
On the Duality of Fault Tolerant System Structures

(Preliminary Version)

S.K. Shrivastava, L.V. Mancini and B. Randell

Computing Laboratory

The Universi ty of Newcastle upon Tyne

Newcastle upon Tyne, NE 1 7RU, U.K.

ABSTRACT
An examination of the structure of fault tolerant systems incorporating error recovery, and in
part icular backward error recovery, indicates a part i t ioning into two broad classes. Two canonical
models, each representing a part icular class of systems have been constructed. The first model
incorporates objects and actions as the enti t ies for program construction while the second model
employs communicating processes. Applications in the areas such as office informat ion and
database systems typically use the first model while applications in the area of real t ime process
control are usually based on the second model. The paper claims that the two models are duals of
each other and presents arguments and examples to substant iate this claim, which is in effect, an
extension of the ear l ier duali ty argument presented by Lauer and Needham. An in te res t ing
conclusion to be drawn from this study is that there is no inherent reason for selecting one model
over the other, but that the choice is governed by the architectural features of the layer over
which the system is to be constructed. A pleasing consequence has been the recognition that the
techniques which have been developed for one model, turn out to have interest ing and hitherto
unexplored duals in the other model.

I n d e x Terms : fault tolerance, rel iabil i ty, distr ibuted systems, object based systems, real t ime
systems, operating systems.

20

1. Introduct ion

An investigation of backward error recovery based fault tolerance techniques employed in

a variety of systems reveals two general classifications. We propose two models, each embodying

the major characteristics of the corresponding class of systems. One widely used technique of

introducing fault tolerance - particularly in distributed systems - is based on the use of atomic

actions (atomic transactions) for structuring programs [1]. An atomic action possesses the

properties of serializability, failure atomicity and permanence of effect. Atomic actions operate on

objects (instances of abstract data types). The class of applications where such an object and action

(OA) based model has found usage include banking, office information, airline reservstion and

database systems. A number of other applications - typically concerned with real time control -

are structured as concurrent processes communicating via messages. Some examples are process

control, avionics and telephone switching systems. Fault tolerance in such systems is introduced

through a controlled use of checkpoints by processes. We will refer to this way of structuring an

application as employing the process and message (PM) model.

In this paper we claim that the OA and PM approaches to the provision of fault tolerance

are duals of each other and present arguments and examples to substantiate our claim. As a

result of this observation, we can state that there is no inherent reason for favouring one approach

over the other; rather the choice is largely dictated by the architectural features of the underlying

layer. Indeed, we would now claim that the differences between the two approaches are basically

a matter of viewpoint and terminology. Our investigations have been influenced by the well

known duality paper of Lauer and Needham [2] which puts forward the notion that within the

context of operating systems, procedure based systems and message based systems are duals of

each other. The authors observed that (1) a program or subsystem constructed strictly according

to the primitives defined by one model can be mapped directly into a dual program or subsystem

which fits the other model; (2) the dual programs or subsystems are logically identical to each

other, and they can also be made textually very similar; and (3) the performance of a program or

subsystem from one model will be identical to its counterpart . The present work may be

considered as an extension of the ideas put forward in that paper with regard to fault tolerance.

The paper is structured as follows: sections two and three describe the essential aspects of

OA and PM models respectively. Section four contains the arguments intended to establish the

duality between OA and PM. Section five contains a few simple examples, and the concluding

section summarizes the paper and discusses possible impl ica t ions of the dual i ty claim.

Throughout the paper, we will assume a distributed system composed out of a number of nodes

connected by some communication medium.

2t

2. Object and Action Model

Objects are instances of abstract data types. An object encapsulates some data and provides

a set of operations for manipulat ing the data, these operations being the only means of object

manipulat ion. In most object based faul t to lerant systems that we know (see [3-8] for a

representative sample), an operation is performed by invoking an object with a remote procedure

call (RPC), which passes value parameters to the object and returns the results of the operation to

the caller. Programs which operate on objects are executed as atomic actions with the properties

of (i) serializability, (ii) failure atomicity and (iii) permanence of effect [1] The first property

ensures that concurrent executions of programs are free from interference (ie. a concurrent

execution can be shown to be equivalent to some serial order of execution [9,10]). The second

property ensures that a computation can either be terminated normally, producing the intended

results or be aborted, producing no results. This property is obtained by appropriate use of

backward error recovery, which is invoked whenever a failure that cannot be masked occurs.

Typical failures causing an action to be aborted are node crashes and communication failures such

as lost messages. It is reasonable to assume that once a computation terminates normally, the

results produced are not destroyed by subsequent node crashes. This is the third property -

permanence of effect - which ensures that state changes produced are recorded on stable storage

which can survive node crashes with a high probability of success. A two-phase commit protocol is

required during the termination of an action to ensure that either all the objects updated within

the action have their new states recorded on stable storage (normal termination), or no updates

get recorded (aborted termination).

A variety of concurrency control techniques for atomic actions to enforce the serializability

property have been reported in the literature. A very simple and widely used approach is to

regard all operations on objects to be of type read or write, which must follow the well known

locking rule permitt ing concurrent reads but only exclusive writes. In a classic paper [9], Eswaren

et al. proved that actions must follow a two-phase locking policy (see Fig. 1). During the first

phase, termed the growing phase, a computation can acquire locks on objects but not release them.

The tail end of the computation constitutes the shrinking phase, during which time held locks can

be released but no locks can be acquired. Now suppose that an action in its shrinking phase is to

be aborted, and that some updated objects have been released. If some of these objects have been

locked by other actions, then abortion of the action will require these actions to be aborted as well.

To avoid this cascade abort problem, it is necessary to make the shrinking phase instantaneous, as

indicated by the dotted lines.

Any atomic action can be viewed at a lower level as constructed out of more primitive

atomic actions - this is illustrated in Fig. 2 which also introduces the action diagram which will be

used in this paper (this notation is based on that used by Davies [11]). According to Fig. 2, action

B's constituents are actions B1, B2, B3 and B4. A directed arc from an action (e.g. A) to some other

22

locks
held

growing phase

. . . . i

~~j Shrinking phase~time

Fig. 1. Two phase locking.

a,b,c

C

Fig. 2. Action diagram.

action (e.g. B) indicates that B uses objects released by A. Optionally, an arc can be labelled,

naming the objects used by the action. In Fig. 2, B uses objects a, b and c and C uses object a which

has been released by B. Actions such as B 2 and B3 are executed concurrently. Nested actions give

rise to nested recovery. Suppose time has advanced up to the point shown by the vertical arrow,

and an error is detected in B 3 causing it to be aborted. What happens after B3's recovery? The

question must be resolved within the scope of B - the enclosing action. B can provide a specific

exception handler to deal with this particular eventuality (such exception handling techniques

have been discussed by Taylor [12]). If no handler is available, then a failure of B 3 will cause B to

be aborted.

23

One of the most important aspects of the OA model from our point of view is the fact that

objects and act ions a re the two p r imary en t i t i es from which an a p p l i c a t i o n p r o g r a m is

constructed. Any implementation of actions and objects wil l requi re processes (cl ients and

servers) for carrying out the required functions. However, the role played by processes is hidden

at the application level. Similarly, there is no explicit use of message passing between entit ies,

since RPCs hide the details of message interactions between clients and servers. For example, in

the Argus programming system [3], the implementat ion of guardians (objects) requires a number

of processes for receiving and executing calls from clients - but processes are not visible enti t ies to

be used explicitly by an appl ica t ion program. Taylor [12] descr ibes a number of ways of

implementing atomic actions using different process structures. In the OA model, objects are long

lived enti t ies and are the main repositories for holding system states, while actions are short lived

entities.

3. Process and Message Model

In contrast to the OA model, where processes and messages play at most a secondary role,

the PM model has them as the pr imary enti t ies for s t ructur ing programs. An application is

s tructured out of a number of concurrent and interact ing processes. A notation for describing the

PM model that has received much attention is the communicating sequential processes (CSP)

notation [13] which can be used for specifying a concurrent system by a fixed number of processes

interacting via synchronous message passing. The topic of backward er ror recovery among

interacting processes has been studied extensively, e.g.[14-18], beginning with the study reported

in [19].

The PM model will be assumed to have the following characteristics: (1) processes do not

share memory, at least explicitly, and communicate via messages sent over the under ly ing

communication medium; (2) appropriate communication protocols ensure that processes can send

messages rel iably such that they reach their intended dest inat ions uncorrupted and in the sent

order; (3) a process can take a checkpoint to save its current s tate on some reliable storage medium

The notion of a consistent global state of a system is central when considering the recovery

ofinteract ingprocesses. A g l o b a l s t a t e o f a system is the set oflocal states, one from each process

(a precise formulation is presented in [20]). The interactions among processes can be depicted

using a t ime diagram, such as that shown in Fig. 3. Here, horizontal l ines are t ime axes of

processes and sloping arrows represent messages. A global s tate is a cut d iv id ing the t ime

diagram into two halves. A cut in the' t ime d iagram is consistent (consistent global state) if no

arrow star ts on the r ight hand side of the cut and ends on the left hand side of it. Cut C1 in the

figure is consistent; but cut C2 is not, since it indicates that process q has received a message

which has not yet been sent by r.

24

C2 C1 '~ "

q

i ,,/,'"

S "

\

Fig. 3. Consistent and inconsistent cuts.

}m

~ time

In a system of interacting processes, the recovery of one process to its checkpoint can create

an inconsistent global state, unless some other relevant processes are rolled back as well. This

leads to the notion of a consistent set of checkpoints or a recovery line [21]: a set of checkpoints, one

from each process, is consistent if the saved states form a consistent global state. Fig. 4 illustrates

the notions of consistent and inconsistent sets of checkpoints where opening square brackets on

P

C1 ," C2 e ~ fail

E "'E -

E e - l \

Fig. 4. Consistent and inconsistent sets of checkpoints.

time

process axes indicate checkpoints. Suppose process p fails at the point indicated by the vertical

arrow and is rolled back to its latest checkpoint. The global state of the system as represented by

cut C2 is clearly inconsistent; the set of checkpoints on recovery line C1 is however consistent.

Thus a failure of p can cause a cascade rollback of all the four processes - this is the domino effect

25

mentioned in [19]. The dynamic determinat ion of a recovery line is a surprisingly hard task; the

reader should consult [17] for a clear exposition.

The domino effect can be avoided if processes coordinate the checkpointing of their states.

A well known scheme of coordinated checkpoints is the conversation scheme [15,19]. The set of

processes which part icipate in a conversation may communicate freely between each other but

with no other processes. Processes may enter the conversation at different times but, on entry,

P

q

E

E

r F-
T - - - J
I
I c o n v e r s a t i o n
I
i b e t w e e n q a n d r

iE
I
I
L , J

c o n v e r s a t i o n b e t w e e n p , q , r a n d s

E

Fig . 5. Conversations.

t ime
}m

}D

}D

each must establish a checkpoint (see Fig. 5). In Fig. 5, a closing bracket indicates that all

part icipat ing processes must exit at the same time (brackets will not be explicitly drawn in the

subsequent diagrams). I fa process within a conversation fails then all the part ic ipat ing processes

are rolled back to the respective checkpoints es tab l i shed at the s t a r t of the conversat ion.

Conversations can be nested as shown in the figure.

Conversations provide a convenient s t ructur ing concept for introducing fault tolerance in a

large class of real t ime systems [22]. The need to respond promptly to changes in the external

environment dictates that most real t ime systems have an i terat ive nature. The PM model

provides a na tura l way of expressing such systems in the form of interact ing cyclic processes with

synchronization points usually associated with t iming constraints. A study of real t ime system

structure for avionic systems by Anderson and Knight [22] indicated that synchronization of

processes in such a system stems from the need to synchronize with the events in the external

environment, ra ther than from any inherent needs of processes themselves. Fig. 6 depicts a

typical synchronization requirement. An informal interpretat ion of such a synchronization graph

26

Fig. 6. A Synchronization graph.

is as follows (see [22] for a precise formulation): process P1 repeatedly ini t iates a computation at

time T1 which must finish by time T 3 (T 3 :> T1); processes P2, P3 and P4 complete two i terations in

the interval T1 to T 3. Any interactions between P2, P3 and P4 can be performed within the

confines of two conversations: one s tar t ing at T1 and finishing at T2 and the other s tar t ing at T2

and finishing at T3. The use of conversations for introducing fault tolerance in the manner

indicated here is discussed at length in [22].

The most important aspects of the PM model relevant to this paper are summarized below.

An application is programmed in terms of a number of processes interact ing via message passing.

If processes establish checkpoints in an a rb i t ra ry manner then there can be a danger of cascade

rollback, which is usual ly undesirable. Conversations provide a coordinated means of managing

checkpoints to avoid the danger of such a cascade rollback. However, a conversation requires the

part ic ipat ing processes to synchronize such that they exit from the conversation simultaneously.

A large class of applications, typically concerned with process control or real t ime control,

t radi t ional ly employs the PM model for s t ructur ing applications. Conversations can be imposed

on such applications by exploiting natural ly occurring synchronization points among interacting

processes. In the PM model, processes are long lived enti t ies and main repositories for holding

system states, while conversations are short lived entities.

27

4. Duality

The canonical models discussed in the previous two sections are representative of the

corresponding class of fault tolerant systems. Given a description of any fault tolerant system, it is

usually straightforward to work out its representative model, despite the fact that the

terminology used for the description may even differ some what from that used here. The duality

between the OA and PM models can be established by considering objects and actions to be the

duals of processes and conversations respectively. Further, RPCs can be considered duals of

messages [2]. A given conversation diagram (e.g. Fig. 7.a), can be translated into an action

diagram quite simply (e.g. Fig. 7.b) by replacing each conversation Ci with a corresponding action

Ab and adding an arrow from Ai to Aj if Ci and Cj have at least one process in common and that

process enters Cj after exiting from Ci. An arc from one action to the other is labelled with the

1-
!

L*1

' CI

L J

C~.

r -I
a !

L__ i
I I

' C 3 ! !
! !
! i
i i

~ - _ J i
i i r - --1
! i i

I ~ L - 1
. J ,, C4

I
I
I
L J

(a)

]D

Fig. 7. Conversations and Actions.

objects representing the processes common to the corresponding conversations. A reverse

mapping is possible by replacing distinct objects named in the action diagram by processes. An

action is replaced by the corresponding conversation, with the set of processes in the conversation

determined by the set of objects named in all the incoming and outgoing arcs of the action.

In order to support our hypothesis, we will discuss the way in which three major

properties of a fault tolerant computation, namely, (1) freedom from interference, (2) backward

recovery capability, and (3) crash resistance, are embodied in the OA and PM models.

(1) Freedom from interference. In the OA model, this requirement is ensured by the

serializability property of actions and enforced by some concurrency control technique,

such as two phase locking. In the PM model, freedom from interference between

multiprocess computations structured as conversations is ensured by the two conversation

rules, (i) a process can only communicate with those processes that are in the same

conversation; and (ii) a process can only be inside a single conversation at a time (this rule

can be relaxed under certain conditions, see later). The two phase locking discipline for

(2)

28

actions corresponds to entering a conversation (growing phase) and leaving a conversation

(shrinking phase).

Backward recovery capability. An action in progress can be aborted (recovered) without

affecting any other ongoing actions. This recovery property of an action is enforced in

conjunction with the concurrency control technique in use. In the case of two phase locking,

this means that all the held locks are released simultaneously. This corresponds to the

synchronized (simultaneous) exit from a conversat ion which is requi red from all the

part icipat ing processes. The act of taking checkpoints a t the s tar t of a conversation has i ts

dual in the OA model, and consists of the requirement of maintaining recovery data for

objects used within an action. It was indicated ear l ier that the serial izabil i ty property of

actions can be maintained even i f - for two phase locking - locks are released gradually

(rather than simultaneously) during the shrinking phase of locking; however this has the

danger of cascade aborts (recovery of an action can cause some other actions to be aborted as

well). A s imi la r observat ion can be made for conversat ions: the synchronized exi t

r e q u i r e m e n t is n e c e s s a r y to p r e v e n t cascade abor t s . Fig. 8 i l l u s t r a t e s t h a t i f

!
r - - - J

r 1 1 C 2
I !
I l I
I I I
f! l I '"]P

! L

L 1

C1 L

4, .

Fig. 8. Cascade aborts.

"conversations" C1 and C2 do not observe the rule of synchronized exit, and if time has

advanced up to the point shown by the vertical arrow, and C1 is to be aborted, then C2 will

have to be aborted as well.

(3) Crash resistance. A two phase commit protocol is employed in action based systems to

ensure that despite the presence of failures such as node crashes, an action terminates

ei ther normally, with all the updated objects made stable to their new states, or abnormally

with no state changes. A similar protocol will be required to ensure that the states of all

the processes part ic ipat ing in a conversation are made stable.

A s t r ik ing benefit of establishing the dual i ty is that the body of knowledge and techniques

developed for one model can be mapped and applied to the other model. We i l lustrate this with the

help of the following two examples.

29

(1) Read only requests. A number of optimizations are possible if an action uses some or all of

its objects in read only mode. Read locks can be released during the shrinking phase and need not

be held till the end of the action, without the danger of cascade aborts. Further, no recovery data

need be maintained for read only objects and they need not be involved in the two phase commit

protocol since they do not change state. Such optimization strategies have been studied

extensively within the context of database systems, e.g. [23]. However, to our knowledge, no such

strategies have been studied for conversations, although they can be developed quite easily.

Essentially, processes inside a conversation that do not update their states need not synchronize

their exit from the conversation, nor do they need to take checkpoints at the s tar t of the

conversation. Consider a simple example. An action performs the following computation:

x:--y+z. Here y and z will be read locked; the commit protocol will involve only making object x

stable to its new state and the action need generate no recovery data for y and z. Fig. 9 shows a

r . 1

ml 1

I

!

L

' C1

m3 7 m4 ~ i

m2 i

L .

Fig. 9. Read only requests.

}m,

possible conversation to perform the same computation. In this part icular case it is only

necessary for process x to establish a checkpoint. Message ml (m2) is a request to y (z) for some

value, and message m3 (m4) contains the value sent by y (z).

Note that even though there is a two way exchange of messages between x and y (z), x can

recover without affecting y (z), since message ml (m2) is a read request. Indeed, y and z can take

part in other conversations, while still in Ct, provided those conversations also involve only read

requests directed to y and z. This is obviously the dual of the shared read lock mode rule

applicable in the OA model. It is worth noting that, just as locking can cause deadlocks among

actions, similar problems can occur in conversations.

(2) Programmed exception handling. So far we have examined the duality from the point of

view of backward error recovery, which involves abandoning the current state for a prior state. In

contrast, forward error recovery involves selective corrections to the current state to obtain an

30

acceptable state [21]. Programmed exception handling is a means of incorporating this form of

forward recovery. A widely accepted exception handling strategy is as follows: if during the

execution of a computation an error is detected (an exception is detected) for which a specifically

programmed handler is available, then that handler is invoked; if there is no programmer-

provided handler ava i lab le then a default handler is invoked whose function is to invoke

backward recovery. Thus, exception handling can provide a uniform means of incorporating both

forward and backward error recovery s t ra teg ies [24,25]. A recent paper [26] proposes an

exception handling strategy for concurrent processes with conversat ions and describes how

processes can resolve concurrent exceptions through the use of exception trees. To keep this paper

brief, we will not describe this strategy; instead we note here that these exception handling ideas,

although developed using the PM model, have since been applied by Taylor [12] to the OA model.

A summary of the various characterist ics of the two models for which duali ty has been established

is presented in Table 1.

0 bject-Action Model Process-Message Model

Objects Processes

Actions Conversations

send-receive messages RPCs

control for concurrency
ser ial izabi l i ty

conversation rules
preventing no outside

communication

stable objects stable processes

growing phase processes entering a
(2-phase locking} conversation

shrinking phase processes leaving a
(2-phase locking) conversation

read locks read only request messages

Table 1. Duality Mapping.

5. Examples

This section contains two further examples, one taken from the database area and normally

programmed using objects and actions and the other taken from the process control area and

normally programmed using processes and messages. It will be shown that programs written

using the primitives of one model have duals in the other. Simple and self-explanatory notation

will be used for program description.

Banking application. An example often used to i l l u s t r a t e the proper t ies of an act ion

concerns transferr ing a sum of money from one bank account to another. The failure atomicity

31

property, for example, will ensure that either the sum of money is debited from one account and

credited to the other, or no state changes are produced. For the sake of i l lus t ra t ion, the

application has been structured to invoke nested actions, even though simpler, non-nested

solutions are clearly possible.

Two types of objects will be assumed: standing-order, and credit-debit:

type s t a n d i n g . o r d e r = object

- - o b j e c t v a r i a b l e s - -

act ion t r a n s f e r (to , f r o m : c r e d i t - d e b i t ; a m o u n t : d o l l a r s)

cobegin
a u t h o r i t y (to , f r o m) ;

t o . c r e d i t (a m o u n t) ;

f r o m . d e b i t (a m o u n t)

coend

end action

- - o t h e r a c t i o n s , e.g. a u t h o r i t y - -

end s t a n d i n g - o r d e r ;

type c r e d i t - d e b i t --- object

. - c u r r e n t a c c o u n t v a r i a b l e s - -

act ion c r e d i t (a m o u n t : d o l l a r s)

- . a d d a m o u n t - -

end act ion

act ion d e b i t (a m o u n t : d o l l a r s)

- - s u b t r a c t a m o u n t - -

end ac t ion

- - other actions - -

end credit-debit;

Specific instances of these objects can be created:

order : standing-order;

accl, acc2 : credit-debit;

An invocation of o r d e r . t r a n s f e r will give rise to a nested computation shown in Fig. 10.

exceptions during the execution of transfer will cause that action to be aborted.

The same program can be recoded quite easily in terms of communicating processes,

Any

32

order ,
a cc l , acc2

Fig. 10. A b a n k act ion.

order ,
acc l ,acc2

t y p e s tand ing -order = p r o c e s s

. . process variables - -

s e l e c t

c o n v e r s a t i o n t rans fer (to, f rom: credi t -debi t ; amoun t : dollars)

c o b e g i n
s e n d (self , authori ty , to, f rom) ;
s e n d (to, credit , amoun t) ;

s e n d (f rom, debit , a m o u n t)
c o e n d

e n d c o n v e r s a t i o n

- - o the r selections~ e.g. a u t h o r i t y - -

e n d s e l e c t
e n d s tand ing -order

t y p e credi t -debi t -- p r o c e s s

- - cur ren t account variables - -

s e l e c t

c o n v e r s a t i o n credi t (amoun t : dol lars)

- - a d d a m o u n t - -

e n d c o n v e r s a t i o n

- - o the r select ions, e.g. deb i t - -

e n d s e l e c t
e n d credi t -debi t

Specific i n s t a n c e s of t he se processes can be c rea ted :

o rde r : s t and ing -o rde r ;

acc l , acc2 : c redi t -debi t ;

A t r a n s f e r conve r sa t i on can be i n i t i a t e d by s e n d i n g a message to order:

s e n d (o r d e r , t r a n s f e r , p a r a m e t e r s)

The t r a n s f e r conve r sa t i on is shown in Fig. 11.

33

order
L

authority !
1 I
I !
L . .,I

accl 1
!

t

,,
I

acc2 1
!

I I
! I

p . =I

' debit i
I I ,

I I I
t= . J i

Fig. 1 I. A bank conversation.

The second example is taken from a process control application in the coal mining industry

[27]. Fig. 12 shows a simplified pump installation. It is used to pump mine-water collected in the

t To surface

Pump

V

methane sensor

C) I
airflow sensor

° i f monoxide 0 - - 1 sensor [

sump

I Control room I

Environment
monitor station

I Pump control
~ station

high water level detector

low water level detector

Fig 12. Pump Control System.

sump at the shaft bottom to the surface. The pump is enabled by a command from the control

room. Once enabled, it works automatically, controlled by water level sensors; detection of a high

34

level causes the pump to run until a low level is indicated. For safety reasons, the pump must not

run if the percentage of methane exceeds a certain safety limit. Some other parameters of the

environment are also monitored by the monitoring station.

The control software can be structured as five communicating processes, namely: pump

controller, surface, level, pump and monitor. Some sketchy details are given here for the pump

controller.

Pump controlIerprocess. Some of its functions are to receive start/stop command from the surface

process (representing the control room), receive water level reports from the level process and to

receive an alarm signal from the monitor process. The controller process can send start/stop

commands to the pump process which controls the pump.

A study of process structure discussed in [27] reveals that the overall behaviour of the other

processes have a similar structure to the pump-controller, either receiving requests to carry out

certain functions and/or sending messages to other processes to request certain functions to be

performed. These interactions can be organized as conversations. A highly simplified program

fragment for the pump controller is given in Fig. 13.a.

(a) Process-Message Model

type pump-controller = process

- - process variables - -

select

conversation on/off (...)

send start~stop command
to the pump process

(b) Object-Action Model

type pump-controller = object

- - object variables --

act ion on]off (...)
send start/stop command
to the pump process

end conversa t ion

- - - other selections - - -

end select
end pump-controller

end action

- - - other actions - - -

e n d pump-controller

Fig. 13. Pump-controller example.

A command to enable or disable the pump from the surface process starts a conversation

containing the pump-controller and the pump process: if the conversation terminates normally,

the pump will have changed state accordingly. It is fairly easy to reprogram this example in terms

of objects and actions, with the five processes replaced by the corresponding objects. For the sake

of illustration, the program for the pump-controller object is shown in Fig. 13.b.

These examples provide further empirical support to our claim by il lustrating that close

similarity exists between the two classes of programs. Given a program constructed from the

35

primitives defined by one model, it can be mapped directly into a dual program of the second

model.

6. Concluding Remarks

After examining the structure of a variety of systems, two canonical models of fault tolerant

systems were developed, one of which is representative of the techniques and terminology used

within the database and office information systems community, the other of which is more closely

allied to the real time and process control applications area. These models were shown to be duals

of each other. Although, in retrospect, this may not appear to be a surprising conclusion,

particularly given the Lauer and Needham paper, we had not before realized how direct and

complete the relationship between the two models was, and are not aware of any earlier literature

explaining and exploiting this duality. Instead, one finds that fault tolerant systems are

constructed and described using the concepts and terminology applicable to just one of the two

models, with no apparent realization of the potential relevance of systems and the literature

describing them which make use of the other model. However, we must admit that the duality

that we have discussed is sometimes obscured by the fact that many process control applications

are structured as a small and fixed number of processes, whereas it is more usual to find object

based systems which contain a large and dynamically varying number of objects.

Our arguments to support the duality claim were based on an examination of three properties

of a fault tolerant computation, namely: freedom from interference, backward recovery capability

and crash resistance. It was shown that mechanisms employed to implement a given property in

one model have duals in the other. Similarly, any particular behavlour observed in one model has

its dual in the other. Examples presented in the paper show that programs developed using the

primitives of one model can be mapped easily to the programs of the other model. Indeed, we

would claim that the differences between the two models are principally a matter of view point

and terminology.

The establishment of the equivalence between the two approaches to fault tolerance has

several interesting implications, some of which are enumerated here.

(1) There seems to be no inherent reason for favouring one approach over the other. For

example, there is no obvious reason why a real time system must be designed using the primitives

of the PM model. In fact, one is led to state that the choice of a model to adopt for a given system

should not be dictated by the application area but by the architectural features of the layer over

which the system is to be built.

(2) It can also be stated that a single system architecture based on either model can in

principle, support both classes of applications.

(3) We further speculate that, were sufficient representative systems of each class available for

detailed evaluation and comparison, we would find that the observation made in [2] regarding the

invariance of operating system performance under two classes of systems also applies to this fault

tolerance duality.

36

(4) Techniques and mechanisms which happen to have been developed within the domain of

just one of the models can be mapped and applied to the other model. Two examples were

presented to illustrate this observation. It was shown that optimization techniques developed for

read operations of actions can be applied to optimize conversations. A second example indicated

that the exception handling framework developed for the PM model can be applied to the OA

model.

(5) We put forward another proposal for further investigation. There is a large body of

literature on the topic of replicated object management for increasing availability. We believe

that interesting techniques for replicated process management can be developed from these

studies and applied to process control systems that have been developed using the PM model~

(6) The ideas from this paper can be used for the design of fault tolerant systems with

minimum set of compatible concepts, thus allowing several degrees of freedom in the design

process to be eliminated, leading to well structured systems.

(7) Finally, given that, as discussed in [28], there is the prospect of using certain kinds of fault

tolerance techniques to provide increased security and not just increased reliability, it appears

that the duality mapping presented here can be extended and applied to clarify and illuminate at

least some of the literature discussing various approaches to building multi-level secure systems.

This however is a topic which will not be explored further in this paper.

Acknowledgements.

The authors have had discussions and arguments with several of their colleagues over a period of

many years on the subject matter reported here. Those we would like to mention specifically

include Graham Wood, David Taylor and Roy Campbell. Written comments from Tom Anderson

and Robert Stroud on an early draft of the paper are also gratefully acknowledged. This work was

supported in part by research grants from SERC/Alvey and the UK Ministry of Defence.

37

R e f e r e n c e s

[I] J.N. Gray, ~An approach to decentralized computer systems ~, IEEE Trans. on Soft. Eng., SE-12, No~6, 1986,
pp~684-689.

[2] H.C. Lauer and R.M. Needham, ~On the duality of operating system structures' , Proc. of 2nd Int. Syrup. on Operating
Systems, INRIA, Oct. 1978; reprinted in ACM Operating System Review, Vol. 13, April 1979, pp. 3-19.

[3] B. Liskov and R. Scheifler, ~Guardians and actions: linguistic support for robust distributed programs", ACM
TOPLAS, Vol. 5, No. 3,1983, pp.381-404.

[4] A.Z. Spector e ta | , ~Support for distributed transactions in the TABS prototype ~, 1EEE Trans. on Soft. Eng., SE- 11, No.
6,1985, pp.520-530.

[5] L. Svobodova, ~Resilient distributed computing', IEEE Trans. on Soft. Eng., SE-10, No.3,1984, pp.257-268.
[6] S.K. Shrivastava, ~Structuring distributed systems for recoverability and crash resistance ~, IEEE Trans. on Soft.

Eng., SE-7, No. 4,1981, pp.436-447.
[7] K.P. Birman, "Replication and fault tolerance in the ISIS system", Proc. of 10th Symp. on Princ. of Op. Sys., ACM

Operating Systems Review, 19, No. 4,1985, pp.79-86.
[8] E. Nett et al, ~Profemo: design and implementation of a fault tolerant distributed system architectura~, GMD Studien,

No. 100, Tech. report, GMD, St. Augustine, 1985.
[9] K. Eswaren et al, ~On the notions of consistency and predicate locks in a database system", CACM, 19, No. 11, 1976,

pp.624-633.
[10] E. Best and B. Randell, ~A formal model of atomieity in asynchronous systems ~, Acta Informatica, 16, 1981,

pp.93-124.
[11] C .T Davies, ~Recovery semantics for a DB/DC system ", Proc. of ACM Nat. Conf., 1973, pp. 136-141.
[12] D.J. Taylor, "Concurrency and forward recovery in atomic actions", IEEE Trans. on soft. Eng., SE-12, No. 1, 1986,

pp.69-78.
[13] C.A.R. Hoare, ~Commtmicating sequential processes", CACM, 21, No. 8,1978, pp.666-677.
[14] D.L. Russell, ~State restoration in systems of communicating processes", IEEE Trans. on Soft. Eng., SE-6, No. 2,1960,

pp.183-193.
[15] K.H. Kim, "Approaches to mechanization of the conversation scheme based on monitors", IEEE Trans. on soft. Eng.,

SE-8,No. 3,1982,pp.189-197.
[16] S.K. Shrivastava and J.P. Banatre, ~Reliable resource allocation between unreliable processes ~, IEEE Trans. on soft.

Eng., SE-4, No.3,1978,pp.230-241.
[17] W.G. Wood, "A decentralized recovery control protocol", Digest of papers, FTC~ 11 ~ Portland, 1981, pp. 159-164,
[18] R. Koo and S. Toueg, ~Checkpointing and rollback recovery for distributed systems ~, IEEE Trans. on Soft. Eng., SE-

13, No.l, 1987, pp.23-31.
[19] B. Randell, ~System structure for softwars fault tolerance", IEEE Trans. on soft. Eng., SE- 1, No.2,1975, pp.220.232.
[20] K.M. Chandy and L. Lamport, ~Distributed snapshots: determining global states of distributed systems ~, ACM TOCS,

3, No.l, 1985, pp.63-75.
[21] B. Randall, P.A. Lee and P.C. Treleaven, ~Reliability issues in computing system design", ACM Comp. Surveys, 10,

No. 2,1978, pp.123-166.
[22] T. Anderson and J.C. Knight, ~A framework for software fault tolerance in real time systems", IEEE Trans. on Soft.

Eng., SE-9, No. 3,1983, pp.355-364.
[23] C. Mohan and B.G. Lindsay, ~Efficient commit protocols for the tree of processes model of distributed transactions",

Proc. of2nd ACM Syrup. on Princ. of Dist. Comp., Montreal, 1983, pp.76-88.
[24] F. Cristian, ~Exception handling and software fault tolerance", IEEE Traus on Computers, C-31, No. 6, 1982,

pp.531-540.
[25] T. Anderson and P.A. Lee, ~Fault Tolerance: Principles and Practice ~, Prentice Hall, London, 1981.
[26] R.H. Campbell and B. Randell, ~Error recovery in asynchronous systems ~, IEEE Trans. on Soft. Eng., SE-12, No.8,

1986,pp.811-826.
[27] M. Sloman and J. Kramer, ~Distributed systems and computer networks ", Prentice Hall, London, 1987.
[28] J.E. Dobson and B. Randell, ~Building reliable secure computing systems out of unreliable insecure components ~,

Proc. of IEEE Syrup. on Security and Privacy, Oakland, CA, April 1986, pp.187-193.

