
T H E D I S T R I B U T E D S Y S T E M

P O O L

L. Gerlach, K.T. Malowaniec,
H. Scheidig, R. Spurk

Fachbereich In format ik
Univcrsi t~t des Saar landes

D-6600 Saarbri icken 11

A b s t r a c t

The development of a distributed system POOL based on a net-
work which efficiently connects many processing elements is the
subject of research supported by the DFG, SFB 124"VLSI-Ent-
wurfsmethoden und ParallelitKt" (Teilprojekt D3). This contribu-
tion attempts to give an overview of the work done so far within
this project.

1. I n t r o d u c t i o n a n d M o t i v a t i o n

We wish to build a distributed system which consists of (many) units Ui connected
by a network T:

netWOrk

figure i

125

At present we can discern essentially two approaches to the construction of such a dis-
tributed system:

A. THE "DIRECT", LANGUAGE-ORIENTED METHOD

This method tries to use and extend an existing languagc L in order
• to allow the formulation of subprograms (subtasks) P~,
• and to perform the mapping of P~ onto the components U~ of the system.

Frequently a host (which can be considered as a special component Ui) is used to produce
the input to the system (data as well as program modules Ps) and to "download" the
single units U~.

As examples the following systems can be named: the system FPS [FPS 86] and the paral-
lel computer designed in the suprenum project [SUPRENUM] (with L = OCCAM, FOR-
TRAN and Concurrent Modula-2, respectively), both intended for number-crunching
purposes, the connection machine [Hillis 86] and the LISP-machine of [Guzman 83] for
symbol manipulation (typical in the A.I.-area) with L = LISP.

This method is particularly well suited for applications which are elementary in the
following sense:
• there is a 1-1-correspondence between logical (user-defined) objects P~ and physical

objects Ui,
• every (logical) operation on Pi can easily be expressed by a simple instruction (pro-

gram) on Ui, and
• the requirements which have to be imposed upon the communication system can be

deduced from simple neighbourhood relationships between objects Pi-

Typical examples (pixel operations and transistor simulation) are given in [Hitlis 86].

B. THE DISTRIBUTED OPERATING SYSTEMS APPROACH

This approach tries to design an operating system which itself is the object of distri-
bution. The operating system attempts to equip the user with higher level objects o

• as entities of distribution at the user level,
• which can be mapped in a transparent and automatic way onto thc available physical

units,

thus providing an object-oriented programming environment appropriate for distributed
systems.

The process of building higher-level objects o can be considered as a generalization of
the usual method of defining abstract objects:
An object o is an active element which
• sends/accepts requests (a request is coded as a remote procedure catl addressing an

entry e of o which serves as an access point to a certain subtask of o)~ and
• which may delegate the execution of some subtasks to other objects (slaves) allocated

by the system on demand.

126

Our distributed system POOL follows this operating system approach (see [Scheidig 83],
[Scheidig 85]); the system ARGUS [Liskov 84] can be named as a further cxample.

2. T h e S t r u c t u r e o f t h e D i s t r i b u t e d S y s t e m P O O L

The structure of the system POOL can be illustrated by the following figure:

application layer:

supports distributed applications formulated in
terms of higher level objects Pi wich are mapped
onto Ui by the operating system

,lll'lllllll'llllllllll'llIllllllllll'lllIl'll'lll'llll'll'l'llllllll'll'l :,
higher layers:
implement higher level
objects Pi, retaining a
completely decentral
and dynamic system
structure

runll on EU1 l

layer1:

processes, inter
process
communication

cu- execu-
tion ~-- ,
unit basic]

execu-
EUn tion I

'. system

i , I sEs I

, I

layer O:

~ar~Cu nication

runs

on

"nu- rllca- I
tion I
unit

CUn [

[

network]
(topology) T

commu-
nication

l system

L BCS

L

figure 2

127

The following contribution is divided into three parts:

• In sections 3, 4, we describe the Basic Communication System running on the com-
munication units CU.

• In sections 5, 6, 7, we introduce two versions of POOL already implemented. We
discuss the higher system layers running on the execution units EU and the basic
mechanisms necessary to support distributed applications. We briefly address the
question of how a "remote user" can find access to POOL via the campus-wide network
CANTUS (viewing POOL as one of many nodes connected to CANTUS).

• In section 8, we comprise some ideas about the user interface of a distributed systems.

3. The M o d e l o f t h e B a s i c C o m m u n i c a t i o n S y s t e m a n d i t s I m p l e -
m e n t a t i o n

The efficiency of the Basic Communication System (BCS) is of prime importance be-
cause the spectrum of applications supported by the distributed system depends on BCS
performance:
the bet ter the ratio of

execution-time (EU-time) to communication-time (CU-time),

the higher the granularity of the applications that can be chosen.

This goal of high performance of the BCS leads to a number of requirements concerning
• the units Ui,
• the topology T, and

• the method of exchanging data among units Ui.

3.1 R e q u i r e m e n t s , P r o p e r t i e s

A. SEPARATION OF COMMUNICATION AND EXECUTION IN TIIE U:

A unit U of POOL consists of two processing elements U = (CU, EU) (compare fig-
ure 2). The communication unit CU implements the basic communication since the
execution unit EU realizes the higher levels of the operating system.

The CU-units are homogeneous in the system. Thus we can choose specifically designed
hardware which guarantees the required efficiency of the basic communication.

The EU-units need not necessarily be homogeneous; on the contrary, we want to be
able to integrate a new and attractive processing element as EU into the systemat any

128

t ime . The EU's can fully concentrate on their cxecution tasks; they are not required to
contribute to the transport of data.

B. CHOICE OF NETWORK TOPOLOGY T

As topology T of the network which interconnects the units U of our distributed system
we choose the structure referred to as "cube connected cycles" (CCC), see [Preparata
81]. CCC can be viewed as an optimization of the hypercube topology--retaining most
of its advantages and adding the following important features:

bl. Constant local complexity: A CCC-network T of dimension d consists of n = d- 2 d
elements. However, the number of edges emanating from every node is constant (3)
and does not depend on d. This property makes the network T easily extensible
and reduces substantially the costs of assembling T.

b2. The choice of one specific topology does not really restrict the generality because
we know that an arbitrary network can be simulated by CCC with not too much
overhead (the overhead is a logarithmic function of the number of elements).

b3. There exists a simple (static) routing method for CCC; moreover, routing can be
improved by employing a dynamic (random routing) version which tries to distribute
the communication load over BCS.

b4. There exists a simple, automatic layout algorithm for CCC which is applied in order
to produce a back panel board for CCC. This board realizes the complete physical
interconnection structure thus eliminating the necessity of wiring. This back panel
can be viewed as a generalization of a conventional bus system (see [Krass]).

C. "NAMING", TWO-LEVEL ROUTING

We use arbitrary identifiers to name and identify POOL-objects (e.g. POOL-processes).
A two-level algorithm has to be applied to allow an object U0 to communicate with an
object U.:

Step 1:U0 emanates first a multicast message: M(arca, "object with identification
id(U,,) please send answer to U0"). Every unit U in the area covered by this
multicast checks whether its own identification id(U) (attached to it when
created) is equal to id(Un). If such a U exists then it sends its network address

adr(U) back to U0.

Step 2: If step 1 produces a result adr(U) then U0 and Un can henceforth communicate
via point-to-point communication using the network addresses adr(Uo) and
adr(Un) to define a path from U0 to U,~ (and vice versa).

Notice that step 1 has to be repeated if the point-to-point communication falls (e.g. due
to a hardware error in U0, Un or in one of the intermediate nodes on the path from U0

to U.).

Notice furthermore that the logical properties of multicasts and suitable assumptions
concerning names (in particular concerning the uniqueness of names) have to be taken
into account in the design of the higher levels of the distributed operating system.

129

D. TASK OF THE BASIC COMMUNICATION SYSTEM B C S

The task of the basic communication system BCS can now be summarized as follows:
BCS has to perform
• point-to-point communication, and
• multicast operations

cfficiently.

3.2 W o r k i n g P r i n c i p l e of the Bas ic C o m m u n i c a t i o n S y s t e m

Figure 3 shows how a single communication unit Ui works:

switch sw within the communication unit t_ri

m =

wj
lr tanlonll la' I

a

I N

sl f--
U

m= (r,a): incoming data packet
a= (an...ai): actual destination address

(determines the path from
actual node Ui to Un)

r= data

links W, S, E are the spanning CCC-Links
N connects CU with the

corresponding EU;

.~ path of m within Ui

f igure 3

The leading address information ai (2 bits) of the header of the incoming data packet rn
turns the "mirror" into the position appropriate to "reflect" the rest of rn into the desired
direction (that means it puts m I = (r, an, a n - x , ..., a i - l) without further inspection onto
the addressed link L E {W, N, E, S}).

We call this working principle of CUs the "turning mirror" method.

1 3 0

The whole process starts in Uo with the (complete) address a = oAr(U,,), each node of

the path from U0 to U,* operating as just explained.

3.3 Handling of Conflicts

The turning mirror method fails in the following obvious case:

J l .
wl 4

fig ure 4

Here, a conflict occurs because two data packets ml , m2 arrive at the same time which

both have to be put onto the same output link, say S.

As a solution of this conflict we do not want to apply usual store-and-forward techniques
because this would severely decrease the efficiency of the BCS (and increase the costs of

the CU-units).

Instead we argue as follows:
For several reasons (in particular to handle hardware failures) we have to provide an end-
to-end protocol between communicating instances U0 and U,*. If we succeed in reducing
the probability of the above-mentioned conflicts so that it does not exceed the probability
of other failures, then we can also hold the end-partners responsible for the handling of

these conflicts.

Thus the question arises of how we can decrease (minimize) the number of conflicts when
applying the turning mirror method.

This is easy - we simply increase the capacity of our links {W, N, E ,S} . A link L E
{W, N, E, S} is a logical entity which need not necessarily be realized by one single
physical channel. We will in fact use p physical channels C to implement every link L
and we will choose one of them which is free whenever we have to put a data packet on

this link.

Thus the "turning mirror principle with conflict solution" works as follows:
• If packet m arrives at Ui then the leading address information (2 Bits) determines

the output link L.

131

• A free channel C (if any) of the p channels realizing L is chosen.

• The packet m is "reflected" onto C.

• If no free channel C is available then the sender U0 is notified immediately (i.e. by
hardware signals back the chain of intermediate nodes Ui, Ui-x, ..., U0); U0 can take
the appropriate measures.

The packet m dynamically constructs a path from U0, ... Ui, ... to Un by occupying a free
channel at every intermcdlate node Ui. W e therefore call this method "dynamic circuit
switching" (in analogy to the usual static circuit switching scheme used in telephone
systems, for example).

Note that the minimal packet length of m is chosen in such a path that the longest
noncyclic path PATti_max in the CCC-network is fully covered by m.

The following now holds:

a. The dynamic circuit switching method can be implemented efficiently (mostly in
silicon!), see 3.4 below.

b. The correct functioning of the method can be ensured (see 4 below) and the appro-
priate number p of channels can be determined (as a function of the CCC-dimension
and other parameters).

c. The time t needed to t ransport a packet m from U0 to U,, (if no conflicts occur) is
given by

t = number_of_hops • SW-time.
SW-time denotes the time required by the turning mirror algorithm within a single

CU.
End-to-end actions are easy because the absence of an acknowledge over a t ime

interval t > t_error with
t_error = 2 • t_max (t_max = time for PATH_max, see above)

signals a failure.

d. Multicast can also bc implemented efficiently on the basis of the point-to-point
communication described so far. There are several possible ways which differ by thc
amount of software support by which the point-to-point communication has to bc
enhanced in order to realize mutticast.

3.4. H a r d w a r e a n d s o f t w a r e a r c h i t e c t u r e of C U s

The resulting architecture of a CU-unit can now be summarized as follows:

132

software CU hardware

(a)

(b)

[

end -to-end
protocol

support for
multicast

BBS CU

(b) BBS CU : local (real time)
operating system on which
the implementation of
part (a) is based

figure 5

The structure of the component SW (switch) is described by the following figure.

CU'SYiemb us

NPA

Link N

W . LCC Mnk'

Cross-LirK

N PA. nehvorl< pr<~:oco] ,'1 d:~p~er

LCO: Lir, k Conb'ol ard Crosstx'lr

LiC: Line in~.erface Crcu~[

figure 6

133

The "heart" LCC of the switch SW is realized by a two dimensional daisy chain (see
[Schneider]). The design of the LCC as a VLSI-Chip has just begun.

3.5. P e r f o r m a n c e

Applying the VLSI-design techniques available on the market today for the manufac-
turing of the LCC-chip would lead to the following performance figures:

The overall (gross) transport capacity e of one CU is given by

e = n . p . 8

with n = number of CU-links (4, including the connection CU - EU),
p = number of channels per link (8),
s = capacity of one channel (20 [Mbit/s])

as 640 [Mbit/s].

We have to notice that the actually available "net"-capacity is at most 10% of this
maximal value (guaranteeing a tolerable small rate of conflicts). There are, however,
several ways of further increasing the capacity of the system (e.g. by "cascading" LCC-
Chips).

4. T h e V e r i f i c a t i o n o f t h e B a s i c C o m m u n i c a t i o n S y s t e m

The architecture of the BCS was described in section 3. We will call a network with
a switching method based on the turning mirror principle a Dynamic Circuit Switching
Network. This section describes an analytical model and the design of such networks.
We will first describe a model and then show some suitable topologies; afterwards, we
wilt verify our communication system using the analytical model for the topologies con-

sidered.

4.1. T h e A n a l y t i c a l M o d e l

In this section we will describe one analytical model of a Dynamic Circuit Switching
Network (DCSN). We will begin with a definition of the model parameters and then
focus on the model itself. Finally, we will show how to use the model for network design.

4.1.1. The Model P a r a m e t e r s

134

The input parameters of the network model are: network traffic, network topology and

a routing function.

NETWORK TRAFFIC

We have a network of N nodes, numbered [0..N - 1]. Each node can send messages

to every other node.

The messages from node k to node l are sent with the Poisson distribution at arrival rate

A,[k,/], (k,l E [0 . . N - 11).

The length of messages in the network is exponentially distributed with mean E(L).

The speed of transmission of every communication channel in the network is S.

The service rate can be computed as # = S/E(L) .

The traffic in a network with N nodes can be described by a matrix of arrival rates
Ax[k,/], (k, 1 E [O..N - 1]) and a service rate of Iz = S/E(L) .

NETWORK TOPOLOGY

The Dynamic Circuit Switching Network consists of a set of switches connected by sim-
plex communication channels. Figure 7 shows one example of a network topology. It
consists of four nodes numbered 0 .. 3. The arrows represent unidirectional communi-
cation channels. The rectangles numbered 0, 1, 2, and 3 represent the switches in the
appropriate nodes. The rectangle with number - i represents the rest of the network
apart from the switches. The communication channels are grouped into unidirectional
edges. For example, it can be seen that edge (1,2) consists of two communication chan-
nels, edge (2,1) also consists of two unidirectional channels and edge (1,-1) consists of

one communication channel.

The topology of the network can be described by a matrix m[i, j], (i, j E [- 1 , 0 . . N - 1]).

For any i , j e [0 . . N - l],m[i,j] = k, (k e [0, 1..]) means that there are k simplex com-
munication channels from node i to node j .

For any j E [0 . . N - 1] ,m[-1, j I = k, (k E [0, 1..]) means that there are k simplex com-
munication channels from the CU processor to the switch in node j .

For any i e [0 . . N - 1], rn[i ,-11 = k, (k e [0, 1..]) means that there are k simplex commu-
nication channels from the switch to the CU processor in node i.

If m[i,j] = O, then there is no edge from i to j . If m[i,j] = k and k > O, then an edge

exists from i to 3" and it consists of k simplex communication channels.

135

(a) (b)

1 1 1 1

II ;t It It 0 2 0 2

I I
(a) in graph form

(b) in matr ix form

figure 7

ROUTING tN THE NETWORK

Routing in the DCSN is static, which means that all messages from node k to node
l always take the same path.

Routing can be defined for a particular topology as an algorithm for a routing function.
The routing function NextNode(Current,Dest) returns the address of the next node as a
function of the current node's address and the destination node's address.

Routes in static routing can only be changed statically by a topology update or a change
in the routing algorithm. They cannot be changed dynamically. Examples of dynamic
routing are adaptive routing with routes depending on network state, or random routing
with routes depending on random number generation.

4.1.2. Mode l Descript ion

The parameters of the network model are: number of nodes N; arrival rates Al[k,/], (k, l E
[0..N - 1]); mean message length E(L); speed of transmission ..q in a communication
channel; service rate/z; network topology m[i,j], (i , j E [- 1 , 0 . . N - 1]); and the routing
algorithm.

The following questions arise: what is the probability P[k,l] that the message originating
in node k with destination in node t will be lost; and what is mean E(P), variance Var(P),

136

and standard deviation ap of the probability of message loss in the network.

Furthermore, we have the following design problem: what value should be chosen for
the number of communication channels m[i, j] on the edges of our topology in order to
obtain a network with desired mean message loss probability E (P)?

We intend to construct a model of a network to solve this problem. First, we will
decompose the network into elementary queueing systems, then use rules of queueing
theory for these systems. Afterwards, the single elements will be composed into a network
of queueing systems.

D ECOMPOSITION

We are interested in finding the probability B[i, j] , (i , j e [-1 ,0 . .N - 1]) of a message
being lost while attempting to go through edge (i,j). For this purpose, we must compute
the traffic going through this edge and find a suitable queueing system model for it. We
must decompose our network into these elementary queueing systems.

In order to solve this problem, we begin with the tentative assumption that we always
have a sufficient number of communication channels on each edge to transfer all incoming
messages: each edge is said to have an infinite number of channels.

The arrival distribution on edge (i, j) is the sum of many independent Poisson distribu-
tions. It is also itself a Poisson distribution. We will compute an arrival rate ~[i,j] for
this distribution.

The arrival rate of messages entering the network in node j , (3" • [0..N - 1]) is:

N - I

tl
t----O

The arrival rate of messages leaving the network in node i, (i E [0..N - 1]) is:

N - 1

A[i,--1] Z)~,[k,i]
k = O

The arrival rate of messages going through the edge (i , j) , (i , j E [0..N - 1]) is:

tl if re[i, Jl >- 0
k , IE[O. .N- I] :
rou te f r o m k to 1

)~[i,j] = goes tt,,,ough (i,i)

0 if re[i, j] -- o

The matrix ,~[i,j], (i , j E [-1, O . . N - 1]) describes the arrival processes on each edge of
the network.

A service distribution on edge (i,j) is an exponential distribution with a mean equal to
E(L)/S and service rate U = S/E(L), where E(L) is the mean message length and S is a

speed of transmission in a communication channel.

137

A single edge can be described by the following queueing system: We have the Pois-
son arrival distribution and exponential service time distribution. There are an infinite
number of communication channels available on edge (i j) . Each newly arriving message
is always given its private communication channel. This is the infinite-server system

MIMIcx~.

Yet in reality there are only m[i, j] communication channels available on edge (i j) . Each
newly arriving message is given its private communication channel. However, if the
message arrives when all communication channels are occupied, the message is lost. It
is an m[i, j]-server loss system.

The output of an M/Mloo system still has Poisson arrival distribution. It is important
in networks with many such systems, where the output from one system can be an input
to another. In this case, the network is a combination of many MIMIoo systems and an
analytical model of this network can easily be constructed since the arrival distribution
of single edges can be computed as shown above.

Yet the output of MIMIm[i, j]lm[i,j] no longer has a Poisson arrival distribution. In a
network with many such systems, the output of one system may be an input to another.
In this case, the network is a combination of many GIMIm[i,j]lm[i,j] systems, with
a general arrival distribution, in spite of the Poisson arrival distribution at the network
entrance. It is difficult to construct an analytical model for such a network because arrival
distribution cannot be computed in such a way as shown above. Only a simulation model

is possible in this case.

We are interested in designing a high-quality network with very low loss probability
B[i,j]. Here, we notice that the MIMIm[i,j]lm[i,j] system with very low loss proba-
bility B[i,j] can approximate an M/M/c~ system.

M I M I m [i , j] lm[i , j] • M l M / oo

A network of many M/M/oo systems can be approximated analogously by a network
of many M/M/m[i,j]/m[i,j] systems with very tow loss probabilities B[i,j]. Arrival
distribution of output from these queueing systems can be approximated by a Poisson
distribution. Thus we can compute arrived distribution as shown earlier and can easily
construct an analytical model of the network.

SINGLE EDGE CALCULATIONS

We have shown that a network can be decomposed into its one-edge elements. Each
edge can be modeled by an elementary queuelng system M/M/m[i,j]/m[i,j]. We will
use this queueing model to perform a calculation for a single edge.

We are looking for the probability B[i,j], (i,j E [- 1 , 0 . . N - 1]) for a message loss on
edge (i, j) . This value can be computed with Erlang's loss formula [Kleinrock 75]. If we

138

apply this formula to our model we will arrive at:

B[/ , j I =
m[i, j]!

m•] (~[i , j] /~) k

k~
k.=-O

The mat r ix B[i, j] , (i , j E [-1 , 0 . . N - 1D describes the loss probabi l i ty on all edges in the
network.

FINDINGS

We have made computa t ions for all single edges. We will now compose single queu-
ing sys tems (representing edges) to model a comple te network. Based upon the model,
we will derive results for the complete network.

We want to find the probabi l i ty P[k, l] tha t a message from node k to node I will be lost.

P[k , l i = 1 - (1 - B [- 1 , k]) . (1 - B [l , - 1 1) . I ' I (1 - B [/ , j D

i0'E [0..N - :
route Jrom k to Ill
goes through (i,])

We can compute the mean probabi l i ty tha t the message will be lost in the network:

N - 1 N - 1

~ (Ptk, ll . A,[k,l])
E (P) = 4=0 I=o

N - - 1 N - 1

}2 F_,
k = O / = 0

The second moment of this dis t r ibut ion is:

N - 1 N - 1

~ (P[k,/l 2 • .~l[]g, 11)
~r .2~ 4=0 I=0 J.~l.l]

N - 1 N - 1

k=O / = 0

The variance of this distr ibution:

V a t (P) = E (P 2) - (E (P)) 2

The s tandard deviation:

o p = vf-V -(p)

The mean value and s tandard deviat ion of P describe the quality of the network.

4.1.3. Network Design

139

We have a network described by the following parameters: number of nodes N; arrival
rates Al[k,l], (k,l ~ [0 . . N - 1]); mean message length E(L); speed of transmission S in a
communication channel; service rate/z; network topology m[i,j], (i , j ~ [- 1 , 0 . . N - 1]);
and routing algorithm.

We can use the model constructed in section 4.1.2 for designing a network. We have a
choice between two operation modes:

The first operation mode is a computation for an existing network: the given is a topology
of the network by matrix re[i, j], which describes how many communication channels exist
on each edge.

We compute loss probability on each edge B[i,j], (i , j E [- 1 , 0 . . N - 1]), then loss prob-
ability between end nodes P[k,l], (k,l E [0 . . N - 1]), then mean probability of loss E (P)
and standard deviation of loss ap.

The second operation mode is a network optimization: the given is a topology of the
network by matrix m[i,j], which describes how many communication channels exist on
each edge. We intend to change a number of communication channels on existing edges
(with re[i, j] > 0) to obtain an optimal network with mean message loss probability E(P)
less than given parameter EPLimit.

BMin is initialized to 0.0 and BMax to EPLimit, respectively.

We compute BLimit as (BMin + BMax) / 2.0. Then we find a number of channels
m[i, j] on each existing edge which is large enough to receive loss probability on the edge
B[i,j] less than BLimit. Then we compute loss probability between end nodes P[k,l],
and afterwards the mean probability of loss E(P) and standard deviation of loss a.o.

If the computed E(P) is tess than required by EPLimit, we will set BMin to BLimit.
Otherwise if the computed E(P) is greater or equal than required by EPLimit, we will
set BMax to BLimit.

Afterwards the computation is repeated as described above. The iteration is stopped
when the computed E(P) is less than EPLimit and the difference (Bmax - BMin) is less
than an assumed parameter BEpsilon.

We can also mix the two operation modes: For example, we can make a computation
for an existing network with a new trafllc condition in the first operation mode. If we
are not satisfied with the mean loss probability E(P), we can use the second operation
mode to obtain required E(P). We can also manipulate the other para.meters, e.g., we
can change the speed of transmission S or the routing algorithm.

Thus, the model can be used to examine existing networks and to design networks of
arbitrary quality.

140

4.2. Topology Considerations

This section shows two topologies which seem to be suitable for distributed systems.
They are two hypercube topologies: Cube- Connected Cycles and Two Way Digit Ex-
change.

4.2.1. Cube-Connected Cycles Topology

1-dimensional CCC ~--r~

2-dimensional CCC 4

1

~o

6

i
2

3-dimensional CCC

figure

\18 21.A
v / ~ 2!j

8 / ,9 2 "

7/ ,o I
/ 3

1 \ l z 15

8

141

Some examples of CCC topology are illustrated in figure 8. A CCC of dimension D
consists of D . 2 D nodes. They are grouped into a cycle of D nodes, surrounding each of
2 D vertices of a binary hypercube of dimension D.

One node is connected to exatztly three others: one bidirectionM link crosses the hy-
percube in one of the D dimensions. A cross link consists of two unidirectional edges.
Two bidirectional or unidirectional links connect nodes to neighbours on the same cy-
cle. A cycle link consists of two edges in the bidirectional case (figure 9) and one edge
in the unidirection~ case (figure 10). One edge consists of one or more unidirectionaJ
communication channels.

D=I D=2

00 ~ 01 00 ~blm02 04"~ 06

i I 0 0 0 1 01

I
00 02 04 O6

O0 ..,t4m.O 3

l

D=3

06 ~09

I
~ O7

04 ~ -~ i0

' l
05 ~

V

00 03 06 O9

1 2

1 3

12

~ 1 5 18~ 21

i"

16 ~---- ---~22

17

~i~ 20

15 18 2!

figure 9

t42

D=2

]

01 00 ~4~02 04-~4~ 06

00 02 04 06

D=3

O0 .,I.1,,03

01 -~---------4~ 07

I
02 ~ ,~,

05

06~-~-09 12 4141~15 1844~ 21

00 03 06

13 ~r---- ~ 19

J
i0 I 16

hL 14 i

I ~ 20

Ii~

09 12 15 18

figure I0

08~

22

23

l
21

An analysis of CCC networks is offered in [Preparata 81] and [Wittie 81]. We will show
the results for DCSNs having this topology in section 4.3.

143

4.2.2. Two Way Digit Exchange Topology

2-WADE topology is related to the CCC topology with unidirectional cycle links. A
D-dimensional 2-WADE also consists of D. 2 ° nodes. They are also grouped into a cycle
of D nodes around each of the 2 ° vertices of a binary hypcrcube of dimension D.

Figure 12 presents some layout examples for the 2-WADE topology. They are similar
to those for the CCC topology with unidirectional cycle links in figure 10. The only
difference is that each bidirectional cross link is divided into two unidirectional cross links.
They do not connect nodes with this same cycle position, but nodes with consecutive
cycle positions.

D=I D=3

O0 01

i4
O0 01

D=2

00 02 04 06

01 03 05 07

O0 02 04 06

O0 03 06 09

01 04 07 10

02 05 08 11

\ \ \
\ ×

K 2 ~ //X x

O0

12 15 18 21

I 3 16 19 22

14 t 7 20 23

03 06 09 t 2 15 18 2 t

.figure 11

Each node is connected to exactly four others: two unidirectional links cross the hy-
percube in one of the D dimensions. A cross link consists of one unidirectional edge.
Two unidirectiona/links connect each node to neighbours on the same cycle. A cycle
link consists of one unidirectional edge. One edge consists of one or more unidirectional

communication channels.

An analysis of 2-WADE networks with random routing can be found in [Upfal 84]. We
will show the findings for DCSNs having this topology in section 4.3.

144

4.3. S y s t e m Ver i f i ca t i on

This section contains a verification of our communication system. We will apply our
analytical model from section 4.1 to the topologies shown in section 4.2. We would like
to answer the following questions: How many parallel communication channels do we
need in particular links? What is the total number of communication channels con-
nected to one switch? And, which topology is the best?

We assume the following parameters of maximal network traffic. The number of nodes
in a topology is

N = D . 2 D[nodes]

The messages from node k to node i are sent with a Poisson distribution at the arrival
rate

$ l [k , l] = l O 0 / N [p a c k e t / s]

This means every node generates 100 messages per second, which are uniformly
distributed to all nodes in a network. The length of a message is exponentiMly distributed
with mean

E (L) = 8192[b/t] = l [g B y t e]

The speed of transmission for a communication channel is

S = lO7[bit/s] = lO[Mbi t / s]

The service rate is
It = S / E (L) = 1220.7[1/s]

We will compare three topologies from section 4.2: CCC with bidirectional cycle links,
CCC with unidirectional cycle links and 2-WADE. Each topology will be examined with
the following dimensions

D = 3 . . 6

A static routing will be used for all topologies.

We will use the analytical model to design a network with an mean toss probability E(P)
less than the following limit

E P L i m i t = 0.001

We are interested in the following results:
up - number of channels on unidirectional edge in up link (between switch and CU

processor)
cross - number of channels on unidirectional edge in cross link
cycle - number of channels on unidirectional edge in cycle link
total - total number of communication channels per switch (outgoing plus ingoing)

The results are shown in figure 12.

145

CCC topology with bidirectional cycle links

D N ,~1 up cross cycle total
3 24 4.1666666 3 3 3,3 24
4 64 1.5625 3 4 4,4 30
5 160 0.625 3 4 4,4 30
6 384 0.2604166 3 4 5,5 34

~ C topology with unidirectional cycle links
ID N ~I up cross cycle total

3 24 4.1666666 3 3 4 20
4 64 1.5625 3 4 5 24
5 160 0.625 3 4 5 24
6 384 0.2604166 3 4 6 26

2-WADE topology
D N A l u p cross cycle total
3 24 4.1666666 3 3 4 20
4 64 1.5625 3 4 4 22
5 160 0.625 3 4 5 24
6 384 0.2604166 3 4 5 24

figure lZ

Figure 12 shows how many communication channels should be placed on one edge of
up, cross and cycle link to obtain a network with the required mean loss probability.
Compare figure 12 with figures 9, 10 and 11 to see the relation between edges and links.
Unidirectional links consist of one edge and bidirectional links consist of two edges.

We have used our analytical model from section 4.1 with topologies shown in section
4.2. To verify our communication system, we must answer a number of questions, e.g.:
How many parallel communication channels do we need in particular links? What is the
total number of communication channels connected to one switch? Which topology is
the best?

The quality of each network is almost identical because all have nearly the same E(P). In
order to select an optimal topology, we will compare their costs, which are proportional
to the number of channels: the better a topology, the less communication channels it
has. Figure 12 indicates that the 2-WADE topology is bet ter than CCC because of the
smaller number of channels per switch.

We have shown with an analytical model that it is possible to construct Dynamic Circuit
Switching Networks to meet our requirements. The computed number of communication
channels per node is technologically acceptable. Further study of DCSN can be found in

[Malowaniec].

146

5. T h e a r c h i t e c t u r e o f t h e b a s i c e x e c u t i o n s y s t e m B E S

The basic execution system BES of POOL has a layered structure as shown in the
following figure:

layer typical instances implementa t ion
charac ter iza t ion mechanism

17:
too ls

I Tool 1

utilities,

16: user
admin is t ra t ion

15: distributed
management
and information
exchange

14:
c lus te r /p rocess
serv ice

13: device
servers

12: file
serv ice

I1 : process
management

I . . . I ~oo,, I

,, . • {compi ler i l ,,, . . ,

TEMA-DIs,J- • • ~ASCo-Dns

• . . AD o,e,, j . . .

• • • IMana0er i l" " •

I Rsol I . . . I Rsoo

• • l A D constructor- i • •

Term,ca' I . . . I r'nte I
Server Server

• = . lF i le server] . • •

POOL-processes, ipc

c lus ter

c lus ter

c lus ter

admin is t ra to r

admin i s t ra to r

admin is t ra to r

tasks realized by
a tocat multitasking
system BBS_EU

figure 13

11: implements POOL-processes, called administrators AD (see below) and cooperating
sets of administrators, called clusters (see below).

147

12: general file service; management of data representing a user within the system (e.g.
data for accounting, access control, etc.). Typical instance: AD_file.

13: management of other (slow) devices: virtualization of slow I/O-devices (terminals,
printers, tapes, etc.). Typical instances: AD_terminal, AD_printer.

14: cluster configuration service: allocation (deallocation) of nodes, loading, installation
of POOL-processes, installation of clusters. Typicai instance: AD_constructor (used
by PASCAL_D-compiler, see [PASCAL-D]).

15: information exchange, support for user applications: definition of distributed cat-
alogues, access to catalogues, catalogue-based look-up operations, etc. Typical in-
stance: AD_RSO (see section 8).

16: user control: control of access rights (quotas); provides an initial "command inter-
preter", connects a user to Regional Service Office (RSO), etc. Typical instance:
AD_user.

17: utilities (tools): compilers and other utilities; a compiler for PASCAL-D (which is an
extension of PASCAL) is available which allows the definition and configuration of
administrators (clusters) and remote procedure calls between administrators under
program control (see [PASCAL-D]). Typical instances: AD_compiler, AD_TEMA,
AD_DASCO (see section 8.3).

ADMINISTRATORS, CLUSTERS

Administrators are the basic abstraction mechanisms supporting distribution at the pro-
cess level within the POOL system. An administrator can be considered as a generaliza-
tion of an abstract object adjusted to the requirements of a distributed environment.

An administrator AD possesses the following main properties:

1. AD is a process running on an (arbitrary) EU.

2. AD encapsulates local objects (data) and defines operations on these objects.

3.a. AD allows access to the implemented operations by providing entries (service access
points) el, e2, ..., en.

3.b. An administrator AD_c can use a function e defined by another administrator AD_p
by performing a remote procedure call AD_p.e(...).

3.c. AD must accept and handle several calls at the same time.

4. AD can use additional internal processes (running also on EU's) called slave pro-
cesses. Slave processes provide "internal parallelism" for the simultaneous execution
of some of the subtasks on which the arriving remote procedure calls are mapped
within the administrator AD.

5. Implementation details of an administrator (including the management and schedul-
ing of slave processes) are hidden from the "outside world".

In particular, administrators are applied as instruments to virtualize and control devices
(resources). In the simplest case we have the following typical situation:

148

AD_d

el

ii it ii

el3

I

administrator offering
"high-level" access to
"ressource" d

el: functions modelling
the user interface to d

slave process (drives d)

figure 14

The administrator AD_d defines functions el, ..., e2 which realize higher-level access to
a resource d since everything connected with the handling of the physical device d is
performed by the slave process H_d (H_d is not visible outside of AD).

A remote procedure caJl constitutes a relationship (c-p-relationship) between the calling
administrator AD_c (consumer) and the called instance AD_p (producer). A set of ad-
ministrators connected by the c-p-relationships is called a cluster. Thus, a cluster is an
abstract (computational) network, the elements of which cooperate in order to achieve a
common goal.

6. P O O L - v e r s i o n s , a c c e s s t o P O O L

6.1 P O O L - v e r s i o n s

Two POOL-versions are implemented so far:
1. POOL_host: this is a simulation of POOL on a Siemens 7.570-P mainframe

computer under the BS2000 operating system.
2. POOL_micro: this is a special architecture providing up to 15 execution units

(Z80, MCS68010).

Both versions can be used together (in a transparent way). POOL_host aJlows us to
extend the number of POOL-processes by adding virtual processors and thus to overcome
some restrictions imposed by hardware (costs).

149

POOL_micro will be replaced by the (final) version
3. POOL_CCC: the communication method was described in sections 3, 4; it will

provide up to 64 execution units (ZS0, MCS68010, MCS68020).

The following table comprises the important characteristics of the two existing POOL-
versions:

components POOL_host POOL_micro
EU MCS68010, ZS0
CU ZS0

type of
elementary

communication
type of

higher level
communication

virtual processor
Virtual processor

a. common memory
with semaphores

b. ipc
datagram, broadcast

using link tables

serial/parallel
interface, communication

protocol
datagram, broadcast
(hardware supported)

The following figure shows the current POOL-configuration.

I
I

Host Files Host Spooling Terminal Terminal

/ ~,/v~, ~oo,.~ooo \ i1
t t

f l~l ~ ICuI I c~l I c°l ~Lt:~l 1
CU-NETWORK

POOL (ZS0,MCS68010)

I I Q O

Terminal Terminal

I PR oRIvER I

Pr!nter Disk

[FILE SERVER I

figure 15

150

6.2 Access to P O O L v ia C A N T U S

An obvious advantage can be derived from the fact that the functions of our operat-
ing system are distributed: there is no problem in principle to integrate further nodes
(hosts, PCs) into POOL, thus increasing the number of available execution units.

The easiest way to add a PC, say, as a new node to POOL is to take the following steps:
1. Provide a simulation of the basic communication functions (using any communica-

tion method available for the PC, see below).
2. Provide a simulation of the CU - EU protocol.
3. Implement the (PASCAL) program defining the administrator AD_terminal which

aJlows access to POOL_host and POOL_micro on the PC.

The following figure illustrates the situation:

PC:

AD_terminal

EU-CU interface

BCS-simulation

local operating
system

\
POOL_host

I
POOl_micro

figure 16

The campus-wide network CANTUS (CAmpus NeTwork of the University of Saar-
land) provides the basis for connecting PCs of different types to POOL. CANTUS is
a datagram-based local area network (see [Schuh 84]). At present, PCs of type SUN,
SINIX (MX-2) and CP/M are connected to POOL.

6.3. P o r t a b i l i t y of POOL-processes

The integration of new nodes (PCs) into POOL (as described in 6.2) assumes the porta-
bility of POOL-processes (in particular of the instance AD_termina~). Obviously, we have

the choice between

151

(a) an efficient implementation of administrators based on a (local) multitasking system
BBS_EU (see [Heubel 861), or

(b) a version which is portable but less efficient.

The second version uses the language PASCAL to

• describe a "PASCAL-node machine (PNM)" as a basis for the implementation of an
administrator,

• define the interface between PNM and the "native" operating system (of the PC) as
a set of PASCAL modules, and

• define the interface between the node machine PNM and the administrator running
on it as a set of PASCAL modules. The organization of the PNM is illustrated by
the following figure:

16

J5

14

13

12

a d m i n i s t r a t o r

node object o l o • • node object ok

COM-PASCAL machine 1 • • • COM-PASCAL machine k

procedure based control f low interpreters

node functions f l , f2 fn

PNM l/O-interface (to POOL)

PASCAL runtime environment
t l native operat ing system

figure 17

12: PNM is implemented against a PASCAL program on layer 1.

13: Functions fi are:

• construction (initialization) / deletion of COM-PASCAL machines;

• interactions of COM-PASCAL machines;

• implementation of the EU-CU-interface.

14: interprets the control flow descriptors defined by layer 15; performs the scheduling
of COM-PASCAL machines (providing a "quasi-parallel" mode of operation).

15: COM-PASCAL machines consist of PASCAL-routines and descriptors defining the
control flow (at tile procedure level); COM-machines can communicate with each
other.

16: objects (internal processes) needed for the implementation of an administrator, im-
plemented by tile COM-machines.

See [Gerlach 85] for a detailed description.

152

7. E x p e r i e n c e s w i t h P O O L

At present, most experiences listed below refer to the implementation of the system,
not to it use.
• The realization of a distributed system (hardware and software) involves a tremendous

amount of work.
• The testing of distributed (system) programs is very difficult and time-consuming.
• The simulation POOL_host of POOL on a host is important in order to provide a

reasonable number of processes. However, the actions of POOL_host depend on the
general load of the host; the definition of appropriate t imer values is not easy.

• Tools are necessary to (automatically) port software modules to execution units of
different types.

• Compiler-compiler systems and other (generic) methods must be applied to assist in

the production of PASCAL-oriented software modules.
• Without a proper distributed application language the user will not accept and use the

system. This experience stimu|atcd the definition and implementation of PASCAL-D.
• The operating system support for PASCAL-D (including the asynchronous remote

procedure call) was very good, the implementation of PASCAL-D relatively easy.
• There is much work to be done to provide the kind of environment which allows us

to utilize the potentialities of a distributed system.

8. T h e u s e r i n t e r f a c e o f t h e d i s t r i b u t e d s y s t e m P O O L

8.1. Higher-level communica t ion services

In sections 3, 4 above, concerning the basic communication system (BCS) of POOL,
we gave an overview of "low-level" communication services provided by BCS.

Typically, the situation of the user U of BCS is as follows: U wants to access a service
S localized in and offered by a POOL-instance AD_S. We assume that the identification
id(AD_S) = "string" and that this identification is unique within POOL. Then U has to

take the following steps:
1. U has first to perform a search within POOL for an element with id(x) = "string".

This search yields - if successful - the network address adr(AD_S).
2. Thereafter U will apply point-to-point-communication using adr(AD_S).

The search in step 1 is implemented as a multicast M(area, id = "string", quota). The
first parameter defines the area the search has to cover while the second parameter
specifies the object we are looking for (the third parameter will not be discussed here).

Obviously the user U has the probIem of choosing a suitable subrange Ts~,b of the network
topology T for the area which the multicast heLs to cover. Moreover, U has to cope with

153

a possible failure of step 1 by modifying Ts,,b and iterating step 1. Thus, U has to rely
on a certain knowledge of such technical details as network topology, subareas and so
on. Such details are, however, better hidden from the user of a distributed system. We
will therefore try to embed the "raw" services offered by BCS into an environment which
affords the user an easier and more comfortable handling.

The basic idea is simple: we span a chain of instances (administrators) RSO1, RSO2, ...,
RSO= across the distributed system, where RSO stands for Regional Service Office.

RSOl ~ • • • 41- .~RSOi ~ • • • 4 1 - ~ RSOn

figure 18

These instances RSOI have the following properties:
1. The chain of RSO-instances is bidirectional; that is, between every two adjacent

instances RSOI, RSOj (j = i - 1 rood n, i + 1 rood n) exists the c-p-relationship.
2. Every RSO-instance can initiate a multicast M(T~, pr(z), ...) which covers a subarea

Ti of T and looks within Ti for an object with property pr(x). The areas Ti are
defined in the following way:

rt

a. U Ti ~ T : the multicasts of all the elements Ti cover T completely.
i = 1

b. The size of Ti is as small as possible but we do not request that Ti n T i = 0
(see property 3 below).

c. li~=IM(TI, pr(x) , . . .)= B(T, pr(x),. . .):
the (parallel) execution of the multicasts initiated by all the RSO-elements
implements a broadcast operation B. B yields the network address of an element
with pr(x) if such an element exists within T. The broadcast B can be invoked
by an arbitrary element RSOi which instructs its neighbours to act accordingly.

3. The number n of RSO-elements is not fixed; we are free to chose an appropriate
number as tong as the conditions above are fulfilled.

4. The RSO-chain is set up by the system once; thereafter, it possesses a certain "self-
recovering" quality: every RSOi checks its two neighbours regularly; if one of them,
say RSOj, is inoperable (does not answer) then a new element RSOj* is elected by

154

RSOi which replaces the inaccessible element RSOj. Tj* D_ T i must hold for the

areas covered by RSOj* and RSOj.
5. The decentralized structure of the POOL-system is retained because all RSO-

elements possess equal rights (that is, they provide the same services and differ
only with respect to their local databases, see below).

6. Every user U is connected to an RSO-element when performing a "login". The
togin causes a multicast M(Tata, "RSO", ...) with a suitable area Tara chosen by
the system.

7. RSOI offers "higher-level" services to the user such as
• construction and management of (structured) catalogues,

• catalogue-based look-up operations which replace tile "raw" multicast operations
of BCS,

• naming services,
• observation of security mechanisms, allotment of capabilities,
• mechanisms for the construction, configuration (reconfiguration) of cooperating

sets of administrators (clusters),
• compilation service by AD_PASCAL-D (PASCAL-D is an extension of PASCAL

which allows the formulation of distributed applications (see [PASCAL-D]),

• mail services,

Thus we end up with the following situation:

higher level
communication
services)rovided by RSO AD_user AD_user AD_user

• • RS014~ •41-1~RSOi .,qM~e.,ql.-~RSOn

I
DRS©I DRSOi DRSOn

"raw" communication services
provided by BCS

figure 19

The basic communication services are hidden from the user and replaced by higher-level
operations. Within the system, every user is represented by a user administrator AD_user
which is connected to an RSO-element (see property 6 above).

Note that the RSO-chain constitutes a "borderline" which separates low-level opera-
tions, the design and implementation of which must be done very carefully and needs
special system programming skill, from higher-level operations which can be implemented
using an appropriate higher level programming language a.s e.g. PASCAL-D. Thus, the

155

introduction of the RSO-mechanism will considerably increase the "productivity" of pro-
gramming.

Every RSO~ possesses a "private" database DRSOi which contains all the data specifying
and characterizing the clients of RSO, (that is, the user-administrators connected to
RSO~).
Thus, an RSO-element
• serves as a "local memory" or "cache storage" supporting fast and convenient access

to the objects a user is actually working with, and
• informs other instances about global objects defined by one user (or by the system

itself).

The reliability of these RSO-based services depends heavily on the availability of the
local databases DRSO. If we are not content with the degree of reliability given by the
lower system layers offering a general database capacity, then we can try to achieve the
necessary redundancy with respect to the data DRSO(U) connected with one user U in
the following way:

Let H(id(V)) = (id(RSO~t),id(RSO~2),...,id(RSO~)) be a general hash function
(known to every instance of the system) which yields the identifications of k RSO-
elements (k > 1) when applied to the identification id(U) of a user. We assume that
every element RSOI1, RSO~2, ... contains in its local database DRSOil(U), DRSO~2(U),
... a copy of the actual data DRSO(U) of U. If one element RSO,~ now fails, then U can
work with one of the other RSO-elements possessing the redundant information.

For the time being we assume that the user is responsible for the update of its databases
DRSO~I(U), DRSO,~(U), A systematic approach in the future could lead to a
"knowledge-based" user interface where "knowledge" is distributed and can be lost as
well as recovered. Note that there are other projects which try to introduce artificial
intelligence techniques in order to establish and sustain assumptions about the global
state of a distributed system (see e.g. [MOS], [DASH]).

The user interface as defined by the RSO-eIements is further extended by a number of
tools, that is, programs which are themselves working in distributed mode and which
provide certain services to all users.

In the following we describe very briefly two of these tools (for a more detailed description
see [VAN], [MEISER], [NILAM]).

156

8.2. H y p e r t e x t a n d h y p e r t e x t p r o c e s s i n g i n s t a n c e s A D _ T E M A

A hyper text (see [HYPER]) is a s t ructure (graph), the nodes of which are chunks of
text a n d / o r "nontext" (meaning any da ta of o ther types) connected by references (links).

These references can be

• internal references (to par ts of the same document) , or

• external references (to other documents or nontext). The following figure shows an

example of a hypertext :

(al)

AD_TEMA(D): D=D1- - -~ D2 - - - ~ > Di - - -> > Dj - - - > . . .

AD_TEMA(D'): D '=D 1"- -~ >" Dk' - - -~ > Din'

AD_TEMA(ND): ND.= "'"

D, D': text documents with parts ("pages") Di, Di';
ND: nontext;
AD_TEMA(x): instance (administrator) controlling the access to x;

- - -> sequential order of parts of D, D';
> references (internal, external);

c-p-relationship between administrators
with: c=calling instance (master, consumer),

p=called instance (slave, producer)
(al, a2, a3): attributes which specify properties of referred documents
(in the sense of TEXTNET, see [TEXTNET]).

figure 20

- - - > Dn

Figure 21 below shows tha t instances (servers) AD_t are used to provide storage for

hyper text da ta of type t (t: text, source code, graphics, ...). An instance AD_TEMA(x)

allows the manipulat ion of exactly one hyper text enti ty (e.g. document) x: it performs

the access to the server on which x is located and causes port ions of x to be t ranspor ted
on demand from the server to AD_TEMA and vice versa.

157

~-.oo

l l,

o e o

! i,i!i f:!-::

i i

' ~,' control flow

. . . . • 4 " d a t a f l o w

servers

compilers,
utilities

userdefined
programs

toots
(as TEMA)

user administrators

specification of views
viewports, ,_)

(D A S C O)

user display station

figure 21

The instances AD_TEMA(xi), working on hypertext data xi linked by references, form a
network, the structure of which closely resembles the linkage structure of the hypertext;
the edges of this network express c-p-relationships between the nodes connected by these
edges. We call such a set of cooperating instances a duster (compare 5).

In the example above, the instances AD_TEMA(D), AD_TEMA(D') and
AD_TEMA(ND) are elements of a cluster. Typical functions of a hypertext editor such
as "browsing", for example, must then be implemented as actions of clusters.

158

8.3. D a t a s t r e a m c o n t r o l i n s t a n c e s A D _ D A S C O

When working in a distributed environment we have the problem of presenting to the
user values which are produced by different sources (instances) at different slices of time.
We assume that the user operates a user display station (uds) consisting of one device
or several devices (displays, monitors) controlled by an instance AD_uds. We assume
furthermore that a window manager is part of AD_uds and performs the manipulation
of windows on uds.

A user U, however, does not work with a real device (display, window) but with virtual
objects called views and viewports.

U can specify views, viewports, their layout and the mapping of virtual objects onto real
devices.

There is always a one-to-one correspondence between a viewport and a "value-delivering
instance" AD_value which produces and delivers the stream of data presented in this
viewport.

We introduce instances AD_DASCO as a means of specifying and controlling these vir-
tual objects and the data flow between value-delivering instances and the "presentation

instance" AD_uds.

The construction process of AD_DASCO instances is iterative in the following sense: a
value-delivering instance AD_value which corresponds to a viewport vp of a view vw can
itself be a composed object and thus specify a view vw' by simply defining AD_value =
AD_DASCO' (see the example below). I t is furthermore possible to dynamically exchange
an instance AD_value with another instance AD_vaJue'.

The following example illustrates the situation where a user is working on a docu-
ment doel (controlled by AD_TEMA1) and looking into documents doe2, doe3 and into
graphical data (controlled by administrators AD_TEMA1, AD_TEMA2 and AD_ND).
AD_TEMA1, AD_TEMA2, AD_TEMA3 and AD_ND are value-delivering instances for
AD_DASCO1 and AD_DASCO2. AD_DASCO2 defines a view which is actually a view-
port of AD_DASCO1.

159

value
delivering
instances

specification
instances

AD_TIMA 1

AD_DASCO1 ("father")

docl

A D _ T E M A 2 ~ T ? ~ . A D _ N D

AD_DASCO2 ("son")

t doc2 graphic
info

s ta te doc3
information

presentation
instance

AD_UDS

doc2

doc3
docl state

information

display

graphic
info

monit"or

: father-son relationship between AD~DASCO1 and AD_DASCO2;

.~ actual flow of data (the mapping of views and viewports onto devices
(windows) is part of the specification of AD_DASCO).

figure 22

8.4. C o n c l u s i o n

The utilities presented in the last sections of this paper constitute an important part
of a "parallel user environment" which views the user of a distributed system as one of
many cooperating instances (see figure 21), At present we know next to nothing about
the nature and structure of such a parallel user environment. It is therefore very impor-
tant to build an experimental system~ to work with it and to explore its potentialities.

The combination of hypertext concepts with the advantages offercd by distributed pro-
cessing and the use of distributed databases can and should be of particular value in
supporting the development of distributed programs.

Note that a new computer architecture will not acquire a widespread user community as
long as its user interface is "exotic" and/or hard to work with. Users expect "innovative"
systems to offer user interfaces which are at least as good as those given by an average
PC.

160

B i b l i o g r a p h y

[DASH] Anderson,D.P., Ferrari,D., Rangan,P.V., Tzou,S.-Y.: The DASH Project: Issues
in the Design of Very Large Distributed Systems. Report No. UCB/CSD 87/338.
Computer Science Division, University of California, Berkeley, California 94720, Jan.
87.

[FPS 86] Floating Point Systems: The FPS T Series. FPS MC TS01 3/86 5M OPP.

[Gertach 85] Gerlach, L., Spurk,R.: Die Implementierung des verteilten Betriebssystems
POOL. Report 07/85, Sonderforschungsbereich 124, Fachbereich Informatik, Univer-
sit~.t des Sa~rtandes, 1985.

[Guzman 83] Guzman,A., Gerzso,M., Norkin,K.B., Vilenkin,S.Y.: The Conversion via
Software of a SIMD Processor into a MIMD Processor. in Computer Architectures
for Spatially Distributed Data, Ed. by Freeman, H., Pieroni, G.G., Springer-Verlag,
1985.

[Heubel 86] Heubel,T.: Die Virtualisierung yon POOL-Verarbeitungsknoten durch ein
Basis-Betriebssystem. Internal report, Sonderforschungsbereich 124, Fachbereich In-
formatik, Universit~t des Saarlandes, Apr. 1986.

[Hillis 86] Hillis,W.P.: The Connection Machine. The MIT-Press, Cambridge, Mas-
sachusetts 02142, 1986.

[HYPER] S. Carmody, W. Gross, T.H. Nelson, D.E. Rice, A. van Dam: A Hypertext
Editing System for the/360, Pertinent Concepts in Computer Graphics, M. Faiman,
J. Nievergelt, Ed., Illinois Press, March 1969, pp. 291-330.

[Kleinrock 75] Kleinrock,L.: Queueing Systems, Vol. I: Theory. New York: Wiley-
Interscience, 1975.

[Krass] Krass,J.: Layout eines verteilten Systems in CCC-Architektur. M.Sc. thesis,
Fachbereich Informatik, Universit~t des Sa~trlandes, in preparation.

[Liskov 84] Liskov,B.: The Argus Language and System. in Distributed Systems - Meth-
ods and Tools for Specification, Lecture Notes in Computer Science 190, Springer-
Yerlag, 1985.

[Malowaniec] Ma[owaniec,K.T,: Circuit Switching Networks for Distributed Systems.
Ph.D. thesis, Mathematisch-Naturwissenschaftliche Fakult£t, Universit~t des Saar-
landes, in preparation.

tMEISER] Meiser,D.: Hypertext-verteilter Editor. M.Sc. thesis, Fachbereich Informatik,
Universit£t des SaarIandes, in preparation.

[MOS] Barak,A., Litman,A.: MOS: A Multicomputer Distributed Operating System.
Software-Practice and Experience, Vol. 15(8), 725-737 (Aug. 85).

[NILAM] Nilam~S.: Verteilte Display-Manager. M.Sc. thesis, Fachbereich Informatik,
UniversitEt des Saarlandes, in preparation.

161

[PASCAL-D] C. Neusius, H. Scheidig, R. Spurk: PASCAL-D, a distributed version of
PASCAL and its implementation, Universit£t des Saarlandes, Rechenzentrum, in
preparation.

[Preparata 81] Preparata, F.P., Vuillemin,J.: The cube-connected cycles: a versatile net-
work for parallel computation. Commun. ACM 25, 5 (May 1981), 300-309.

[Scheidig 83] Scheidig,H.: POOL. Ein verteiltes System aus vielen Prozessoren - Auf-
bau und Wirkungsweise. Report 04/83, Sonderforschungsbereich 124, Fachbereich
Informatik, Universit~t des Saarlandes, 1983.

[Scheidig 85] Scheidig,H.: The Ten Laws underlying the Design of the Distributed System
POOL. Report 33/85, Sonderforschungsbereich 124, Fachbereich Informatik, Univer-
sitar des Saarlandes, 1985.

'[Schneider] Schneider,M.: Entwicklung eines intelligenten Links in VLSI-Technik fiir
CCC-Netzkommunikation. M.Sc. thesis, Fachbereich Informatik, Universit~t des
Sa~rlandes, in preparation.

[Schuh 84] Schuh,H.J., Spaniol,P.: CANTUS a packet switching point-to-point network.
International Symposium on Communication and Computer Networks, Networks IN-
DIA 84,IFIP/UNESCO, 1984.

[SUPRENUM] Behr,T.M., Giloa,W.K., M(ihlenbein,H.: SUPRENUM, the German Su-
percomputer Project - Rational and Concepts. IEEE Intcrnational Conference on
Parallel Processing, 1986.

[TEXTNET] R.H. Trigg, M. Weiser: TEXTNET, a network based approach to text
handling, ACM transactions on office information Systems, Vol. 4, Nr. 1, January
1986, pages 1-23.

[Upfal 84] Upfal,E.: Efficient Schemas for Parallel Communication. J. ACM 31, ;3 (July
1984), 507-517.

[VAN] H. Scheidig, D. Meiser, C. Kraus, S. Nilam, D. Prinz: Verteilte Anwendungen auf
tokalen Netzen, Universit~t des Saarlandes, Rechenzentrum, 1987.

[Wittie 81] Wittie,L.D.: Communication structures for large networks of microcomput-
ers. IEEE Trans. Comput. C-30, 4 (Apr. 198I), 264-273.

