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Abstract 

Existing experimental distributed systems usually support a single mechanism for message-based 

communication. It is argued that different needs at the operating system level and at the application 

level make it highly desirable to support several, possibly incompatible communication interfaces in 

the same distributed system.The resulting problems are investigated and appropriate architectural 

solutions are proposed. As an example we demonstrate how the two different distributed languages 

LADY and CSSA with their distinct communication models are implemented in the INCAS project 

and discuss some problems encountered during the system design. 
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1. Introduction 

Existing research projects on distributed systems are usually based on a single communication model 

for structuring distributed programs. The communication model is supported at run time by a kernel 

which offers a suitable set of communication primitives implementing the model. These primitives 

are made accessible to users either by the provision of library interface packages as in Demos-MP 

[MIL87], Locus [WAL83], Amoeba [MUL84], and the V-kernel [CHE84] or by a distributed 

programming language as for example in Eden [BLA85, ALM85], Cedar [SWI85], Argus [LIS83], 

SR lAND82], NIL [STR85], Linda [CAR85], and Lynx [SCO88]. 

This approach is based on the assumption that the distributed operating system and the various 

distributed applications running on top of the kernel can make efficient use of the same 

communication mechanism. According to our opinion based on experiences within the INCAS 

project this assumption is generally not true. 

Distributed operating systems and distributed applications usually have specific communication 

requirements which might not be compatible with each other. Careful design considerations 

concerning the support of the various communication interfaces in distributed systems are necessary 

in order to avoid system misconceptions leading to severe performance degradations and / or loss of 

desired functionality. 

Relative little attention has been spent by researchers to address this issue. Scott [SCO86] discusses 

in his paper the related problem of appropriate support of high-level distributed programming 

languages by distributed operating system kernels. By three implementations of the language Lynx 

[SCO87] on different distributed operating system kernels he could show that simple communication 

primitives provided by the kernel are best. However, the interface problem between distributed 

applications and the distributed operating system is not addressed in the paper. In Accent [RAS81, 

FIT86] the support of multiple distributed programming languages was an explicit design goal but 

restricted to RPC-based communication models. 

This paper is organized as follows: In section two we classify the communication interfaces in 

distributed systems. In section three we provide a framework for architectural solutions based on 

varying communication requirements for distributed operating systems and distributed applications. 

In section four it is discussed how two rather different communication models at the distributed OS 

level and the application level are realized in the INCAS project based on the two different languages 

LADY and CSSA. Section five gives an overview of the problems encountered during the system 

design of INCAS. The final section six discusses the possible lessons to be learned and summarizes 

our conclusions. 



2. The communication interfaces in distributed systems 

Let us take a deeper insight into the different types of communication interfaces we are generally 

faced with in distributed systems. It is assumed that the distributed operating system and the 

distributed applications consist of multiple communicating modules called operating system modules 

(OSM's) and application program modules (APM's). 

From Fig. 1 we can identify three interface types: 

A : interface between different APM's 

B : interface between APM's and OSM's 

C : interface between different OSM's 
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Fig. 1 Interface types between application program modules (APM's) and operating system modules 

(OSM's) 

All three interface types will result in specific requirements on the underlying communication model 

supporting controlled communication between modules of a given type. The potential of modules 

operating as active and independent units on different processing nodes offers a broad variety of 

possible assessments for communication interfaces. At present no consensus on a consistent and 

comprehensive classification has been reached in the research community. Useful attempts as the 

basis for further discussion have been contributed by Shatz [SHA84], Jul [JUL85], and Liskov 

[LIS85]. For the following discussions we will use a classification scheme for communication 

models which takes into account the three design parameters 

• synchrony 

• communication pattern 

• reliability 



The parameter 'synchrony' may obtain the values 'synchronous' and 'asynchronous'. The parameter 

'communication pattern' may obtain the values 'notification' and 'service'. Notification-based 

communication patterns support a one-way communication as used in producer-consumer type 

relations between communicating modules. Service-based communication supports the request/reply 

paradigm as needed for client/server systems. The reliability parameter may take the values 'don't 

care', 'at-least-once', 'at-most-once', 'all-or-nothing', and 'exactly once'. 

While it is difficult to recommend certain structures for the application-dependent interface type A it 

seems more promising to define precise requirements for the interface types B and C because they are 

devoted to the well known scope of operating systems. However, this assumption is in contradiction 

to the reached consensus on adequate structuring models for distributed operating systems. Different 

structuring philosophies (process/message paradigm as opposed to object/atomic action paradigm) 

and the taste of designers for what is felt to be important have led to rather incompatible proposals for 

communication models at the distributed operating system level. See for example the different views 

taken in the languages SR lAND82], NIL [STR85], EPL [BLA85] and LADY[NEH87] which 

emphasize operating/communication systems as the application scope. 

In order to simplify the discussion we make the reasonable assumption that the communication 

mechanism provided for the interaction between APM's and OSM's (interface type B) is a subset of 

the mechanism provided for communication within the operating system itself (interface type C), i.e. 

B~C. Traditionally, the communication at the interface type B is restricted to a synchronous, service- 

oriented call. RPC-like mechanisms [BIR85] are a sufficient realization basis. The requirement stated 

above means that any communication model at the interface type C includes the support of a 

synchronous, service directed call. Within the distributed operating and the distributed applications 

system it might be necessary to provide additional communication primitives for the easy realization 

of pipelined and multicastforoadcast communication structures. 

3. A discussion of systematic architectural  al ternatives 

We now discuss various alternatives for the communication interface types A, B, and C with respect 

to the architectural support needed. As the general architectural model we base our considerations on 

the distributed kernel approach. We assume that a distributed kernel provides the functional support 

for the creation/termination of communicating modules (processes, process groups) and the 

system-wide communication between them. Operating system services and application programs are 

both organized as modules running above the kernel. 



Alternative i : A = B = C 

In our first alternative the three interface types A-C are assumed to be identical of some type F. In 

practice, this approach would lead to a communication model (and a supporting language) which 

primarily regards communication requirements at the distributed OS level and simply forces 

applications to use the same model even if inadequate for the intended application scope. Most 

existing research projects on distributed systems take this view as pointed out in the introduction. 

Fig. 2 shows the resulting system architecture. It is sufficient to provide a distributed kernel with 

communication primitives supporting directly the functionality F. All modules of type APM or OSM 

will use these primitives for communication across the identical interfaces A, B and C. Although this 

approach greatly simplifies the design of distributed systems it might put unacceptable limitations on 

the distributed applications. 

Alternative 2 : A= C 

In this alternative it is assumed that applications are written in a language which relies on a subset of 

the communication mechanisms as provided for the communication between OSM's. The required 

architectural support is basically the same as depicted by Fig. 2 if one replaces the function set F at 

the kernel interface by C. The overall judgement of this alternative is the same as for alternative 1. 
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Fig. 2 Kernel architecture which supports the communication functions F as the only interface 

between APM and OSM modules 

Alternative 3 : C ¢ A 

In this alternative the communication requirements at the distributed OS level are considered a subset 

of those provided for applications. The architectural support is identical with alternative 2 if the 

function set F is replaced by A in Fig. 2. Although both alternatives 2 and 3 are comparable with 

respect to the resulting system architecture there seems to be a substantial difference in practice: the 

communication mechanisms of alternative 3 provided by the kernel are modelled primarily with 

respect to the scope of the applications under consideration. OS requirements are integrated into the 

communication model by appropriate extensions. 



It is expected that this approach will yield communication interfaces with a richer set of 

communication primitives than obtained by the opposite view taken by alternative 2. The successful 

application of this approach dictates, however, that the requirements for the interface types A and C 

harmonize. 

As an example, let us assume that the intended applications for a distributed system are sufficiently 

supported by the functions SEND, RECEIVE, REPLY, COPY_TO and COPY_FROM with the 

semantics as defined for the V-kernel [CHE84]. 

At the distributed OS level the requirements for appropriate communication support might have been 

defined by the functions SEND, RECEIVE, REPLY and the additional demand for a multicast 

capability. The multicast capability can be achieved by the introduction of process groups and the 

additional function GET_REPLY as explained in [CHE85]. Both provisions are natural extensions of 

the original model and can easily be integrated into a final set of primitives represented by the 

functions SEND, RECEIVE, REPLY, COPY_TO, COPY_FROM and GET_REPLY. 

Alternative 4 : A ~ C 

So far we have discussed alternatives which lead to kernel architectures directly supporting the 

interfaces A, B and C. The notation AeC will be used now to indicate that A and C are not subsets of 

each other. This is the most realistic assumption. Two different subcases can be distinguished. 

Subcase 4.1 : A <-- C, 

This case is characterized by the fact that C is an adequate basis for the construction of A (expressed 

by A <-- C). We generally consider this property being fulfilled if C is more primitive, less restrictive 

and less reliable than A. The required architectural support for this subcase is illustrated by Fig. 3. 

The kernel offers directly the functionality as required by the distributed operating system (interface 

C). The higher level needs of distributed applications are supported by kernel extension packages 

(KEP's) which are constructed out of the kernel primitives. Since A is based on C the communication 

between APM's and OSM's is performed by the transformation of service requests to OSM's into 

corresponding primitives of C. As an example it is conceivable to provide an asynchronous, 

notification-oriented and unreliable communication mechanism at interface C while an RPC 

mechanism with at-most-once semantics is provided at the interface A. It has been shown by several 

implementations that a reliable RPC can be sufficiently built on top of an unreliable asynchronous 

message passing mechanism [BIR85]. 
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Fig. 3 System architecture for hierarchically dependent communication mechanisms at the OS and 

application level 

Subease 4.2 : A <t~ C, 

This is the most general case since no assumptions are made about direct relations between A and C 

(expressed by A <4t- C). The only assumption we make is that it is always possible to find a 

common primitive communication model S for which it is true that 

C <-- S 

A <-- S 

i.e. both interfaces C and A can be constructed out of S. The resulting system architecture is shown 

in Fig. 4. The distributed OS kernel offers the primitives for the communicauon model S which is 

neither sufficient for describing communication issues at the distributed OS level nor at the application 

level nor between them. Hence, it is mandatory to provide different KEP's for the support of  OSM's 

and APM's on top of  the kernel. In order to facilitate communication between APM's and OSM's the 

kernel extension packages have to provide the functional support for the interface B in addition to A 

or C respectively. 
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Fig. 4 System architecture for the support of different communication models at the OS and 

application level which are based on the common communication mechanism S 

4. Multiple communication interfaces in the INCAS-project: A case study 

The INCAS* multicomputer project [NEH87] was started in 1983 with strong emphasis on 

methodological aspects in the design of distributed systems. A topic of the project was the support of 

program development at the operating system and application level by powerful distributed 

programming languages. It is worth to notice that long before the INCAS project was started the two 

languages LADY (Language for Distributed Systems) and CSSA (Computing System for Societies of 

Agents) had been developed independently by two different research groups for different purposes. 

The development of LADY as an implementation language for distributed operating systems was 

started in 1980 at the University of Kaiserslautem. A first prototype was operational in 1983 on a 

network of TI-990 microcomputers [MAS84]. The development of CSSA dates back to 1977 

[BOE77] by a research team at the University of Bonn. The intended application scope was closely 

related to concurrent AI algorithms. In 1983 both research teams joined to form the INCAS project at 

* ( Incrementa l  A__rchitecture for Distributed ~S_.ystems, funded by the Deutsche 

Forschungsgemeinschaft as part of the SFB 124) 



the University of Kaiserslautern and decided to build an experimental distributed system supporting 

advanced versions of both languages for the design of distributed operating systems and application 

programs. The operating system team took the opinion that a sufficient design methodology for 

distributed operating systems should not put any constraints on the communication model on which 

distributed application languages are based. The implementation of a run time environment for CSSA 

by LADY was considered a test case for the suitability of the underlying structuring concepts in 

LADY. 

As the next step we will give a short overview of both languages with special attention to the 

communication models. 

The implementation strategy for both languages follows the alternative 4.1 as described in the 

previous section, i.e. it was assumed that the communication model in CSSA could be easily 

constructed out of the primitives of LADY. After having sketched the general implementation strategy 

we will discuss some problems encountered during the implementation phase. 

4.1 Overview of the language LADY 

The LADY language reflects our view of an adequate linguistic support for describing distributed 

operating systems. The structuring concepts of LADY are expressed in terms of three language levels 

as illustrated in Fig. 5 [WYB85]. 

m o d u l e  

sys tem 

I 
Fig. 5 Language levels of LADY 
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The fundamental structuring unit of  LADY is the ~¢am. A team consists of  a collection of  tightly 

coupled processes which communicate via shared memory by using monitor modules or lower level 

synchonization primitives such as semaphores. Teams are considered the smallest indivisable 

distribution units, i.e. they have to be placed as a whole at one processing node. Several teams 

constitute a system. 

Systems and teams may be combined into a higher level system. This definition of  systems allows 

nested system structures of  any depth.Teams interact with other teams via message passing. A port 

interface encapsulates the internal structure of  teams against the external environment. Ports are 

typed, i.e. they can only handle messages of a given type. Message types can be defined as arbitrary 

structures of  fixed length. The port concept in LADY is symmetric as in NIL [STR85] : input ports 

define the message interface exported by a team, while output ports define the message interface 

imported by a team from its environment. A process can send a message to a destination only if a 

connection between the output and a corresponding input port has been established beforehand. 

Two types of connections between input and output ports can be defined: 

a) logical channels, which provide for a one-to-one link between an output and an input port; 

b) logical buses, which provide for a many-to-many link between output an input ports, thereby 

offering a multicast communication capability. 

Input ports can be associated with a buffer of  fixed length at declaration time which allows to store a 

maximum number of messages of a given type. The buffer capacity can be specified to be zero. 

The semantics of one-to-one communication via logical channels can be described as follows: 

a process attempting to send a message to a receiver suspends execution until the message has been 

successfully stored at the receiver's site (either in the buffer or in the local working store of  the 

receiving process in case that buffer capacity zero was specified). Symmetrically a receiving process 

is blocked until a message has arrived at the addressed input port and copied into the receiver's local 

working store. (A timeout mechanism is also provided for an abnormal termination of a SEND or 

RECEIVE operation). If  no buffer space has been associated with an input port, the one-to-one 

communication is semantically equivalent to the synchronization send [LIS79]. If buffers are 

envolved the described semantic falls into the class of  asynchronous communication. 

Logical buses offer three distinct transmission modes, which differ in their addressing selectivity: 

a) a broadcast message which is sent to all input ports connected to this bus; 

b) a multicast message which is sent to all input ports at the logical bus which belong to the same 

port group (port groups are defined by special port group identifiers) 

c) an individual message sent to a single input port connected to the bus. 

The transmission modes are selected by different SEI '~  statements. 

Reliability of  varying degree can be achieved for multicast/broadcast operations by an additional 

function which allows to dynamically define the expected success of a SEND-operation in terms of 
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the number of positive acknowledgements from receivers (the default being 0). Notice that 

acknowledgement messages are sent automatically by the kernel if not explicitely disabled at the 

receiver's site. 

More details on the communication model in LADY can be found in [WYB86]. 

4.2 Overview of the language CSSA 

The underlying computational model of the language CSSA is based on the notion of actors called 

agents in CSSA originally developed by Hewitt [HEW77]. An agent is an active unit consisting of a 

cluster of operations which can be activated by receiving messages from other agents. Messages 

arriving at an agent while it is performing an operation are collected in a mailbox associated which 

each agent, i.e. messages are processed one at a time. 

The message passing scheme in CSSA is asynchronous and notification-oriented. A message may be 

issued by the statement 

SEND <op-name> <message> TO <target-agent> 

which is a non-blocking operation. A multicast send is possible by specifying a set of agents as the 

target. 

The set is specified by either a list of agent names or by an agent type. In the latter case the set is 

defined by all agents instantiated from this type. 

A sender can request a reply by specifying 

SEND . . . . . . .  REPLY TO <op-name> 

The receiving agent responds to such a reply-obligation by issuing a 

REPLY <message> 

at the end of an operation. The target agent and the operation name are obtained from the message 

header of the message being processed. CSSA distinguishes between implicit and explicit message 

receipt. Since these differences are irrelevant for the underlying communication model only the 

implicit message receipt will be discussed here (the reader is referred to [BEI85] for further details). 



12 

An agent basically consists of  a set of variable declarations and several clusters of named operations: 

<var-decl> 

OPERATION <name> <pattern> <assertion> 

IS 

END OPERATION 

<further operation definions>; 

The global variables constitute the state of an agent. The agent, when not executing an operation, 

scans its mailbox for executable messages. A necessary condition for a message to trigger the 

activation of  an operation is the matching of the operation's name in the agent specification with an 

operation name contained in a message. The <pattern> and <assertion> part in the operation header 

allow to specify additional conditions for the activation of  an operation by arriving messages. The 

definition of  the <pattern> field in the operation's header enforces a pattern match between <pattem> 

and the message contents before the message is processed. By defining the <assertion> field the user 

can specify an arbitrary predicate on the values of the message parameters and variables of the agent. 

The message transport is assumed to be totally reliable at the CSSA-level, but message propagation 

delays are assumed to be of undefined and finite length (as a consequence messages may be received 

out of  order). 

4.3 Overview of  the system architecture 

Fig. 6 shows the overall system architecture of the INCAS-system. The distributed operating system 

kernel directly supports the communication model of LADY. Therefore, the kernel is only aware of 

teams as the communicating units. 

Two different classes of teams can be distinguished. 

teams which implement a service of the distributed operating system like a printer-team, 

teams which provide the run time environment for agents. We call these teams agent-servers. 

There is a one-by-one correspondence between agents and agent-servers. 

The principal structure of type agent-server is shown in Fig.7 (details are ignored). It consists of 

three processes and two monitors. 
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The processes 'message receiver', 'message sender' and the monitors 'mailbox' and 'output buffer' 

are needed to implement the asynchronous message interface for agents and to make arriving 

messages accessable for the pattern matching access routines of CSSA. The process 'CSSA-agent' 

contains the agent-code together with a run time support package which - besides other functions - 

transforms system call's into the appropriate sequence of communication primitives at the LADY 

level. The communication between agents at the CSSA level is achieved by linking together all agent 

servers via the logical bus 'agent link'. 

5. Discussion of particular problems 

The implementation scheme outlined in the previous chapter which follows closely the alternative 4, 

subcase 1 as discussed in chapter 3 has proven to be generally feasible. However, a deeper look into 

some of  the problems encountered during the implementation phase shows that it is very hard in 

practice to assure that A <-- C holds, i.e. that the communication model of the distributed operating 

system is a sufficient basis for implementing the communication model at the application level. Below 

follows a discussion of the most serious problems encountered during the system implementation. 

Problem 1: Message selection 

Messages in LADY are received in FIFO order. No special selection mechanisms exist to select 

messages from the associated buffer of an input port. In CSSA comfortable means are provided by 

the <pattern> and <assertion> field of  an operation for message selection. The support of  this 

mechanism by LADY required to make all messages accessible to the pattern matching algorithms as 

soon as they arrive at an input port, This has been achieved by the additional process 'message 

receiver' and the monitor 'mailbox' and results in an additional message copy (from the process local 

working store to the monitor). 

Problem 2 : Non-blocking SEND operation in CSSA 

In order to implement a truly non-blocking SEND operation for CSSA all messages sent by an 

CSSA-agent are first buffered in a monitor 'output buffer'. The messages are then physically 

transferred by the process 'message sender'. In total, each CSSA-agent requires for its 

implementation three (light-weight) processes and two monitors. 

Problem 3 : Incompatible multicast models 

Multicast communication in CSSA is based on naming all agents in one SEND-operation either by 

specifying them in a list of  receivers or by providing an agent type meaning that all agent objects of 

this type are addressed. The latter case can be directly mapped to the concept of port groups in LADY 

where all agents of a given type are represented by one specific port group. However, the multicast 

mechanisms of LADY cannot be used if the receivers are listed directly in a SEND-operation. The 

difficulties are caused by the different addressing schemes in both languages: In LADY, the name of a 

logical bus serves as a multicast group name which is used by the communication subsystem to route 
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the message to all the receivers, while in CSSA the set of receivers may dynamically change for each 

SEND-operation and so an unknown number of  multicast groups can exist at run time. Even the 

establishment of a multicast group prior to the sending of a message would not solve the problem, 

since the maximum number of multicast groups a team can belong to is fixed at compile time in 

LADY. 

Another source of incompatibility is the difference in reliability of the multicast approaches in both 

languages. CSSA assumes total reliability, i.e. also 'exactly once' semantics for a multicast. Even 

the highest possible degree of reliability of  a LADY-multicast does not avoid undetected loss of 

messages at particular receivers. 

Problem 4 : Variable length messages in CSSA 

Ports in LADY are typed with fixed length messages. Messages in CSSA are unbounded and of 

variable structure. Since all message traffic between CSSA agents is performed through the two 

standard ports IN and OUT of the team type 'agent server' interconnected by a logical bus we were 

generally faced with the problem of mapping variable length messages at the CSSA-level into fixed 

length messages at the LADY-level. Two-level disassembling/assembling of  messages at the LADY 

and CSSA level could be avoided by limiting the message size associated to agent server ports. 

Other minor sources of  problems in the implementation of  a CSSA run time environment based on 

LADY are related to the dynamics in both languages. We will not discuss these issues in more detail 

because it is behind the scope of communication models. 

6. Conclus ions  and  lessons learned 

The discussion has shown that there is a serious need in distributed systems for the support of 

different, possibly rather incompatible communication models due to varying communication 

requirements at the distributed OS and application level. In addition, different classes of distributed 

applications may have conflicting requirements with respect to the degree of  synchrony and 

reliability. 

If  the intended scope of the distributed applications is well known at system design it might be 

possible to define a single universal communication interface which meets the OS requirements as 

well as the applications requirements. However, if this is not the case (i.e., the application scope is 

not well defined) special care must be taken in order to avoid performance penalties and / or loss of 

desired functionality. 

It is recommended to provide a kernel with simple but very universal communication primitives and 

to assemble specific interfaces for the distributed OS and application levels out of such a kernel. 

In the INCAS project we could solve most of  the problems encountered during system 

implementation by an iterative design step which involved also some minor changs to the LADY 
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language. The time consuming copying process for messages in and out of the monitors 'mailbox' 

and 'output buffer' within CSSA-agent servers could be finally circumvented by introducing the 

concept of 'shared storage' directly accessible to tightly coupled processes within a team. However, 

we did not find an acceptable way to bridge the different reliability views taken in the multicast 

models of the languages LADY and CSSA. 
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