The communication model is supported at run time by a kernel

which offers a suitable set of communication primitives implementing the model. These primitives

are made accessible to users either by the provision of library interface packages as in Demos-MP

[MIL87], Locus [WAL83], Amoeba [MUL84], and the V-kernel [CHE84] or by a distributed

programming language as for example in Eden [BLA85, ALM85], Cedar [SWI85], Argus [LIS83],

SR lAND82], NIL [STR85], Linda [CAR85], and Lynx [SCO88].

This approach is based on the assumption that the distributed operating system and the various

distributed applications running on top of the kernel can make efficient use of the same

communication mechanism. According to our opinion based on experiences within the INCAS

project this assumption is generally not true.

Distributed operating systems and distributed applications usually have specific communication

requirements which might not be compatible with each other. Careful design considerations

concerning the support of the various communication interfaces in distributed systems are necessary

in order to avoid system misconceptions leading to severe performance degradations and / or loss of

desired functionality.

Relative little attention has been spent by researchers to address this issue. Scott [SCO86] discusses

in his paper the related problem of appropriate support of high-level distributed programming

languages by distributed operating system kernels. By three implementations of the language Lynx

[SCO87] on different distributed operating system kernels he could show that simple communication

primitives provided by the kernel are best. However, the interface problem between distributed

applications and the distributed operating system is not addressed in the paper. In Accent [RAS81,

FIT86] the support of multiple distributed programming languages was an explicit design goal but

restricted to RPC-based communication models.

This paper is organized as follows: In section two we classify the communication interfaces in

distributed systems. In section three we provide a framework for architectural solutions based on

varying communication requirements for distributed operating systems and distributed applications.

In section four it is discussed how two rather different communication models at the distributed OS

level and the application level are realized in the INCAS project based on the two different languages

LADY and CSSA. Section five gives an overview of the problems encountered during the system

design of INCAS. The final section six discusses the possible lessons to be learned and summarizes

our conclusions.

2. The communication interfaces in distributed systems

Let us take a deeper insight into the different types of communication interfaces we are generally

faced with in distributed systems. It is assumed that the distributed operating system and the

distributed applications consist of multiple communicating modules called operating system modules

(OSM's) and application program modules (APM's).

From Fig. 1 we can identify three interface types:

A : interface between different APM's

B : interface between APM's and OSM's

C : interface between different OSM's

OSM I ~ I TM'

A P M [~ ,

f B - - . ~ . - -

i , I I OSM [
I

A
I
i I
I

11 A P M [

Fig. 1 Interface types between application program modules (APM's) and operating system modules

(OSM's)

All three interface types will result in specific requirements on the underlying communication model

supporting controlled communication between modules of a given type. The potential of modules

operating as active and independent units on different processing nodes offers a broad variety of

possible assessments for communication interfaces. At present no consensus on a consistent and

comprehensive classification has been reached in the research community. Useful attempts as the

basis for further discussion have been contributed by Shatz [SHA84], Jul [JUL85], and Liskov

[LIS85]. For the following discussions we will use a classification scheme for communication

models which takes into account the three design parameters

• synchrony

• communication pattern

• reliability

The parameter 'synchrony' may obtain the values 'synchronous' and 'asynchronous'. The parameter

'communication pattern' may obtain the values 'notification' and 'service'. Notification-based

communication patterns support a one-way communication as used in producer-consumer type

relations between communicating modules. Service-based communication supports the request/reply

paradigm as needed for client/server systems. The reliability parameter may take the values 'don't

care', 'at-least-once', 'at-most-once', 'all-or-nothing', and 'exactly once'.

While it is difficult to recommend certain structures for the application-dependent interface type A it

seems more promising to define precise requirements for the interface types B and C because they are

devoted to the well known scope of operating systems. However, this assumption is in contradiction

to the reached consensus on adequate structuring models for distributed operating systems. Different

structuring philosophies (process/message paradigm as opposed to object/atomic action paradigm)

and the taste of designers for what is felt to be important have led to rather incompatible proposals for

communication models at the distributed operating system level. See for example the different views

taken in the languages SR lAND82], NIL [STR85], EPL [BLA85] and LADY[NEH87] which

emphasize operating/communication systems as the application scope.

In order to simplify the discussion we make the reasonable assumption that the communication

mechanism provided for the interaction between APM's and OSM's (interface type B) is a subset of

the mechanism provided for communication within the operating system itself (interface type C), i.e.

B~C. Traditionally, the communication at the interface type B is restricted to a synchronous, service-

oriented call. RPC-like mechanisms [BIR85] are a sufficient realization basis. The requirement stated

above means that any communication model at the interface type C includes the support of a

synchronous, service directed call. Within the distributed operating and the distributed applications

system it might be necessary to provide additional communication primitives for the easy realization

of pipelined and multicastforoadcast communication structures.

3. A discussion of systematic architectural al ternatives

We now discuss various alternatives for the communication interface types A, B, and C with respect

to the architectural support needed. As the general architectural model we base our considerations on

the distributed kernel approach. We assume that a distributed kernel provides the functional support

for the creation/termination of communicating modules (processes, process groups) and the

system-wide communication between them. Operating system services and application programs are

both organized as modules running above the kernel.

Alternative i : A = B = C

In our first alternative the three interface types A-C are assumed to be identical of some type F. In

practice, this approach would lead to a communication model (and a supporting language) which

primarily regards communication requirements at the distributed OS level and simply forces

applications to use the same model even if inadequate for the intended application scope. Most

existing research projects on distributed systems take this view as pointed out in the introduction.

Fig. 2 shows the resulting system architecture. It is sufficient to provide a distributed kernel with

communication primitives supporting directly the functionality F. All modules of type APM or OSM

will use these primitives for communication across the identical interfaces A, B and C. Although this

approach greatly simplifies the design of distributed systems it might put unacceptable limitations on

the distributed applications.

Alternative 2 : A= C

In this alternative it is assumed that applications are written in a language which relies on a subset of

the communication mechanisms as provided for the communication between OSM's. The required

architectural support is basically the same as depicted by Fig. 2 if one replaces the function set F at

the kernel interface by C. The overall judgement of this alternative is the same as for alternative 1.

! Ap°,i ! AP°, i OSM OSM

kernel kerne l

Fig. 2 Kernel architecture which supports the communication functions F as the only interface

between APM and OSM modules

Alternative 3 : C ¢ A

In this alternative the communication requirements at the distributed OS level are considered a subset

of those provided for applications. The architectural support is identical with alternative 2 if the

function set F is replaced by A in Fig. 2. Although both alternatives 2 and 3 are comparable with

respect to the resulting system architecture there seems to be a substantial difference in practice: the

communication mechanisms of alternative 3 provided by the kernel are modelled primarily with

respect to the scope of the applications under consideration. OS requirements are integrated into the

communication model by appropriate extensions.

It is expected that this approach will yield communication interfaces with a richer set of

communication primitives than obtained by the opposite view taken by alternative 2. The successful

application of this approach dictates, however, that the requirements for the interface types A and C

harmonize.

As an example, let us assume that the intended applications for a distributed system are sufficiently

supported by the functions SEND, RECEIVE, REPLY, COPY_TO and COPY_FROM with the

semantics as defined for the V-kernel [CHE84].

At the distributed OS level the requirements for appropriate communication support might have been

defined by the functions SEND, RECEIVE, REPLY and the additional demand for a multicast

capability. The multicast capability can be achieved by the introduction of process groups and the

additional function GET_REPLY as explained in [CHE85]. Both provisions are natural extensions of

the original model and can easily be integrated into a final set of primitives represented by the

functions SEND, RECEIVE, REPLY, COPY_TO, COPY_FROM and GET_REPLY.

Alternative 4 : A ~ C

So far we have discussed alternatives which lead to kernel architectures directly supporting the

interfaces A, B and C. The notation AeC will be used now to indicate that A and C are not subsets of

each other. This is the most realistic assumption. Two different subcases can be distinguished.

Subcase 4.1 : A <-- C,

This case is characterized by the fact that C is an adequate basis for the construction of A (expressed

by A <-- C). We generally consider this property being fulfilled if C is more primitive, less restrictive

and less reliable than A. The required architectural support for this subcase is illustrated by Fig. 3.

The kernel offers directly the functionality as required by the distributed operating system (interface

C). The higher level needs of distributed applications are supported by kernel extension packages

(KEP's) which are constructed out of the kernel primitives. Since A is based on C the communication

between APM's and OSM's is performed by the transformation of service requests to OSM's into

corresponding primitives of C. As an example it is conceivable to provide an asynchronous,

notification-oriented and unreliable communication mechanism at interface C while an RPC

mechanism with at-most-once semantics is provided at the interface A. It has been shown by several

implementations that a reliable RPC can be sufficiently built on top of an unreliable asynchronous

message passing mechanism [BIR85].

OSM

APM I

I [OSM KEP

k e r n e l

I
Icl Ib --T'c Y

kernel k e r n e l

Fig. 3 System architecture for hierarchically dependent communication mechanisms at the OS and

application level

Subease 4.2 : A <t~ C,

This is the most general case since no assumptions are made about direct relations between A and C

(expressed by A <4t- C). The only assumption we make is that it is always possible to find a

common primitive communication model S for which it is true that

C <-- S

A <-- S

i.e. both interfaces C and A can be constructed out of S. The resulting system architecture is shown

in Fig. 4. The distributed OS kernel offers the primitives for the communicauon model S which is

neither sufficient for describing communication issues at the distributed OS level nor at the application

level nor between them. Hence, it is mandatory to provide different KEP's for the support of OSM's

and APM's on top of the kernel. In order to facilitate communication between APM's and OSM's the

kernel extension packages have to provide the functional support for the interface B in addition to A

or C respectively.

i

OSM

KEP 1

kernel

OSM APM

I
APM

I

KEP 1 KEP 2 KEP 2

- F __k_ ;
kernel Iq-- '~l kernel

I s l
kernel

Fig. 4 System architecture for the support of different communication models at the OS and

application level which are based on the common communication mechanism S

4. Multiple communication interfaces in the INCAS-project: A case study

The INCAS* multicomputer project [NEH87] was started in 1983 with strong emphasis on

methodological aspects in the design of distributed systems. A topic of the project was the support of

program development at the operating system and application level by powerful distributed

programming languages. It is worth to notice that long before the INCAS project was started the two

languages LADY (Language for Distributed Systems) and CSSA (Computing System for Societies of

Agents) had been developed independently by two different research groups for different purposes.

The development of LADY as an implementation language for distributed operating systems was

started in 1980 at the University of Kaiserslautem. A first prototype was operational in 1983 on a

network of TI-990 microcomputers [MAS84]. The development of CSSA dates back to 1977

[BOE77] by a research team at the University of Bonn. The intended application scope was closely

related to concurrent AI algorithms. In 1983 both research teams joined to form the INCAS project at

* (Incrementa l A__rchitecture for Distributed ~S_.ystems, funded by the Deutsche

Forschungsgemeinschaft as part of the SFB 124)

the University of Kaiserslautern and decided to build an experimental distributed system supporting

advanced versions of both languages for the design of distributed operating systems and application

programs. The operating system team took the opinion that a sufficient design methodology for

distributed operating systems should not put any constraints on the communication model on which

distributed application languages are based. The implementation of a run time environment for CSSA

by LADY was considered a test case for the suitability of the underlying structuring concepts in

LADY.

As the next step we will give a short overview of both languages with special attention to the

communication models.

The implementation strategy for both languages follows the alternative 4.1 as described in the

previous section, i.e. it was assumed that the communication model in CSSA could be easily

constructed out of the primitives of LADY. After having sketched the general implementation strategy

we will discuss some problems encountered during the implementation phase.

4.1 Overview of the language LADY

The LADY language reflects our view of an adequate linguistic support for describing distributed

operating systems. The structuring concepts of LADY are expressed in terms of three language levels

as illustrated in Fig. 5 [WYB85].

m o d u l e

sys tem

I
Fig. 5 Language levels of LADY

10

The fundamental structuring unit of LADY is the ~¢am. A team consists of a collection of tightly

coupled processes which communicate via shared memory by using monitor modules or lower level

synchonization primitives such as semaphores. Teams are considered the smallest indivisable

distribution units, i.e. they have to be placed as a whole at one processing node. Several teams

constitute a system.

Systems and teams may be combined into a higher level system. This definition of systems allows

nested system structures of any depth.Teams interact with other teams via message passing. A port

interface encapsulates the internal structure of teams against the external environment. Ports are

typed, i.e. they can only handle messages of a given type. Message types can be defined as arbitrary

structures of fixed length. The port concept in LADY is symmetric as in NIL [STR85] : input ports

define the message interface exported by a team, while output ports define the message interface

imported by a team from its environment. A process can send a message to a destination only if a

connection between the output and a corresponding input port has been established beforehand.

Two types of connections between input and output ports can be defined:

a) logical channels, which provide for a one-to-one link between an output and an input port;

b) logical buses, which provide for a many-to-many link between output an input ports, thereby

offering a multicast communication capability.

Input ports can be associated with a buffer of fixed length at declaration time which allows to store a

maximum number of messages of a given type. The buffer capacity can be specified to be zero.

The semantics of one-to-one communication via logical channels can be described as follows:

a process attempting to send a message to a receiver suspends execution until the message has been

successfully stored at the receiver's site (either in the buffer or in the local working store of the

receiving process in case that buffer capacity zero was specified). Symmetrically a receiving process

is blocked until a message has arrived at the addressed input port and copied into the receiver's local

working store. (A timeout mechanism is also provided for an abnormal termination of a SEND or

RECEIVE operation). If no buffer space has been associated with an input port, the one-to-one

communication is semantically equivalent to the synchronization send [LIS79]. If buffers are

envolved the described semantic falls into the class of asynchronous communication.

Logical buses offer three distinct transmission modes, which differ in their addressing selectivity:

a) a broadcast message which is sent to all input ports connected to this bus;

b) a multicast message which is sent to all input ports at the logical bus which belong to the same

port group (port groups are defined by special port group identifiers)

c) an individual message sent to a single input port connected to the bus.

The transmission modes are selected by different SEI '~ statements.

Reliability of varying degree can be achieved for multicast/broadcast operations by an additional

function which allows to dynamically define the expected success of a SEND-operation in terms of

11

the number of positive acknowledgements from receivers (the default being 0). Notice that

acknowledgement messages are sent automatically by the kernel if not explicitely disabled at the

receiver's site.

More details on the communication model in LADY can be found in [WYB86].

4.2 Overview of the language CSSA

The underlying computational model of the language CSSA is based on the notion of actors called

agents in CSSA originally developed by Hewitt [HEW77]. An agent is an active unit consisting of a

cluster of operations which can be activated by receiving messages from other agents. Messages

arriving at an agent while it is performing an operation are collected in a mailbox associated which

each agent, i.e. messages are processed one at a time.

The message passing scheme in CSSA is asynchronous and notification-oriented. A message may be

issued by the statement

SEND <op-name> <message> TO <target-agent>

which is a non-blocking operation. A multicast send is possible by specifying a set of agents as the

target.

The set is specified by either a list of agent names or by an agent type. In the latter case the set is

defined by all agents instantiated from this type.

A sender can request a reply by specifying

SEND REPLY TO <op-name>

The receiving agent responds to such a reply-obligation by issuing a

REPLY <message>

at the end of an operation. The target agent and the operation name are obtained from the message

header of the message being processed. CSSA distinguishes between implicit and explicit message

receipt. Since these differences are irrelevant for the underlying communication model only the

implicit message receipt will be discussed here (the reader is referred to [BEI85] for further details).

12

An agent basically consists of a set of variable declarations and several clusters of named operations:

<var-decl>

OPERATION <name> <pattern> <assertion>

IS

END OPERATION

<further operation definions>;

The global variables constitute the state of an agent. The agent, when not executing an operation,

scans its mailbox for executable messages. A necessary condition for a message to trigger the

activation of an operation is the matching of the operation's name in the agent specification with an

operation name contained in a message. The <pattern> and <assertion> part in the operation header

allow to specify additional conditions for the activation of an operation by arriving messages. The

definition of the <pattern> field in the operation's header enforces a pattern match between <pattem>

and the message contents before the message is processed. By defining the <assertion> field the user

can specify an arbitrary predicate on the values of the message parameters and variables of the agent.

The message transport is assumed to be totally reliable at the CSSA-level, but message propagation

delays are assumed to be of undefined and finite length (as a consequence messages may be received

out of order).

4.3 Overview of the system architecture

Fig. 6 shows the overall system architecture of the INCAS-system. The distributed operating system

kernel directly supports the communication model of LADY. Therefore, the kernel is only aware of

teams as the communicating units.

Two different classes of teams can be distinguished.

teams which implement a service of the distributed operating system like a printer-team,

teams which provide the run time environment for agents. We call these teams agent-servers.

There is a one-by-one correspondence between agents and agent-servers.

The principal structure of type agent-server is shown in Fig.7 (details are ignored). It consists of

three processes and two monitors.

13

H H Hc"H LADY- agent
team server

kernel
(supporting
LADY)

kernel

H

node 1

1

node 2

interconnection network

LADY- H
team

kernel

node n

Fig. 6 INCAS - overall system architecture

teamtype 'agent-server'

o t h e r ~ . I output I tO
teams 1 I t ~ h e r

~ A I teams
run time

agent link
/

log e~al bus

~ variable part of an agent server

Fig. 7 Mapping of a CSSA-agent into a LADY-team

14

The processes 'message receiver', 'message sender' and the monitors 'mailbox' and 'output buffer'

are needed to implement the asynchronous message interface for agents and to make arriving

messages accessable for the pattern matching access routines of CSSA. The process 'CSSA-agent'

contains the agent-code together with a run time support package which - besides other functions -

transforms system call's into the appropriate sequence of communication primitives at the LADY

level. The communication between agents at the CSSA level is achieved by linking together all agent

servers via the logical bus 'agent link'.

5. Discussion of particular problems

The implementation scheme outlined in the previous chapter which follows closely the alternative 4,

subcase 1 as discussed in chapter 3 has proven to be generally feasible. However, a deeper look into

some of the problems encountered during the implementation phase shows that it is very hard in

practice to assure that A <-- C holds, i.e. that the communication model of the distributed operating

system is a sufficient basis for implementing the communication model at the application level. Below

follows a discussion of the most serious problems encountered during the system implementation.

Problem 1: Message selection

Messages in LADY are received in FIFO order. No special selection mechanisms exist to select

messages from the associated buffer of an input port. In CSSA comfortable means are provided by

the <pattern> and <assertion> field of an operation for message selection. The support of this

mechanism by LADY required to make all messages accessible to the pattern matching algorithms as

soon as they arrive at an input port, This has been achieved by the additional process 'message

receiver' and the monitor 'mailbox' and results in an additional message copy (from the process local

working store to the monitor).

Problem 2 : Non-blocking SEND operation in CSSA

In order to implement a truly non-blocking SEND operation for CSSA all messages sent by an

CSSA-agent are first buffered in a monitor 'output buffer'. The messages are then physically

transferred by the process 'message sender'. In total, each CSSA-agent requires for its

implementation three (light-weight) processes and two monitors.

Problem 3 : Incompatible multicast models

Multicast communication in CSSA is based on naming all agents in one SEND-operation either by

specifying them in a list of receivers or by providing an agent type meaning that all agent objects of

this type are addressed. The latter case can be directly mapped to the concept of port groups in LADY

where all agents of a given type are represented by one specific port group. However, the multicast

mechanisms of LADY cannot be used if the receivers are listed directly in a SEND-operation. The

difficulties are caused by the different addressing schemes in both languages: In LADY, the name of a

logical bus serves as a multicast group name which is used by the communication subsystem to route

15

the message to all the receivers, while in CSSA the set of receivers may dynamically change for each

SEND-operation and so an unknown number of multicast groups can exist at run time. Even the

establishment of a multicast group prior to the sending of a message would not solve the problem,

since the maximum number of multicast groups a team can belong to is fixed at compile time in

LADY.

Another source of incompatibility is the difference in reliability of the multicast approaches in both

languages. CSSA assumes total reliability, i.e. also 'exactly once' semantics for a multicast. Even

the highest possible degree of reliability of a LADY-multicast does not avoid undetected loss of

messages at particular receivers.

Problem 4 : Variable length messages in CSSA

Ports in LADY are typed with fixed length messages. Messages in CSSA are unbounded and of

variable structure. Since all message traffic between CSSA agents is performed through the two

standard ports IN and OUT of the team type 'agent server' interconnected by a logical bus we were

generally faced with the problem of mapping variable length messages at the CSSA-level into fixed

length messages at the LADY-level. Two-level disassembling/assembling of messages at the LADY

and CSSA level could be avoided by limiting the message size associated to agent server ports.

Other minor sources of problems in the implementation of a CSSA run time environment based on

LADY are related to the dynamics in both languages. We will not discuss these issues in more detail

because it is behind the scope of communication models.

6. Conclus ions and lessons learned

The discussion has shown that there is a serious need in distributed systems for the support of

different, possibly rather incompatible communication models due to varying communication

requirements at the distributed OS and application level. In addition, different classes of distributed

applications may have conflicting requirements with respect to the degree of synchrony and

reliability.

If the intended scope of the distributed applications is well known at system design it might be

possible to define a single universal communication interface which meets the OS requirements as

well as the applications requirements. However, if this is not the case (i.e., the application scope is

not well defined) special care must be taken in order to avoid performance penalties and / or loss of

desired functionality.

It is recommended to provide a kernel with simple but very universal communication primitives and

to assemble specific interfaces for the distributed OS and application levels out of such a kernel.

In the INCAS project we could solve most of the problems encountered during system

implementation by an iterative design step which involved also some minor changs to the LADY

16

language. The time consuming copying process for messages in and out of the monitors 'mailbox'

and 'output buffer' within CSSA-agent servers could be finally circumvented by introducing the

concept of 'shared storage' directly accessible to tightly coupled processes within a team. However,

we did not find an acceptable way to bridge the different reliability views taken in the multicast

models of the languages LADY and CSSA.

Acknowledgement

I would like to acknowledge the valuable discussions with my staff members F. Mattern and

D. Wybranietz on early drafts of the paper.

17

References

[MIL87] B.P. Miller, D.L Presotto, M.L. Powell: DEMOS/MP: The Development of a
Distributed Operating System, Software-Practice and Experience Vol. 17, No. 5,
277-290 (1987)

[WAL83] B. Walker, G. Popek, R. English, C. Kline, G. Thiel: The LOCUS Distributed
Operating System, Proc. 9th SOSP, 49-70 (1983)

[MUL84] S.J. Mullender, A.S. Tanenbaum: The Design of a Capability-Based Distributed
Operating System, Report CS-R8418, Amsterdam, The Netherlands, 1984

[CHE84] D. Cheriton: The V-Kernel - A Software Base for Distributed Systems, IEEE-Software
Vol. 1, No. 2, 19-42 (1984)

[BLA85] A.P. Black: Supporting Distributed Applications: Experience with Eden, Proc. 10th
SOSP, 181-193 (I985)

[swI85] D.C. Swinehart, P.T. Zellweger, R.B. Hagman: The Structure of Cedar, Proc. of the
SIGPLAN 85 Symposium on Language Issues in Programming Environments, 230-244
(1985)

[LIS83] B. Liskov, R. Scheifler: Guardians and Actions: Linguistic Support for Robust
Distributed Programs, ACM TOPLAS VOL. 5, No. 3, 381-404 (1983)

[AND82] G.R. Andrews: The Distributed Programming Language SR-Mechanisms, Design and
Implementation, Software-practice and Experience 12, 719-753 (1982)

[SLM85] G.T. Almes, A.P. Black, E.D. Lazowska, J.D. Noe: The Eden System: A Technical
Review, IEEE Trans. on Software Engineering Vol. 11, 43-59 (1985)

[STR85] R.E. Strom, S. Yemini: The NIL Distributed Systems Programming Language: A Status
Report, ACM SIGPLAN Notices Vol. 20, No. 5, 36-44 (1985)

[CAR86] N. Carriero, D. Gelernter: The S/Net's Linda Kernel, ACM TOCS Vol. 4, No. 2,
110-129 (1986)

[SCO87] M.L. Scott: Language Support for Loosely Coupled Distributed Programs, IEEE-Trans.
on Software Engineering Vol. 13, No. 1, 88-103 (1987)

[SCO86] M.L Scott: The Interface Between Distributed Operating System and High-Level
Programming Language, Proc. of the Int. Conference on Parallel Processing, 242-249
(1986)

[RAS81] R. Rashid, G. Robertson: Accent: A Communication Oriented Network Operating
System Kernel, Proc. of the 8th SOSP, 64-75 (1981)

[FIT86] R. Fitzgerald, R.F. Rashid: The Integration of Virtual Memory Management and
Interprocess Communication in Accent, ACM TOCS Vol. 4, No. 2, 147-177 (1986)

[LIS851 B. Liskov: Limitation of Synchronous Communication with Static Process Structure in
Languages for Distributed Computing, Techn. Report No. CMU-CS-85-168,
Carnegie-Mellon-University, 1985

[JUL85] E. Jul: A Classification of Distributed Operating Systems, Techn. Rep. 85-05-01, Dept.
of Computer Science, Univ. of Washington, 1985

[SHA84] S.M. Shatz: Communication Mechanisms for Programming Distributed Systems,
tEEE-Computer Vol. 17, No. 6, 21-29 (1984)

18

[NEH871

[BIR85]

[CHE85]

[MAS841

[BOE77]

DVYB861

[LIS79]

[HEW77]

[BEI85]

J. Nehmer, D. Haban, F. Mattern, D. Wybranietz, D. Rombach: Key Concepts of the
INCAS Multicomputer Project, IEEE Trans. on Software Engineering Vol. 13, No. 8,
913-923 (1987)

A.D. Birell: Secure Communication Using Remote Procedure Calls, ACM TOCS Vol. 3,
No. 1, 1-14 (1985)

D.R. Cheriton, W. Zwaenepol: Distributed Process Groups in the V-Kernel, ACM TOCS
Vol. 3, No. 2, 77-107 (1985)

R. Massar: LADY - Design and Implementation of a Language for Distributed Systems,
Ph.D. - Thesis, University of Kaiserslautern, Dept. of Computer Science (1984)

H.P. B6hm, H.L. Fischer, P. Raulefs: CSSA-Language Concepts and Programming
Methodology, SIGPLAN -Notices, Vol. 12, No. 8, 100-108 (1977)

D. Wybranietz, D. Haban, P. Buhler: Some Extensions of the Language LADY, Techn.
Report SFB 124-28/86, Dept. of Computer Science, University of Kaiserslautem 1986

B. Liskov: Primitives for Distributed Computing, Proc. of the 7th SOSP, 33-42 (1979)

C. Hewitt: Viewing Control Structures as Patterns of Passing Messages, Artificial Intell.
Vol. 8,323-364 (1977)

C. Beilken, F. Mattern: The Distributed Programming Language CSSA - A Very Short
Introduction Dept. of Computer Science, Univ. of Kaiserslautern, Techn. Report 123/85
(1985)

