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ABSTRACT 
An examination of the structure of fault tolerant  systems incorporating error  recovery, and in 
part icular  backward error  recovery, indicates a part i t ioning into two broad classes. Two canonical 
models, each representing a part icular  class of systems have been constructed. The first model 
incorporates objects and actions as the enti t ies for program construction while the second model 
employs communicating processes. Applications in the areas  such as office informat ion and 
database systems typically use the first model while applications in the area  of real t ime process 
control are usually based on the second model. The paper claims that  the two models are duals  of 
each other and presents arguments  and examples to substant iate  this claim, which is in effect, an 
extension of the ear l ier  duali ty argument presented by Lauer and Needham. An in te res t ing  
conclusion to be drawn from this study is that  there is no inherent  reason for selecting one model 
over the other, but that  the choice is governed by the architectural  features of the layer over 
which the system is to be constructed. A pleasing consequence has been the recognition that  the 
techniques which have been developed for one model, turn  out to have interest ing and hitherto 
unexplored duals in the other model. 

I n d e x  Terms :  fault  tolerance, rel iabil i ty,  distr ibuted systems, object based systems, real t ime 
systems, operating systems. 
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1. Introduct ion  

An investigation of backward error recovery based fault tolerance techniques employed in 

a variety of systems reveals two general classifications. We propose two models, each embodying 

the major characteristics of the corresponding class of systems. One widely used technique of 

introducing fault tolerance - particularly in distributed systems - is based on the use of atomic 

actions (atomic transactions) for structuring programs [1]. An atomic action possesses the 

properties of serializability, failure atomicity and permanence of effect. Atomic actions operate on 

objects (instances of abstract data types). The class of applications where such an object and action 

(OA) based model has found usage include banking, office information, airline reservstion and 

database systems. A number of other applications - typically concerned with real time control - 

are structured as concurrent processes communicating via messages. Some examples are process 

control, avionics and telephone switching systems. Fault  tolerance in such systems is introduced 

through a controlled use of checkpoints by processes. We will refer to this way of structuring an 

application as employing the process and message (PM) model. 

In this paper we claim that the OA and PM approaches to the provision of fault tolerance 

are duals of each other and present arguments and examples to substantiate our claim. As a 

result of this observation, we can state that there is no inherent reason for favouring one approach 

over the other; rather the choice is largely dictated by the architectural features of the underlying 

layer. Indeed, we would now claim that the differences between the two approaches are basically 

a matter of viewpoint and terminology. Our investigations have been influenced by the well 

known duality paper of Lauer and Needham [2] which puts forward the notion that within the 

context of operating systems, procedure based systems and message based systems are duals of 

each other. The authors observed that (1) a program or subsystem constructed strictly according 

to the primitives defined by one model can be mapped directly into a dual program or subsystem 

which fits the other model; (2) the dual programs or subsystems are logically identical to each 

other, and they can also be made textually very similar; and (3) the performance of a program or 

subsystem from one model will be identical to its counterpart .  The present work may be 

considered as an extension of the ideas put forward in that paper with regard to fault tolerance. 

The paper is structured as follows: sections two and three describe the essential aspects of 

OA and PM models respectively. Section four contains the arguments intended to establish the 

duality between OA and PM. Section five contains a few simple examples, and the concluding 

section summarizes the paper and discusses possible impl ica t ions  of the dual i ty  claim. 

Throughout the paper, we will assume a distributed system composed out of a number of nodes 

connected by some communication medium. 
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2. Object and Action Model 

Objects are instances of abstract data types. An object encapsulates some data and provides 

a set of operations for manipulat ing the data, these operations being the only means of object 

manipulat ion.  In most object based faul t  to lerant  systems that  we know (see [3-8] for a 

representative sample), an operation is performed by invoking an object with a remote procedure 

call (RPC), which passes value parameters to the object and returns the results of the operation to 

the caller. Programs which operate on objects are executed as atomic actions with the properties 

of (i) serializability, (ii) failure atomicity and (iii) permanence of effect [1] The first property 

ensures that concurrent executions of programs are free from interference (ie.  a concurrent  

execution can be shown to be equivalent to some serial order of execution [9,10]). The second 

property ensures that a computation can either be terminated normally, producing the intended 

results or be aborted, producing no results. This property is obtained by appropriate use of 

backward error recovery, which is invoked whenever a failure that cannot be masked occurs. 

Typical failures causing an action to be aborted are node crashes and communication failures such 

as lost messages. It is reasonable to assume that once a computation terminates normally, the 

results produced are not destroyed by subsequent node crashes. This is the third property - 

permanence of effect - which ensures that state changes produced are recorded on stable storage 

which can survive node crashes with a high probability of success. A two-phase commit protocol is 

required during the termination of an action to ensure that either all the objects updated within 

the action have their new states recorded on stable storage (normal termination), or no updates 

get recorded (aborted termination). 

A variety of concurrency control techniques for atomic actions to enforce the serializability 

property have been reported in the literature. A very simple and widely used approach is to 

regard all operations on objects to be of type read or write, which must follow the well known 

locking rule permitt ing concurrent reads but only exclusive writes. In a classic paper [9], Eswaren 

et al. proved that  actions must follow a two-phase locking policy (see Fig. 1). During the first 

phase, termed the growing phase, a computation can acquire locks on objects but not release them. 

The tail end of the computation constitutes the shrinking phase, during which time held locks can 

be released but no locks can be acquired. Now suppose that an action in its shrinking phase is to 

be aborted, and that some updated objects have been released. If some of these objects have been 

locked by other actions, then abortion of the action will require these actions to be aborted as well. 

To avoid this cascade abort problem, it is necessary to make the shrinking phase instantaneous, as 

indicated by the dotted lines. 

Any atomic action can be viewed at a lower level as constructed out of more primitive 

atomic actions - this is illustrated in Fig. 2 which also introduces the action diagram which will be 

used in this paper (this notation is based on that used by Davies [11]). According to Fig. 2, action 

B's constituents are actions B1, B2, B3 and B4. A directed arc from an action (e.g. A) to some other 
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Fig. 1. Two phase locking. 
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Fig. 2. Action diagram. 

action (e.g. B) indicates that B uses objects released by A. Optionally, an arc can be labelled, 

naming the objects used by the action. In Fig. 2, B uses objects a, b and c and C uses object a which 

has been released by B. Actions such as B 2 and B3 are executed concurrently. Nested actions give 

rise to nested recovery. Suppose time has advanced up to the point shown by the vertical arrow, 

and an error is detected in B 3 causing it to be aborted. What happens after B3's recovery? The 

question must be resolved within the scope of B - the enclosing action. B can provide a specific 

exception handler to deal with this particular eventuality (such exception handling techniques 

have been discussed by Taylor [ 12]). If no handler is available, then a failure of B 3 will cause B to 

be aborted. 
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One of the most important  aspects of the OA model from our point of view is the fact that  

objects and act ions a re  the two p r imary  en t i t i es  from which an a p p l i c a t i o n  p r o g r a m  is 

constructed. Any implementation of actions and objects wil l  requi re  processes (cl ients  and 

servers) for carrying out the required functions. However, the role played by processes is hidden 

at the application level. Similarly,  there is no explicit use of message passing between entit ies,  

since RPCs hide the details  of message interactions between clients and servers. For example, in 

the Argus programming system [3], the implementat ion of guardians (objects) requires a number 

of processes for receiving and executing calls from clients - but  processes are not visible enti t ies to 

be used explicitly by an appl ica t ion  program.  Taylor  [12] descr ibes  a number  of ways of 

implementing atomic actions using different process structures. In the OA model, objects are  long 

lived enti t ies and are the main repositories for holding system states,  while actions are short lived 

entities. 

3. Process  and Message Model 

In contrast  to the OA model, where processes and messages play at  most a secondary role, 

the PM model has them as the pr imary enti t ies for s t ructur ing programs. An application is 

s tructured out of a number of concurrent and interact ing processes. A notation for describing the 

PM model that  has received much attention is the communicating sequential processes (CSP) 

notation [13] which can be used for specifying a concurrent system by a fixed number of processes 

interacting via synchronous message passing. The topic of backward er ror  recovery among 

interacting processes has been studied extensively, e.g.[ 14-18], beginning with the study reported 

in [19]. 

The PM model will be assumed to have the following characteristics:  (1) processes do not 

share memory, at  least  explicitly, and communicate via messages  sent  over the under ly ing  

communication medium; (2) appropriate communication protocols ensure that  processes can send 

messages rel iably such that  they reach their  intended dest inat ions uncorrupted and in the sent 

order; (3) a process can take a checkpoint to save its current  s tate on some reliable storage medium 

The notion of a consistent global state of a system is central  when considering the recovery 

ofinteract ingprocesses.  A g l o b a l s t a t e o f a  system is the set oflocal  states,  one from each process 

(a precise formulation is presented in [20]). The interactions among processes can be depicted 

using a t ime diagram, such as that  shown in Fig. 3. Here, horizontal l ines are t ime axes of 

processes and sloping arrows represent messages. A global s tate is a cut d iv id ing  the t ime 

diagram into two halves. A cut in the' t ime d iagram is consistent (consistent global state) if  no 

arrow star ts  on the r ight  hand side of the cut and ends on the left hand side of it. Cut C1 in the 

figure is consistent; but cut C2 is not, since it indicates that  process q has received a message 

which has not yet been sent by r. 
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In a system of interacting processes, the recovery of one process to its checkpoint can create 

an inconsistent global state, unless some other relevant processes are rolled back as well. This 

leads to the notion of a consistent set of checkpoints or a recovery line [21]: a set of checkpoints, one 

from each process, is consistent if the saved states form a consistent global state. Fig. 4 illustrates 

the notions of consistent and inconsistent sets of checkpoints where opening square brackets on 

P 

C1 ," C2 e ~ fail 

E "'E - 

E ............ e -  l \ 

Fig. 4. Consistent and inconsistent sets of checkpoints. 

time 

process axes indicate checkpoints. Suppose process p fails at the point indicated by the vertical 

arrow and is rolled back to its latest checkpoint. The global state of the system as represented by 

cut C2 is clearly inconsistent; the set of checkpoints on recovery line C1 is however consistent. 

Thus a failure of p can cause a cascade rollback of all the four processes - this is the domino effect 
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mentioned in [19]. The dynamic determinat ion of a recovery line is a surprisingly hard task; the 

reader  should consult [17] for a clear exposition. 

The domino effect can be avoided if  processes coordinate the checkpointing of their  states. 

A well known scheme of coordinated checkpoints is the conversation scheme [15,19]. The set of 

processes which part icipate in a conversation may communicate freely between each other but 

with no other processes. Processes may enter  the conversation at  different times but, on entry, 
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Fig .  5. Conversations. 
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each must establish a checkpoint (see Fig. 5). In Fig. 5, a closing bracket  indicates that  all  

part icipat ing processes must exit at the same time (brackets will not be explicitly drawn in the 

subsequent diagrams). I fa  process within a conversation fails then all the part ic ipat ing processes 

are rolled back to the respective checkpoints es tab l i shed  at  the s t a r t  of the conversat ion.  

Conversations can be nested as shown in the figure. 

Conversations provide a convenient s t ructur ing concept for introducing fault  tolerance in a 

large class of real  t ime systems [22]. The need to respond promptly to changes in the external  

environment dictates that  most real t ime systems have an i terat ive nature.  The PM model 

provides a na tura l  way of expressing such systems in the form of interact ing cyclic processes with 

synchronization points usually associated with t iming constraints. A study of real t ime system 

structure for avionic systems by Anderson and Knight  [22] indicated that  synchronization of 

processes in such a system stems from the need to synchronize with the events in the external  

environment,  ra ther  than from any inherent  needs of processes themselves. Fig. 6 depicts a 

typical synchronization requirement.  An informal interpretat ion of such a synchronization graph 
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Fig. 6. A Synchronization graph. 

is as follows (see [22] for a precise formulation): process P1 repeatedly ini t iates a computation at  

time T1 which must finish by time T 3 (T 3 :> T1); processes P2, P3 and P4 complete two i terations in 

the interval  T1 to T 3. Any interactions between P2, P3 and P4 can be performed within the 

confines of two conversations: one s tar t ing at  T1 and finishing at  T2 and the other s tar t ing at  T2 

and finishing at T3. The use of conversations for introducing fault  tolerance in the manner  

indicated here is discussed at  length in [22]. 

The most important  aspects of the PM model relevant to this paper are summarized below. 

An application is programmed in terms of a number of processes interact ing via message passing. 

If processes establish checkpoints in an a rb i t ra ry  manner  then there can be a danger of cascade 

rollback, which is usual ly undesirable.  Conversations provide a coordinated means of managing 

checkpoints to avoid the danger of such a cascade rollback. However, a conversation requires the 

part ic ipat ing processes to synchronize such that  they exit from the conversation simultaneously. 

A large class of applications, typically concerned with process control  or real  t ime control, 

t radi t ional ly employs the PM model for s t ructur ing applications. Conversations can be imposed 

on such applications by exploiting natural ly  occurring synchronization points among interacting 

processes. In the PM model, processes are long lived enti t ies and main repositories for holding 

system states, while conversations are short lived entities. 



27 

4. Duality 

The canonical models discussed in the previous two sections are representative of the 

corresponding class of fault tolerant systems. Given a description of any fault tolerant system, it is 

usually straightforward to work out its representative model, despite the fact that the 

terminology used for the description may even differ some what from that used here. The duality 

between the OA and PM models can be established by considering objects and actions to be the 

duals of processes and conversations respectively. Further, RPCs can be considered duals of 

messages [2]. A given conversation diagram (e.g. Fig. 7.a), can be translated into an action 

diagram quite simply (e.g. Fig. 7.b) by replacing each conversation Ci with a corresponding action 

Ab and adding an arrow from Ai to Aj if Ci and Cj have at least one process in common and that 

process enters Cj after exiting from Ci. An arc from one action to the other is labelled with the 
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Fig. 7. Conversations and Actions. 

objects representing the processes common to the corresponding conversations. A reverse 

mapping is possible by replacing distinct objects named in the action diagram by processes. An 

action is replaced by the corresponding conversation, with the set of processes in the conversation 

determined by the set of objects named in all the incoming and outgoing arcs of the action. 

In order to support our hypothesis, we will discuss the way in which three major 

properties of a fault tolerant computation, namely, (1) freedom from interference, (2) backward 

recovery capability, and (3) crash resistance, are embodied in the OA and PM models. 

(1) Freedom from interference. In the OA model, this requirement is ensured by the 

serializability property of actions and enforced by some concurrency control technique, 

such as two phase locking. In the PM model, freedom from interference between 

multiprocess computations structured as conversations is ensured by the two conversation 

rules, (i) a process can only communicate with those processes that are in the same 

conversation; and (ii) a process can only be inside a single conversation at a time (this rule 

can be relaxed under certain conditions, see later). The two phase locking discipline for 
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actions corresponds to entering a conversation (growing phase) and leaving a conversation 

(shrinking phase). 

Backward recovery capability. An action in progress can be aborted (recovered) without 

affecting any other ongoing actions. This recovery property of an action is enforced in 

conjunction with the concurrency control technique in use. In the case of two phase locking, 

this means that  all  the held locks are released simultaneously. This corresponds to the 

synchronized (simultaneous) exit from a conversat ion which is requi red  from all  the 

part icipat ing processes. The act of taking checkpoints a t  the s tar t  of a conversation has i ts 

dual  in the OA model, and consists of the requirement  of maintaining recovery data for 

objects used within an action. It was indicated ear l ier  that  the serial izabil i ty property of 

actions can be maintained even i f -  for two phase locking - locks are  released gradually 

(rather than simultaneously) during the shrinking phase of locking; however this has the 

danger of cascade aborts (recovery of an action can cause some other actions to be aborted as 

well). A s imi la r  observat ion can be made for conversat ions:  the synchronized exi t  

r e q u i r e m e n t  is  n e c e s s a r y  to p r e v e n t  cascade  abor t s .  Fig.  8 i l l u s t r a t e s  t h a t  i f  
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I ! 
I l I 
I I I 
f! l ..... I '" ]P 

! L ............ 
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4, . 

Fig. 8. Cascade aborts. 

"conversations" C1 and C2 do not observe the rule of synchronized exit, and if time has 

advanced up to the point shown by the vertical arrow, and C1 is to be aborted, then C2 will 

have to be aborted as well. 

(3) Crash resistance. A two phase commit protocol is employed in action based systems to 

ensure that  despite the presence of failures such as node crashes, an action terminates 

ei ther  normally, with all  the updated objects made stable to their  new states, or abnormally 

with no state changes. A similar  protocol will be required to ensure that  the states of all  

the processes part ic ipat ing in a conversation are made stable. 

A s t r ik ing benefit of establishing the dual i ty  is that  the body of knowledge and techniques 

developed for one model can be mapped and applied to the other model. We i l lustrate  this with the 

help of the following two examples. 
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(1) Read only requests. A number of optimizations are possible if an action uses some or all of 

its objects in read only mode. Read locks can be released during the shrinking phase and need not 

be held till the end of the action, without the danger of cascade aborts. Further, no recovery data 

need be maintained for read only objects and they need not be involved in the two phase commit 

protocol since they do not change state. Such optimization strategies have been studied 

extensively within the context of database systems, e.g. [23]. However, to our knowledge, no such 

strategies have been studied for conversations, although they can be developed quite easily. 

Essentially, processes inside a conversation that do not update their states need not synchronize 

their exit from the conversation, nor do they need to take checkpoints at  the s tar t  of the 

conversation. Consider a simple example. An action performs the following computation: 

x:--y+z. Here y and z will be read locked; the commit protocol will involve only making object x 

stable to its new state and the action need generate no recovery data for y and z. Fig. 9 shows a 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

ml 1 

I 

! 

L . . . . .  

' C1 

m3 7 m4 ~ i 

m2 i . . . . . . . . .  

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 9. Read only requests. 

}m, 

possible conversation to perform the same computation. In this part icular  case it is only 

necessary for process x to establish a checkpoint. Message ml (m2) is a request to y (z) for some 

value, and message m3 (m4) contains the value sent by y (z). 

Note that even though there is a two way exchange of messages between x and y (z), x can 

recover without affecting y (z), since message ml (m2) is a read request. Indeed, y and z can take 

part in other conversations, while still in Ct, provided those conversations also involve only read 

requests directed to y and z. This is obviously the dual of the shared read lock mode rule 

applicable in the OA model. It is worth noting that, just as locking can cause deadlocks among 

actions, similar problems can occur in conversations. 

(2) Programmed exception handling. So far we have examined the duality from the point of 

view of backward error recovery, which involves abandoning the current state for a prior state. In 

contrast, forward error recovery involves selective corrections to the current state to obtain an 
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acceptable state [21]. Programmed exception handling is a means of incorporating this form of 

forward recovery. A widely accepted exception handling strategy is as follows: if during the 

execution of a computation an error is detected (an exception is detected) for which a specifically 

programmed handler is available,  then that  handler is invoked; if there  is no programmer-  

provided handler ava i lab le  then a default handler is invoked whose function is to invoke 

backward recovery. Thus, exception handling can provide a uniform means of incorporating both 

forward and backward error recovery s t ra teg ies  [24,25]. A recent  paper  [26] proposes an 

exception handling strategy for concurrent processes with conversat ions  and describes how 

processes can resolve concurrent exceptions through the use of exception trees. To keep this paper 

brief, we will not describe this strategy; instead we note here that  these exception handling ideas, 

although developed using the PM model, have since been applied by Taylor [ 12] to the OA model. 

A summary of the various characterist ics of the two models for which duali ty has been established 

is presented in Table 1. 

0 bject-Action Model Process-Message Model 

Objects Processes 

Actions Conversations 

send-receive messages RPCs 

control for concurrency 
ser ial izabi l i ty  

conversation rules 
preventing no outside 

communication 

stable objects stable processes 

growing phase processes entering a 
(2-phase locking} conversation 

shrinking phase processes leaving a 
(2-phase locking) conversation 

read locks read only request messages 

Table 1. Duality Mapping. 

5. Examples 

This section contains two further examples, one taken from the database area  and normally 

programmed using objects and actions and the other taken from the process control area  and 

normally programmed using processes and messages. It will be shown that  programs written 

using the primitives of one model have duals in the other. Simple and self-explanatory notation 

will be used for program description. 

Banking application. An example often used to i l l u s t r a t e  the proper t ies  of an act ion 

concerns transferr ing a sum of money from one bank account to another. The failure atomicity 
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property, for example, will ensure that either the sum of money is debited from one account and 

credited to the other, or no state changes are produced. For the sake of i l lus t ra t ion,  the 

application has been structured to invoke nested actions, even though simpler,  non-nested 

solutions are clearly possible. 

Two types of objects will be assumed: standing-order, and credit-debit: 

type s t a n d i n g . o r d e r  = object 

- - o b j e c t  v a r i a b l e s  - - 

act ion t r a n s f e r  ( to ,  f r o m :  c r e d i t - d e b i t ;  a m o u n t :  d o l l a r s )  

cobegin  
a u t h o r i t y  ( to ,  f r o m ) ;  

t o . c r e d i t  ( a m o u n t ) ;  

f r o m .  d e b i t  ( a m o u n t )  

coend 

end action 

- - o t h e r  a c t i o n s ,  e.g.  a u t h o r i t y  - - 

end  s t a n d i n g - o r d e r ;  

type c r e d i t - d e b i t  --- object  

. - c u r r e n t  a c c o u n t  v a r i a b l e s  - - 

act ion c r e d i t  ( a m o u n t : d o l l a r s )  

- .  a d d  a m o u n t  - - 

end  act ion 

act ion d e b i t  ( a m o u n t : d o l l a r s )  

- - s u b t r a c t  a m o u n t  - - 

end  ac t ion  

- - other actions - - 

end  credit-debit; 

Specific instances of these objects can be created: 

order : standing-order; 

accl, acc2 : credit-debit; 

An invocation of o r d e r . t r a n s f e r  will give rise to a nested computation shown in Fig. 10. 

exceptions during the execution of transfer will cause that action to be aborted. 

The same program can be recoded quite easily in terms of communicating processes, 

Any 
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order ,  
a cc l ,  acc2 

Fig. 10. A b a n k  act ion.  

order ,  
acc l ,acc2  

t y p e  s tand ing -order  = p r o c e s s  

. .  process  variables - - 

s e l e c t  

c o n v e r s a t i o n  t rans fer  (to, f rom:  credi t -debi t ;  amoun t :  dollars) 

c o b e g i n  
s e n d  (self ,  authori ty ,  to, f rom) ;  
s e n d  (to, credit ,  amoun t ) ;  

s e n d  ( f rom,  debit ,  a m o u n t )  
c o e n d  

e n d  c o n v e r s a t i o n  

- - o the r  selections~ e.g. a u t h o r i t y  - - 

e n d  s e l e c t  
e n d  s tand ing -order  

t y p e  credi t -debi t  --  p r o c e s s  

- - cur ren t  account  variables  - - 

s e l e c t  

c o n v e r s a t i o n  credi t  (amoun t :  dol lars)  

- - a d d  a m o u n t  - - 

e n d  c o n v e r s a t i o n  

- - o the r  select ions,  e.g. deb i t  - - 

e n d  s e l e c t  
e n d  credi t -debi t  

Specific i n s t a n c e s  of t he se  processes  can  be c rea ted :  

o rde r  : s t and ing -o rde r ;  

acc l ,  acc2 : c redi t -debi t ;  

A t r a n s f e r  conve r sa t i on  can  be i n i t i a t e d  by  s e n d i n g  a message  to order:  

s e n d ( o r d e r , t r a n s f e r , p a r a m e t e r s )  

The  t r a n s f e r  conve r sa t i on  is shown in Fig. 11. 
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Fig. 1 I. A bank conversation. 

The second example is taken from a process control application in the coal mining industry 

[27]. Fig. 12 shows a simplified pump installation. It is used to pump mine-water collected in the 

t To surface 

Pump 

V 

methane sensor 

C)  .... I 
airflow sensor 

° .... i f  monoxide 0 - - 1  sensor [ 

sump 

I Control room I 

Environment 
monitor station 

I Pump control 
~ station 

high water level detector 

low water level detector 

Fig 12. Pump Control System. 

sump at the shaft bottom to the surface. The pump is enabled by a command from the control 

room. Once enabled, it works automatically, controlled by water level sensors; detection of a high 
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level causes the pump to run until  a low level is indicated. For safety reasons, the pump must not 

run if the percentage of methane exceeds a certain safety limit. Some other parameters of the 

environment are also monitored by the monitoring station. 

The control software can be structured as five communicating processes, namely: pump 

controller, surface, level, pump and monitor. Some sketchy details are given here for the pump 

controller. 

Pump controlIerprocess. Some of its functions are to receive start/stop command from the surface 

process (representing the control room), receive water level reports from the level process and to 

receive an alarm signal from the monitor process. The controller process can send start/stop 

commands to the pump process which controls the pump. 

A study of process structure discussed in [27] reveals that the overall behaviour of the other 

processes have a similar structure to the pump-controller, either receiving requests to carry out 

certain functions and/or sending messages to other processes to request certain functions to be 

performed. These interactions can be organized as conversations. A highly simplified program 

fragment for the pump controller is given in Fig. 13.a. 

(a) Process-Message Model 

type pump-controller = process 

- - process variables - - 

select 

conversation on/off (...) 

send start~stop command 
to the pump process 

(b) Object-Action Model 

type  pump-controller = object  

- - object variables -- 

act ion  on]off (...) 
send start/stop command 
to the pump process 

end  conversa t ion  

- - - other selections - - - 

end  select 
end  pump-controller 

end action 

- - - other actions - - - 

e n d  pump-controller 

Fig. 13. Pump-controller example. 

A command to enable or disable the pump from the surface process starts  a conversation 

containing the pump-controller and the pump process: if the conversation terminates normally, 

the pump will have changed state accordingly. It is fairly easy to reprogram this example in terms 

of objects and actions, with the five processes replaced by the corresponding objects. For the sake 

of illustration, the program for the pump-controller object is shown in Fig. 13.b. 

These examples provide further empirical support to our claim by il lustrating that close 

similarity exists between the two classes of programs. Given a program constructed from the 
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primitives defined by one model, it can be mapped directly into a dual program of the second 

model. 

6. Concluding Remarks 

After examining the structure of a variety of systems, two canonical models of fault tolerant 

systems were developed, one of which is representative of the techniques and terminology used 

within the database and office information systems community, the other of which is more closely 

allied to the real time and process control applications area. These models were shown to be duals 

of each other. Although, in retrospect, this may not appear to be a surprising conclusion, 

particularly given the Lauer and Needham paper, we had not before realized how direct and 

complete the relationship between the two models was, and are not aware of any earlier literature 

explaining and exploiting this duality. Instead, one finds that fault tolerant systems are 

constructed and described using the concepts and terminology applicable to just one of the two 

models, with no apparent realization of the potential relevance of systems and the literature 

describing them which make use of the other model. However, we must admit that the duality 

that we have discussed is sometimes obscured by the fact that many process control applications 

are structured as a small and fixed number of processes, whereas it is more usual to find object 

based systems which contain a large and dynamically varying number of objects. 

Our arguments to support the duality claim were based on an examination of three properties 

of a fault tolerant computation, namely: freedom from interference, backward recovery capability 

and crash resistance. It was shown that mechanisms employed to implement a given property in 

one model have duals in the other. Similarly, any particular behavlour observed in one model has 

its dual in the other. Examples presented in the paper show that programs developed using the 

primitives of one model can be mapped easily to the programs of the other model. Indeed, we 

would claim that the differences between the two models are principally a matter of view point 

and terminology. 

The establishment of the equivalence between the two approaches to fault tolerance has 

several interesting implications, some of which are enumerated here. 

(1) There seems to be no inherent reason for favouring one approach over the other. For 

example, there is no obvious reason why a real time system must be designed using the primitives 

of the PM model. In fact, one is led to state that the choice of a model to adopt for a given system 

should not be dictated by the application area but by the architectural features of the layer over 

which the system is to be built. 

(2) It can also be stated that a single system architecture based on either model can in 

principle, support both classes of applications. 

(3) We further speculate that, were sufficient representative systems of each class available for 

detailed evaluation and comparison, we would find that the observation made in [2] regarding the 

invariance of operating system performance under two classes of systems also applies to this fault 

tolerance duality. 
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(4) Techniques and mechanisms which happen to have been developed within the domain of 

just one of the models can be mapped and applied to the other model. Two examples were 

presented to illustrate this observation. It was shown that optimization techniques developed for 

read operations of actions can be applied to optimize conversations. A second example indicated 

that the exception handling framework developed for the PM model can be applied to the OA 

model. 

(5) We put forward another proposal for further investigation. There is a large body of 

literature on the topic of replicated object management for increasing availability. We believe 

that interesting techniques for replicated process management can be developed from these 

studies and applied to process control systems that have been developed using the PM model~ 

(6) The ideas from this paper can be used for the design of fault tolerant systems with 

minimum set of compatible concepts, thus allowing several degrees of freedom in the design 

process to be eliminated, leading to well structured systems. 

(7) Finally, given that, as discussed in [28], there is the prospect of using certain kinds of fault 

tolerance techniques to provide increased security and not just increased reliability, it appears 

that the duality mapping presented here can be extended and applied to clarify and illuminate at 

least some of the literature discussing various approaches to building multi-level secure systems. 

This however is a topic which will not be explored further in this paper. 
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