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A b s t r a c t  

The development of a distributed system POOL based on a net- 
work which efficiently connects many processing elements is the 
subject of research supported by the DFG, SFB 124"VLSI-Ent- 
wurfsmethoden und ParallelitKt" (Teilprojekt D3). This contribu- 
tion attempts to give an overview of the work done so far within 
this project. 

1. I n t r o d u c t i o n  a n d  M o t i v a t i o n  

We wish to build a distributed system which consists of (many) units Ui connected 
by a network T: 

netWOrk  

figure i 
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At present we can discern essentially two approaches to the construction of such a dis- 
tributed system: 

A. THE "DIRECT", LANGUAGE-ORIENTED METHOD 

This method tries to use and extend an existing languagc L in order 
• to allow the formulation of subprograms (subtasks) P~, 
• and to perform the mapping of P~ onto the components U~ of the system. 

Frequently a host (which can be considered as a special component Ui) is used to produce 
the input to the system (data as well as program modules Ps) and to "download" the 
single units U~. 

As examples the following systems can be named: the system FPS [FPS 86] and the paral- 
lel computer designed in the suprenum project [SUPRENUM] (with L = OCCAM, FOR- 
TRAN and Concurrent Modula-2, respectively), both intended for number-crunching 
purposes, the connection machine [Hillis 86] and the LISP-machine of [Guzman 83] for 
symbol manipulation (typical in the A.I.-area) with L = LISP. 

This method is particularly well suited for applications which are elementary in the 
following sense: 
• there is a 1-1-correspondence between logical (user-defined) objects P~ and physical 

objects Ui, 
• every (logical) operation on Pi can easily be expressed by a simple instruction (pro- 

gram) on Ui, and 
• the requirements which have to be imposed upon the communication system can be 

deduced from simple neighbourhood relationships between objects Pi- 

Typical examples (pixel operations and transistor simulation) are given in [Hitlis 86]. 

B. THE DISTRIBUTED OPERATING SYSTEMS APPROACH 

This approach tries to design an operating system which itself is the object of distri- 
bution. The operating system attempts to equip the user with higher level objects o 

• as entities of distribution at the user level, 
• which can be mapped in a transparent and automatic way onto thc available physical 

units, 

thus providing an object-oriented programming environment appropriate for distributed 
systems. 

The process of building higher-level objects o can be considered as a generalization of 
the usual method of defining abstract objects: 
An object o is an active element which 
• sends/accepts requests (a request is coded as a remote procedure catl addressing an 

entry e of o which serves as an access point to a certain subtask of o)~ and 
• which may delegate the execution of some subtasks to other objects (slaves) allocated 

by the system on demand. 
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Our distributed system POOL follows this operating system approach (see [Scheidig 83], 
[Scheidig 85]); the system ARGUS [Liskov 84] can be named as a further cxample. 

2. T h e  S t r u c t u r e  o f  t h e  D i s t r i b u t e d  S y s t e m  P O O L  

The structure of the system POOL can be illustrated by the following figure: 
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The following contribution is divided into three parts: 

• In sections 3, 4, we describe the Basic Communication System running on the com- 
munication units CU. 

• In sections 5, 6, 7, we introduce two versions of POOL already implemented. We 
discuss the higher system layers running on the execution units EU and the basic 
mechanisms necessary to support  distributed applications. We briefly address the 
question of how a "remote user" can find access to POOL via the campus-wide network 
CANTUS (viewing POOL as one of many nodes connected to CANTUS). 

• In section 8, we comprise some ideas about the user interface of a distributed systems. 

3. The  M o d e l  o f  t h e  B a s i c  C o m m u n i c a t i o n  S y s t e m  a n d  i t s  I m p l e -  
m e n t a t i o n  

The efficiency of the Basic Communication System (BCS) is of prime importance be- 
cause the spectrum of applications supported by the distributed system depends on BCS 
performance: 
the bet ter  the ratio of 

execution-time (EU-time) to communication-time (CU-time), 

the higher the granularity of the applications that  can be chosen. 

This goal of high performance of the BCS leads to a number of requirements concerning 
• the units Ui, 
• the topology T, and 

• the method of exchanging data among units Ui. 

3.1 R e q u i r e m e n t s ,  P r o p e r t i e s  

A. SEPARATION OF COMMUNICATION AND EXECUTION IN TIIE U: 

A unit U of POOL consists of two processing elements U = (CU, EU) (compare fig- 
ure 2). The communication unit CU implements the basic communication since the 
execution unit EU realizes the higher levels of the operating system. 

The CU-units are homogeneous in the system. Thus we can choose specifically designed 
hardware which guarantees the required efficiency of the basic communication. 

The EU-units need not necessarily be homogeneous; on the contrary, we want to be 
able to integrate a new and attractive processing element as EU into the systemat  any 



128 

t ime .  The EU's can fully concentrate on their cxecution tasks; they are not required to 
contribute to the transport  of data. 

B. CHOICE OF NETWORK TOPOLOGY T 

As topology T of the network which interconnects the units U of our distributed system 
we choose the structure referred to as "cube connected cycles" (CCC), see [Preparata 
81]. CCC can be viewed as an optimization of the hypercube topology--retaining most 
of its advantages and adding the following important features: 

bl. Constant local complexity: A CCC-network T of dimension d consists of n = d- 2 d 
elements. However, the number of edges emanating from every node is constant (3) 
and does not depend on d. This property makes the network T easily extensible 
and reduces substantially the costs of assembling T. 

b2. The choice of one specific topology does not really restrict the generality because 
we know that an arbitrary network can be simulated by CCC with not too much 
overhead (the overhead is a logarithmic function of the number of elements). 

b3. There exists a simple (static) routing method for CCC; moreover, routing can be 
improved by employing a dynamic (random routing) version which tries to distribute 
the communication load over BCS. 

b4. There exists a simple, automatic layout algorithm for CCC which is applied in order 
to produce a back panel board for CCC. This board realizes the complete physical 
interconnection structure thus eliminating the necessity of wiring. This back panel 
can be viewed as a generalization of a conventional bus system (see [Krass]). 

C. "NAMING", TWO-LEVEL ROUTING 

We use arbitrary identifiers to name and identify POOL-objects (e.g. POOL-processes). 
A two-level algorithm has to be applied to allow an object U0 to communicate with an 
object U.: 

Step 1:U0 emanates first a multicast message: M(arca, "object with identification 
id(U,,) please send answer to U0"). Every unit U in the area covered by this 
multicast checks whether its own identification id(U) (attached to it when 
created) is equal to id(Un). If such a U exists then it sends its network address 

adr(U) back to U0. 

Step 2: If step 1 produces a result adr(U) then U0 and Un can henceforth communicate 
via point-to-point communication using the network addresses adr(Uo) and 
adr(Un) to define a path from U0 to U,~ (and vice versa). 

Notice that  step 1 has to be repeated if the point-to-point communication falls (e.g. due 
to a hardware error in U0, Un or in one of the intermediate nodes on the path from U0 

to U.). 

Notice furthermore that  the logical properties of multicasts and suitable assumptions 
concerning names (in particular concerning the uniqueness of names) have to be taken 
into account in the design of the higher levels of the distributed operating system. 
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D. TASK OF THE BASIC COMMUNICATION SYSTEM B C S  

The task of the basic communication system BCS can now be summarized as follows: 
BCS has to perform 
• point-to-point communication, and 
• multicast operations 

cfficiently. 

3.2 W o r k i n g  P r i n c i p l e  of the  Bas ic  C o m m u n i c a t i o n  S y s t e m  

Figure 3 shows how a single communication unit Ui works: 
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m= (r,a): incoming data packet 
a= (an...ai): actual destination address 

( determines the path from 
actual node Ui to Un ) 

r= data 

links W, S, E are the spanning CCC-Links 
N connects CU with the 

corresponding EU; 

.~ path of m within Ui 

f igure 3 

The leading address information ai (2 bits) of the header of the incoming data packet rn 
turns the "mirror" into the position appropriate to "reflect" the rest of rn into the desired 
direction (that means it puts m I = (r, an,  a n - x ,  ..., a i - l )  without further inspection onto 
the addressed link L E {W, N, E, S}). 

We call this working principle of CUs the "turning mirror" method. 
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The whole process starts in Uo with the (complete) address a = oAr(U,,), each node of 

the path from U0 to U,* operating as just explained. 

3.3 Handling of Conflicts 

The turning mirror method fails in the following obvious case: 

J l .  
wl 4 

fig ure 4 

Here, a conflict occurs because two data packets ml ,  m2 arrive at the same time which 

both have to be put onto the same output  link, say S. 

As a solution of this conflict we do not want to apply usual store-and-forward techniques 
because this would severely decrease the efficiency of the BCS (and increase the costs of 

the CU-units). 

Instead we argue as follows: 
For several reasons (in particular to handle hardware failures) we have to provide an end- 
to-end protocol between communicating instances U0 and U,*. If we succeed in reducing 
the probability of the above-mentioned conflicts so that  it does not exceed the probability 
of other failures, then we can also hold the end-partners responsible for the handling of 

these conflicts. 

Thus the question arises of how we can decrease (minimize) the number of conflicts when 
applying the turning mirror method. 

This is easy - we simply increase the capacity of our links {W, N, E ,S} .  A link L E 
{W, N, E,  S} is a logical entity which need not necessarily be realized by one single 
physical channel. We will in fact use p physical channels C to implement every link L 
and we will choose one of them which is free whenever we have to put a data packet on 

this link. 

Thus the "turning mirror principle with conflict solution" works as follows: 
• If packet m arrives at Ui then the leading address information (2 Bits) determines 

the output  link L. 



131 

• A free channel C (if any) of the p channels realizing L is chosen. 

• The packet m is "reflected" onto C. 

• If no free channel C is available then the sender U0 is notified immediately (i.e. by 
hardware signals back the chain of intermediate nodes Ui, Ui-x, ..., U0); U0 can take 
the appropriate  measures. 

The packet m dynamically constructs a path from U0, ... Ui, ... to Un by occupying a free 
channel at every intermcdlate node Ui. W e  therefore call this method "dynamic circuit 
switching" (in analogy to the usual static circuit switching scheme used in telephone 
systems, for example). 

Note that  the minimal packet length of m is chosen in such a path that  the longest 
noncyclic path PATti_max in the CCC-network is fully covered by m. 

The following now holds: 

a. The dynamic circuit switching method can be implemented efficiently (mostly in 
silicon!), see 3.4 below. 

b. The correct functioning of the method can be ensured (see 4 below) and the appro- 
priate number p of channels can be determined (as a function of the CCC-dimension 
and other parameters).  

c. The time t needed to t ransport  a packet m from U0 to U,, (if no conflicts occur) is 
given by 

t = number_of_hops • SW-time. 
SW-time denotes the time required by the turning mirror algorithm within a single 

CU. 
End-to-end actions are easy because the absence of an acknowledge over a t ime 

interval t > t_error with 
t_error = 2 • t_max (t_max = time for PATH_max, see above) 

signals a failure. 

d. Multicast can also bc implemented efficiently on the basis of the point-to-point 
communication described so far. There are several possible ways which differ by thc 
amount of software support by which the point-to-point communication has to bc 
enhanced in order to realize mutticast. 

3.4. H a r d w a r e  a n d  s o f t w a r e  a r c h i t e c t u r e  of  C U s  

The resulting architecture of a CU-unit can now be summarized as follows: 
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figure 5 

The structure of the component SW (switch) is described by the following figure. 
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The "heart" LCC of the switch SW is realized by a two dimensional daisy chain (see 
[Schneider]). The design of the LCC as a VLSI-Chip has just begun. 

3.5.  P e r f o r m a n c e  

Applying the VLSI-design techniques available on the market today for the manufac- 
turing of the LCC-chip would lead to the following performance figures: 

The overall (gross) transport capacity e of one CU is given by 

e = n . p . 8  

with n = number of CU-links (4, including the connection CU - EU), 
p = number of channels per link (8), 
s = capacity of one channel (20 [Mbit/s]) 

as 640 [Mbit/s]. 

We have to notice that the actually available "net"-capacity is at most 10% of this 
maximal value (guaranteeing a tolerable small rate of conflicts). There are, however, 
several ways of further increasing the capacity of the system (e.g. by "cascading" LCC- 
Chips). 

4. T h e  V e r i f i c a t i o n  o f  t h e  B a s i c  C o m m u n i c a t i o n  S y s t e m  

The architecture of the BCS was described in section 3. We will call a network with 
a switching method based on the turning mirror principle a Dynamic Circuit Switching 
Network. This section describes an analytical model and the design of such networks. 
We will first describe a model and then show some suitable topologies; afterwards, we 
wilt verify our communication system using the analytical model for the topologies con- 

sidered. 

4.1. T h e  A n a l y t i c a l  M o d e l  

In this section we will describe one analytical model of a Dynamic Circuit Switching 
Network (DCSN). We will begin with a definition of the model parameters and then 
focus on the model itself. Finally, we will show how to use the model for network design. 



4.1.1. The Model  P a r a m e t e r s  

134 

The input parameters  of the network model are: network traffic, network topology and 

a routing function. 

NETWORK TRAFFIC 

We have a network of N nodes, numbered [0..N - 1]. Each node can send messages 

to every other node. 

The messages from node k to node l are sent with the Poisson distribution at arrival rate 

A,[k,/], (k,l E [ 0 . . N -  11). 

The length of messages in the network is exponentially distributed with mean E(L). 

The speed of transmission of every communication channel in the network is S. 

The service rate can be computed as # = S/E(L) .  

The traffic in a network with N nodes can be described by a matrix of arrival rates 
Ax[k,/], (k, 1 E [O..N - 1]) and a service rate of Iz = S/E(L) .  

NETWORK TOPOLOGY 

The Dynamic Circuit Switching Network consists of a set of switches connected by sim- 
plex communication channels. Figure 7 shows one example of a network topology. It  
consists of four nodes numbered 0 .. 3. The arrows represent unidirectional communi- 
cation channels. The rectangles numbered 0, 1, 2, and 3 represent the switches in the 
appropriate  nodes. The rectangle with number - i  represents the rest of the network 
apart  from the switches. The communication channels are grouped into unidirectional 
edges. For example, it can be seen that  edge (1,2) consists of two communication chan- 
nels, edge (2,1) also consists of two unidirectional channels and edge (1,-1) consists of 

one communication channel. 

The topology of the network can be described by a matrix m[i, j], (i, j E [ - 1 , 0 . . N -  1]). 

For any i , j  e [ 0 . . N -  l],m[i,j] = k, (k e [0, 1..]) means that  there are k simplex com- 
munication channels from node i to node j .  

For any j E [ 0 . . N -  1] ,m[-1, j  I = k, (k E [0, 1..]) means that  there are k simplex com- 
munication channels from the CU processor to the switch in node j .  

For any i e [ 0 . . N -  1], rn[i ,-11 = k, (k e [0, 1..]) means that  there are k simplex commu- 
nication channels from the switch to the CU processor in node i. 

If m[i,j] = O, then there is no edge from i to j .  If  m[i,j] = k and k > O, then an edge 

exists from i to 3" and it consists of k simplex communication channels. 
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figure 7 

ROUTING tN THE NETWORK 

Routing in the DCSN is static, which means that all messages from node k to node 
l always take the same path. 

Routing can be defined for a particular topology as an algorithm for a routing function. 
The routing function NextNode(Current,Dest) returns the address of the next node as a 
function of the current node's address and the destination node's address. 

Routes in static routing can only be changed statically by a topology update or a change 
in the routing algorithm. They cannot be changed dynamically. Examples of dynamic 
routing are adaptive routing with routes depending on network state, or random routing 
with routes depending on random number generation. 

4.1.2. Mode l  Descript ion 

The parameters of the network model are: number of nodes N; arrival rates Al[k,/], (k, l E 
[0..N - 1]); mean message length E(L);  speed of transmission ..q in a communication 
channel; service rate/z; network topology m[i,j], ( i , j  E [ - 1 , 0 . . N -  1]); and the routing 
algorithm. 

The following questions arise: what is the probability P[k,l] that the message originating 
in node k with destination in node t will be lost; and what is mean E(P), variance Var(P), 
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and standard deviation ap  of the probability of message loss in the network. 

Furthermore, we have the following design problem: what value should be chosen for 
the number of communication channels m[i, j] on the edges of our topology in order to 
obtain a network with desired mean message loss probability E (P )?  

We intend to construct a model of a network to solve this problem. First, we will 
decompose the network into elementary queueing systems, then use rules of queueing 
theory for these systems. Afterwards, the single elements will be composed into a network 
of queueing systems. 

D ECOMPOSITION 

We are interested in finding the probability B[i, j] ,  ( i , j  e [ -1 ,0 . .N  - 1]) of a message 
being lost while attempting to go through edge (i,j). For this purpose, we must compute 
the traffic going through this edge and find a suitable queueing system model for it. We 
must decompose our network into these elementary queueing systems. 

In order to solve this problem, we begin with the tentative assumption that we always 
have a sufficient number of communication channels on each edge to transfer all incoming 
messages: each edge is said to have an infinite number of channels. 

The arrival distribution on edge (i, j )  is the sum of many independent Poisson distribu- 
tions. It is also itself a Poisson distribution. We will compute an arrival rate ~[i,j] for 
this distribution. 

The arrival rate of messages entering the network in node j ,  (3" • [0..N - 1]) is: 

N - I  

tl 
t----O 

The arrival rate of messages leaving the network in node i, (i E [0..N - 1]) is: 

N - 1  

A[i,--1] Z )~,[k,i] 
k = O  

The arrival rate of messages going through the edge ( i , j ) ,  ( i , j  E [0..N - 1]) is: 

tl if re[i, Jl >- 0 
k , IE[O. .N- I ] :  
rou te  f r o m  k to 1 

)~[i,j] = goes tt,,,ough (i,i) 

0 if re[i,  j] --  o 

The matrix ,~[i,j], ( i , j  E [-1,  O . . N -  1]) describes the arrival processes on each edge of 
the network. 

A service distribution on edge (i,j) is an exponential distribution with a mean equal to 
E(L)/S and service rate U = S/E(L),  where E(L) is the mean message length and S is a 

speed of transmission in a communication channel. 



137 

A single edge can be described by the following queueing system: We have the Pois- 
son arrival distribution and exponential service time distribution. There are an infinite 
number of communication channels available on edge (i j ) .  Each newly arriving message 
is always given its private communication channel. This is the infinite-server system 

MIMIcx~. 

Yet in reality there are only m[i, j] communication channels available on edge (i j ) .  Each 
newly arriving message is given its private communication channel. However, if the 
message arrives when all communication channels are occupied, the message is lost. It 
is an m[i, j]-server loss system. 

The output  of an M/Mloo system still has Poisson arrival distribution. It is important  
in networks with many such systems, where the output  from one system can be an input 
to another. In this case, the network is a combination of many MIMIoo systems and an 
analytical model of this network can easily be constructed since the arrival distribution 
of single edges can be computed as shown above. 

Yet the output of MIMIm[i, j]lm[i,j] no longer has a Poisson arrival distribution. In a 
network with many such systems, the output of one system may be an input to another. 
In this case, the network is a combination of many GIMIm[i,j]lm[i,j] systems, with 
a general arrival distribution, in spite of the Poisson arrival distribution at the network 
entrance. It is difficult to construct an analytical model for such a network because arrival 
distribution cannot be computed in such a way as shown above. Only a simulation model 

is possible in this case. 

We are interested in designing a high-quality network with very low loss probability 
B[i,j]. Here, we notice that the MIMIm[i,j]lm[i,j] system with very low loss proba- 
bility B[i,j] can approximate an M/M/c~ system. 

M I M I m [ i ,  j ] lm[i ,  j] . . . . . . . . . .  • M l  M /  oo 

A network of many M/M/oo systems can be approximated analogously by a network 
of many M/M/m[i,j]/m[i,j] systems with very tow loss probabilities B[i,j]. Arrival 
distribution of output  from these queueing systems can be approximated by a Poisson 
distribution. Thus we can compute arrived distribution as shown earlier and can easily 
construct an analytical model of the network. 

SINGLE EDGE CALCULATIONS 

We have shown that a network can be decomposed into its one-edge elements. Each 
edge can be modeled by an elementary queuelng system M/M/m[i,j]/m[i,j]. We will 
use this queueing model to perform a calculation for a single edge. 

We are looking for the probability B[i,j], (i,j E [ - 1 , 0 . . N -  1]) for a message loss on 
edge (i, j ) .  This value can be computed with Erlang's loss formula [Kleinrock 75]. If we 
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apply this formula to our model we will arrive at: 

B[/ , j  I = 
m[i, j]! 

m•] (~[i , j] /~)  k 

k~ 
k.=-O 

The mat r ix  B[i, j] ,  ( i , j  E [ -1 ,  0 . . N -  1D describes the loss probabi l i ty  on all edges in the 
network. 

FINDINGS 

We have made  computa t ions  for all single edges. We will now compose  single queu- 
ing sys tems (representing edges) to model  a comple te  network. Based upon the model, 
we will derive results for the complete  network. 

We want  to find the probabi l i ty  P[k, l] tha t  a message from node k to node I will be lost. 

P[k , l  i = 1 - (1 - B [ - 1 ,  k]) .  (1 - B [ l , - 1 1 ) .  I ' I  (1 - B [ / , j  D 

i0'E [0..N - : 
route Jrom k to Ill 
goes through (i,]) 

We can compute  the mean probabi l i ty  tha t  the message will be lost in the network: 

N - 1 N - 1  

~ (Ptk, ll .  A,[k,l]) 
E ( P )  = 4=0 I=o 

N - - 1 N - 1  

}2 F_, 
k = O  / = 0  

The  second moment  of this dis t r ibut ion is: 

N - 1 N - 1  

~ (P[k,/l 2 • .~l[]g, 11) 
~r .2~ 4=0 I=0 J.~l.l ] 

N - 1  N - 1  

k=O / = 0  

The  variance of this distr ibution:  

V a t ( P )  = E ( P  2) - ( E ( P ) )  2 

The s tandard  deviation: 

o p  = vf-V -(p) 

The mean value and s tandard  deviat ion of P describe the quality of the  network. 
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We have a network described by the following parameters: number of nodes N; arrival 
rates Al[k,l], (k,l ~ [ 0 . . N -  1]); mean message length E(L); speed of transmission S in a 
communication channel; service rate/z; network topology m[i,j], ( i , j  ~ [ - 1 , 0 . . N -  1]); 
and routing algorithm. 

We can use the model constructed in section 4.1.2 for designing a network. We have a 
choice between two operation modes: 

The first operation mode is a computation for an existing network: the given is a topology 
of the network by matrix re[i, j], which describes how many communication channels exist 
on each edge. 

We compute loss probability on each edge B[i,j], ( i , j  E [ - 1 , 0 . . N -  1]), then loss prob- 
ability between end nodes P[k,l], (k,l E [ 0 . . N -  1]), then mean probability of loss E ( P )  
and standard deviation of loss ap.  

The second operation mode is a network optimization: the given is a topology of the 
network by matrix m[i,j], which describes how many communication channels exist on 
each edge. We intend to change a number of communication channels on existing edges 
(with re[i, j] > 0) to obtain an optimal network with mean message loss probability E(P) 
less than given parameter EPLimit. 

BMin is initialized to 0.0 and BMax to EPLimit,  respectively. 

We compute BLimit as (BMin + BMax) / 2.0. Then we find a number of channels 
m[i, j] on each existing edge which is large enough to receive loss probability on the edge 
B[i,j] less than BLimit. Then we compute loss probability between end nodes P[k,l], 
and afterwards the mean probability of loss E(P) and standard deviation of loss a.o. 

If the computed E(P) is tess than required by EPLimit,  we will set BMin to BLimit. 
Otherwise if the computed E(P) is greater or equal than required by EPLimit,  we will 
set BMax to BLimit. 

Afterwards the computation is repeated as described above. The iteration is stopped 
when the computed E(P) is less than EPLimit and the difference (Bmax - BMin) is less 
than an assumed parameter BEpsilon. 

We can also mix the two operation modes: For example, we can make a computation 
for an existing network with a new trafllc condition in the first operation mode. If we 
are not satisfied with the mean loss probability E(P), we can use the second operation 
mode to obtain required E(P). We can also manipulate the other para.meters, e.g., we 
can change the speed of transmission S or the routing algorithm. 

Thus, the model can be used to examine existing networks and to design networks of 
arbitrary quality. 
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4.2. Topology Considerations 

This section shows two topologies which seem to be suitable for distributed systems. 
They are two hypercube topologies: Cube- Connected Cycles and Two Way Digit Ex- 
change. 

4.2.1. Cube-Connected Cycles Topology 
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2-dimensional CCC 4 
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Some examples of CCC topology are illustrated in figure 8. A CCC of dimension D 
consists of D .  2 D nodes. They are grouped into a cycle of D nodes, surrounding each of 
2 D vertices of a binary hypercube of dimension D. 

One node is connected to exatztly three others: one bidirectionM link crosses the hy- 
percube in one of the D dimensions. A cross link consists of two unidirectional edges. 
Two bidirectional or unidirectional links connect nodes to neighbours on the same cy- 
cle. A cycle link consists of two edges in the bidirectional case (figure 9) and one edge 
in the unidirection~ case (figure 10). One edge consists of one or more unidirectionaJ 
communication channels. 
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An analysis of CCC networks is offered in [Preparata 81] and [Wittie 81]. We will show 
the results for DCSNs having this topology in section 4.3. 
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4.2.2. Two Way Digit Exchange Topology 

2-WADE topology is related to the CCC topology with unidirectional cycle links. A 
D-dimensional 2-WADE also consists of D. 2 ° nodes. They are also grouped into a cycle 
of D nodes around each of the 2 ° vertices of a binary hypcrcube of dimension D. 

Figure 12 presents some layout examples for the 2-WADE topology. They are similar 
to those for the CCC topology with unidirectional cycle links in figure 10. The only 
difference is that each bidirectional cross link is divided into two unidirectional cross links. 
They do not connect nodes with this same cycle position, but nodes with consecutive 
cycle positions. 
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Each node is connected to exactly four others: two unidirectional links cross the hy- 
percube in one of the D dimensions. A cross link consists of one unidirectional edge. 
Two unidirectiona/links connect each node to neighbours on the same cycle. A cycle 
link consists of one unidirectional edge. One edge consists of one or more unidirectional 

communication channels. 

An analysis of 2-WADE networks with random routing can be found in [Upfal 84]. We 
will show the findings for DCSNs having this topology in section 4.3. 
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4.3. S y s t e m  Ver i f i ca t i on  

This section contains a verification of our communication system. We will apply our 
analytical model from section 4.1 to the topologies shown in section 4.2. We would like 
to answer the following questions: How many parallel communication channels do we 
need in particular links? What  is the total number of communication channels con- 
nected to one switch? And, which topology is the best? 

We assume the following parameters  of maximal network traffic. The number of nodes 
in a topology is 

N = D .  2 D[nodes] 

The messages from node k to node i are sent with a Poisson distribution at the arrival 
rate 

$ l [k ,  l] = l O 0 / N [ p a c k e t / s ]  

This means every node generates 100 messages per second, which are uniformly 
distributed to all nodes in a network. The length of a message is exponentiMly distributed 
with mean 

E ( L )  = 8192[b/t] = l [ g B y t e ]  

The speed of transmission for a communication channel is 

S = lO7[bit/s] = lO[Mbi t / s ]  

The service rate is 
It = S / E ( L )  = 1220.7[1/s] 

We will compare three topologies from section 4.2: CCC with bidirectional cycle links, 
CCC with unidirectional cycle links and 2-WADE. Each topology will be examined with 
the following dimensions 

D = 3 . . 6  

A static routing will be used for all topologies. 

We will use the analytical model to design a network with an mean toss probability E(P) 
less than the following limit 

E P L i m i t  = 0.001 

We are interested in the following results: 
up - number of channels on unidirectional edge in up link (between switch and CU 

processor) 
cross - number of channels on unidirectional edge in cross link 
cycle - number of channels on unidirectional edge in cycle link 
total - total number of communication channels per switch (outgoing plus ingoing) 

The results are shown in figure 12. 
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CCC topology with bidirectional cycle links 

D N ,~1 up cross cycle total 
3 24 4.1666666 3 3 3,3 24 
4 64 1.5625 3 4 4,4 30 
5 160 0.625 3 4 4,4 30 
6 384 0.2604166 3 4 5,5 34 

~ C  topology with unidirectional cycle links 
ID N ~I up cross cycle total  

3 24 4.1666666 3 3 4 20 
4 64 1.5625 3 4 5 24 
5 160 0.625 3 4 5 24 
6 384 0.2604166 3 4 6 26 

2-WADE topology 
D N A l u p  cross cycle total  
3 24 4.1666666 3 3 4 20 
4 64 1.5625 3 4 4 22 
5 160 0.625 3 4 5 24 
6 384 0.2604166 3 4 5 24 

figure lZ 

Figure 12 shows how many communication channels should be placed on one edge of 
up, cross and cycle link to obtain a network with the required mean loss probability. 
Compare figure 12 with figures 9, 10 and 11 to see the relation between edges and links. 
Unidirectional links consist of one edge and bidirectional links consist of two edges. 

We have used our analytical model from section 4.1 with topologies shown in section 
4.2. To verify our communication system, we must answer a number of questions, e.g.: 
How many parallel communication channels do we need in particular links? What  is the 
total number of communication channels connected to one switch? Which topology is 
the best? 

The quality of each network is almost identical because all have nearly the same E(P). In 
order to select an optimal topology, we will compare their costs, which are proportional 
to the number of channels: the better  a topology, the less communication channels it 
has. Figure 12 indicates that  the 2-WADE topology is bet ter  than CCC because of the 
smaller number of channels per switch. 

We have shown with an analytical model that  it is possible to construct Dynamic Circuit 
Switching Networks to meet our requirements. The computed number of communication 
channels per node is technologically acceptable. Further study of DCSN can be found in 

[Malowaniec]. 
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5. T h e  a r c h i t e c t u r e  o f  t h e  b a s i c  e x e c u t i o n  s y s t e m  B E S  

The basic execution system BES of POOL has a layered structure as shown in the 
following figure: 

layer  typical instances implementa t ion 
charac ter iza t ion  mechanism 

17: 
too ls  

I Tool 1 

utilities, 

16: user 
admin is t ra t ion  

15: distributed 
management 
and information 
exchange 

14: 
c lus te r /p rocess  
serv ice 

13: device 
servers 

12: file 
serv ice 

I1 : process 
management 

I . . . I  ~oo,, I 

,, . • {compi ler i l  ,,, . . ,  

TEMA-DIs,J- • • ~ASCo-Dns 

• . .  AD o,e,,  j . . .  

• • • IMana0er i l"  " • 

I Rsol I . . . I  Rsoo 

• • l A D  constructor- i  • • 

Term,ca' I . . .  I  r'nte  I 
Server Server 

• = . lF i le server ]  . • • 

POOL-processes, ipc 

c lus ter  

c lus ter  

c lus ter  

admin is t ra to r  

admin i s t ra to r  

admin is t ra to r  

tasks realized by 
a tocat multitasking 
system BBS_EU 

figure 13 

11: implements POOL-processes, called administrators AD (see below) and cooperating 
sets of administrators, called clusters (see below). 
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12: general file service; management of data representing a user within the system (e.g. 
data for accounting, access control, etc.). Typical instance: AD_file. 

13: management of other (slow) devices: virtualization of slow I/O-devices (terminals, 
printers, tapes, etc.). Typical instances: AD_terminal, AD_printer. 

14: cluster configuration service: allocation (deallocation) of nodes, loading, installation 
of POOL-processes, installation of clusters. Typicai instance: AD_constructor (used 
by PASCAL_D-compiler, see [PASCAL-D]). 

15: information exchange, support for user applications: definition of distributed cat- 
alogues, access to catalogues, catalogue-based look-up operations, etc. Typical in- 
stance: AD_RSO (see section 8). 

16: user control: control of access rights (quotas); provides an initial "command inter- 
preter", connects a user to Regional Service Office (RSO), etc. Typical instance: 
AD_user. 

17: utilities (tools): compilers and other utilities; a compiler for PASCAL-D (which is an 
extension of PASCAL) is available which allows the definition and configuration of 
administrators (clusters) and remote procedure calls between administrators under 
program control (see [PASCAL-D]). Typical instances: AD_compiler, AD_TEMA, 
AD_DASCO (see section 8.3). 

ADMINISTRATORS, CLUSTERS 

Administrators are the basic abstraction mechanisms supporting distribution at the pro- 
cess level within the POOL system. An administrator can be considered as a generaliza- 
tion of an abstract object adjusted to the requirements of a distributed environment. 

An administrator AD possesses the following main properties: 

1. AD is a process running on an (arbitrary) EU. 

2. AD encapsulates local objects (data) and defines operations on these objects. 

3.a. AD allows access to the implemented operations by providing entries (service access 
points) el, e2, ..., en. 

3.b. An administrator AD_c can use a function e defined by another administrator AD_p 
by performing a remote procedure call AD_p.e(...). 

3.c. AD must accept and handle several calls at the same time. 

4. AD can use additional internal processes (running also on EU's) called slave pro- 
cesses. Slave processes provide "internal parallelism" for the simultaneous execution 
of some of the subtasks on which the arriving remote procedure calls are mapped 
within the administrator AD. 

5. Implementation details of an administrator (including the management and schedul- 
ing of slave processes) are hidden from the "outside world". 

In particular, administrators are applied as instruments to virtualize and control devices 
(resources). In the simplest case we have the following typical situation: 
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AD_d 

el  

ii it ii 

el3 

I 

administrator offering 
"high-level" access to 
"ressource" d 

el: functions modelling 
the user interface to d 

slave process (drives d) 

figure 14 

The administrator AD_d defines functions el,  ..., e2 which realize higher-level access to 
a resource d since everything connected with the handling of the physical device d is 
performed by the slave process H_d (H_d is not visible outside of AD). 

A remote procedure caJl constitutes a relationship (c-p-relationship) between the calling 
administrator AD_c (consumer) and the called instance AD_p (producer). A set of ad- 
ministrators connected by the c-p-relationships is called a cluster. Thus, a cluster is an 
abstract (computational) network, the elements of which cooperate in order to achieve a 
common goal. 

6. P O O L - v e r s i o n s ,  a c c e s s  t o  P O O L  

6.1 P O O L - v e r s i o n s  

Two POOL-versions are implemented so far: 
1. POOL_host: this is a simulation of POOL on a Siemens 7.570-P mainframe 

computer under the BS2000 operating system. 
2. POOL_micro: this is a special architecture providing up to 15 execution units 

(Z80, MCS68010). 

Both versions can be used together (in a transparent way). POOL_host aJlows us to 
extend the number of POOL-processes by adding virtual processors and thus to overcome 
some restrictions imposed by hardware (costs). 
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POOL_micro will be replaced by the (final) version 
3. POOL_CCC: the communication method was described in sections 3, 4; it will 

provide up to 64 execution units (ZS0, MCS68010, MCS68020). 

The following table comprises the important characteristics of the two existing POOL- 
versions: 

components POOL_host POOL_micro 
EU MCS68010, ZS0 
CU ZS0 

type of 
elementary 

communication 
type of 

higher level 
communication 

virtual processor 
Virtual processor 

a. common memory 
with semaphores 

b. ipc 
datagram, broadcast 

using link tables 

serial/parallel 
interface, communication 

protocol 
datagram, broadcast 
(hardware supported) 

The following figure shows the current POOL-configuration. 

I 
I 

Host Files Host Spooling Terminal Terminal 

/ ~,/v~, ~oo,.~ooo \ ....... i1 
t ..... t 

f l~l ~ ICuI I c~l I c°l ~Lt:~l 1 
CU-NETWORK 

POOL (ZS0,MCS68010) 

I I Q O  

Terminal Terminal 

I PR oRIvER I 

Pr!nter Disk 

[ FILE SERVER I 

figure 15 
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6.2 Access  to  P O O L  v ia  C A N T U S  

An obvious advantage can be derived from the fact that  the functions of our operat- 
ing system are distributed: there is no problem in principle to integrate further nodes 
(hosts, PCs) into POOL, thus increasing the number of available execution units. 

The easiest way to add a PC, say, as a new node to POOL is to take the following steps: 
1. Provide a simulation of the basic communication functions (using any communica- 

tion method available for the PC, see below). 
2. Provide a simulation of the CU - EU protocol. 
3. Implement the (PASCAL) program defining the administrator AD_terminal which 

aJlows access to POOL_host and POOL_micro on the PC. 

The following figure illustrates the situation: 

PC: 

AD_terminal 

EU-CU interface 

BCS-simulation 

local operating 
system 

\ 
POOL_host 

I 
POOl_micro 

figure 16 

The campus-wide network CANTUS (CAmpus NeTwork of the University of Saar- 
land) provides the basis for connecting PCs of different types to POOL. CANTUS is 
a datagram-based local area network (see [Schuh 84]). At present, PCs of type SUN, 
SINIX (MX-2) and CP/M are connected to POOL. 

6.3. P o r t a b i l i t y  of POOL-processes 

The integration of new nodes (PCs) into POOL (as described in 6.2) assumes the porta- 
bility of POOL-processes (in particular of the instance AD_termina~). Obviously, we have 

the choice between 
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(a) an efficient implementation of administrators based on a (local) multitasking system 
BBS_EU (see [Heubel 861), or 

(b) a version which is portable but less efficient. 

The second version uses the language PASCAL to 

• describe a "PASCAL-node machine (PNM)" as a basis for the implementation of an 
administrator, 

• define the interface between PNM and the "native" operating system (of the PC) as 
a set of PASCAL modules, and 

• define the interface between the node machine PNM and the administrator running 
on it as a set of PASCAL modules. The organization of the PNM is illustrated by 
the following figure: 

16 

J5 

14 

13 

12 

a d m i n i s t r a t o r  

node object o l  o • • node object ok 

COM-PASCAL machine 1 • • • COM-PASCAL machine k 

procedure based control f low interpreters 

node functions f l ,  f2 . . . .  fn 

PNM l/O-interface (to POOL) 

PASCAL runtime environment 
t l  native operat ing system 

figure 17 

12: PNM is implemented against a PASCAL program on layer 1. 

13: Functions fi are: 

• construction (initialization) / deletion of COM-PASCAL machines; 

• interactions of COM-PASCAL machines; 

• implementation of the EU-CU-interface. 

14: interprets the control flow descriptors defined by layer 15; performs the scheduling 
of COM-PASCAL machines (providing a "quasi-parallel" mode of operation). 

15: COM-PASCAL machines consist of PASCAL-routines and descriptors defining the 
control flow (at tile procedure level); COM-machines can communicate with each 
other. 

16: objects (internal processes) needed for the implementation of an administrator, im- 
plemented by tile COM-machines. 

See [Gerlach 85] for a detailed description. 



152 

7. E x p e r i e n c e s  w i t h  P O O L  

At present, most experiences listed below refer to the implementation of the system, 
not to it use. 
• The realization of a distributed system (hardware and software) involves a tremendous 

amount of work. 
• The testing of distributed (system) programs is very difficult and time-consuming. 
• The simulation POOL_host of POOL on a host is important  in order to provide a 

reasonable number of processes. However, the actions of POOL_host depend on the 
general load of the host; the definition of appropriate t imer values is not easy. 

• Tools are necessary to (automatically) port software modules to execution units of 
different types. 

• Compiler-compiler systems and other (generic) methods must be applied to assist in 

the production of PASCAL-oriented software modules. 
• Without a proper distributed application language the user will not accept and use the 

system. This experience stimu|atcd the definition and implementation of PASCAL-D. 
• The operating system support  for PASCAL-D (including the asynchronous remote 

procedure call) was very good, the implementation of PASCAL-D relatively easy. 
• There is much work to be done to provide the kind of environment which allows us 

to utilize the potentialities of a distributed system. 

8. T h e  u s e r  i n t e r f a c e  o f  t h e  d i s t r i b u t e d  s y s t e m  P O O L  

8.1. Higher-level communica t ion  services 

In sections 3, 4 above, concerning the basic communication system (BCS) of POOL, 
we gave an overview of "low-level" communication services provided by BCS. 

Typically, the situation of the user U of BCS is as follows: U wants to access a service 
S localized in and offered by a POOL-instance AD_S. We assume that  the identification 
id(AD_S) = "string" and that  this identification is unique within POOL. Then U has to 

take the following steps: 
1. U has first to perform a search within POOL for an element with id(x) = "string". 

This search yields - if successful - the network address adr(AD_S). 
2. Thereafter U will apply point-to-point-communication using adr(AD_S). 

The search in step 1 is implemented as a multicast M(area, id = "string", quota). The 
first parameter  defines the area the search has to cover while the second parameter  
specifies the object we are looking for (the third parameter  will not be discussed here). 

Obviously the user U has the probIem of choosing a suitable subrange Ts~,b of the network 
topology T for the area which the multicast heLs to cover. Moreover, U has to cope with 
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a possible failure of step 1 by modifying Ts,,b and iterating step 1. Thus, U has to rely 
on a certain knowledge of such technical details as network topology, subareas and so 
on. Such details are, however, better  hidden from the user of a distributed system. We 
will therefore try to embed the "raw" services offered by BCS into an environment which 
affords the user an easier and more comfortable handling. 

The basic idea is simple: we span a chain of instances (administrators) RSO1, RSO2, ..., 
RSO= across the distributed system, where RSO stands for Regional Service Office. 

RSOl  ~ • • • 41- .~RSOi  ~ • • • 4 1 - ~  RSOn 

figure 18 

These instances RSOI have the following properties: 
1. The chain of RSO-instances is bidirectional; that  is, between every two adjacent 

instances RSOI, RSOj (j = i - 1 rood n, i + 1 rood n) exists the c-p-relationship. 
2. Every RSO-instance can initiate a multicast M(T~, pr(z),  ...) which covers a subarea 

Ti of T and looks within Ti for an object with property pr(x). The areas Ti are 
defined in the following way: 

rt 

a. U Ti ~ T : the multicasts of all the elements Ti cover T completely. 
i = 1  

b. The size of Ti is as small as possible but we do not request that  Ti n T i = 0 
(see property 3 below). 

c. li~=IM(TI, pr(x) , . . . )= B(T, pr(x),. . .):  
the (parallel) execution of the multicasts initiated by all the RSO-elements 
implements a broadcast operation B. B yields the network address of an element 
with pr(x) if such an element exists within T. The broadcast B can be invoked 
by an arbitrary element RSOi which instructs its neighbours to act accordingly. 

3. The number n of RSO-elements is not fixed; we are free to chose an appropriate 
number as tong as the conditions above are fulfilled. 

4. The RSO-chain is set up by the system once; thereafter, it possesses a certain "self- 
recovering" quality: every RSOi checks its two neighbours regularly; if one of them, 
say RSOj, is inoperable (does not answer) then a new element RSOj* is elected by 
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RSOi which replaces the inaccessible element RSOj. Tj* D_ T i must hold for the 

areas covered by RSOj* and RSOj. 
5. The decentralized structure of the POOL-system is retained because all RSO- 

elements possess equal rights (that is, they provide the same services and differ 
only with respect to their local databases, see below). 

6. Every user U is connected to an RSO-element when performing a "login". The 
togin causes a multicast M(Tata, "RSO", ...) with a suitable area Tara chosen by 
the system. 

7. RSOI offers "higher-level" services to the user such as 
• construction and management of (structured) catalogues, 

• catalogue-based look-up operations which replace tile "raw" multicast operations 
of BCS, 

• naming services, 
• observation of security mechanisms, allotment of capabilities, 
• mechanisms for the construction, configuration (reconfiguration) of cooperating 

sets of administrators (clusters), 
• compilation service by AD_PASCAL-D (PASCAL-D is an extension of PASCAL 

which allows the formulation of distributed applications (see [PASCAL-D]), 

• mail services, . . . .  

Thus we end up with the following situation: 

higher level 
communication 
services )rovided by RSO AD_user AD_user AD_user 

• • RS014~ •41-1~RSOi .,qM~e.,ql.-~RSOn 

I 
DRS©I DRSOi DRSOn 

"raw" communication services 
provided by BCS 

figure 19 

The basic communication services are hidden from the user and replaced by higher-level 
operations. Within the system, every user is represented by a user administrator AD_user 
which is connected to an RSO-element (see property 6 above). 

Note that the RSO-chain constitutes a "borderline" which separates low-level opera- 
tions, the design and implementation of which must be done very carefully and needs 
special system programming skill, from higher-level operations which can be implemented 
using an appropriate higher level programming language a.s e.g. PASCAL-D. Thus, the 
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introduction of the RSO-mechanism will considerably increase the "productivity" of pro- 
gramming. 

Every RSO~ possesses a "private" database DRSOi which contains all the data  specifying 
and characterizing the clients of RSO, (that is, the user-administrators connected to 
RSO~). 
Thus, an RSO-element 
• serves as a "local memory" or "cache storage" supporting fast and convenient access 

to the objects a user is actually working with, and 
• informs other instances about global objects defined by one user (or by the system 

itself). 

The reliability of these RSO-based services depends heavily on the availability of the 
local databases DRSO. If we are not content with the degree of reliability given by the 
lower system layers offering a general database capacity, then we can try to achieve the 
necessary redundancy with respect to the data DRSO(U) connected with one user U in 
the following way: 

Let H(id(V)) = (id(RSO~t),id(RSO~2),...,id(RSO~)) be a general hash function 
(known to every instance of the system) which yields the identifications of k RSO- 
elements (k > 1) when applied to the identification id(U) of a user. We assume that  
every element RSOI1, RSO~2, ... contains in its local database DRSOil(U),  DRSO~2(U), 
... a copy of the actual data DRSO(U) of U. If one element RSO,~ now fails, then U can 
work with one of the other RSO-elements possessing the redundant information. 

For the time being we assume that the user is responsible for the update of its databases 
DRSO~I(U), DRSO,~(U), .... A systematic approach in the future could lead to a 
"knowledge-based" user interface where "knowledge" is distributed and can be lost as 
well as recovered. Note that there are other projects which try to introduce artificial 
intelligence techniques in order to establish and sustain assumptions about the global 
state of a distributed system (see e.g. [MOS], [DASH]). 

The user interface as defined by the RSO-eIements is further extended by a number of 
tools, that  is, programs which are themselves working in distributed mode and which 
provide certain services to all users. 

In the following we describe very briefly two of these tools (for a more detailed description 
see [VAN], [MEISER], [NILAM]). 
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8.2.  H y p e r t e x t  a n d  h y p e r t e x t  p r o c e s s i n g  i n s t a n c e s  A D _ T E M A  

A hyper text  (see [HYPER])  is a s t ructure  (graph),  the nodes of  which are chunks of  
text  a n d / o r  "nontext" (meaning any da ta  of  o ther  types)  connected by references (links). 

These references can be 

• internal references (to par ts  of the same document) ,  or 

• external references (to other  documents  or  nontext).  The following figure shows an 

example of  a hypertext :  

(al) 

AD_TEMA(D): D=D1- -  -~ D2 - - - ~  . . . . . .  > Di - - ->  . . . . . .  > Dj - - - > . . .  

AD_TEMA(D'): D '=D 1"- -~ . . . . . .  >" Dk' - - -~ . . . . . .  > Din' 

AD_TEMA(ND): ND.= "'" 

D, D': text documents with parts ("pages") Di, Di'; 
ND: nontext; 
AD_TEMA(x): instance (administrator) controlling the access to x; 

- - -> sequential order of parts of D, D'; 
> references (internal, external); 

c-p-relationship between administrators 
with: c=calling instance (master, consumer), 

p=called instance (slave, producer) 
(al, a2, a3): attributes which specify properties of referred documents 
(in the sense of TEXTNET, see [TEXTNET]). 

figure 20 

- - - >  Dn 

Figure 21 below shows tha t  instances (servers) AD_t are used to  provide storage for 

hyper text  da ta  of type  t (t: text, source code, graphics, ...). An instance AD_TEMA(x)  

allows the manipulat ion of exactly one hyper text  enti ty (e.g. document)  x: it performs 

the access to the server on which x is located and causes port ions of  x to be t ranspor ted  
on demand from the server to  AD_TEMA and vice versa. 
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figure 21 

The instances AD_TEMA(xi), working on hypertext data xi linked by references, form a 
network, the structure of which closely resembles the linkage structure of the hypertext; 
the edges of this network express c-p-relationships between the nodes connected by these 
edges. We call such a set of cooperating instances a duster (compare 5). 

In the example above, the instances AD_TEMA(D), AD_TEMA(D') and 
AD_TEMA(ND) are elements of a cluster. Typical functions of a hypertext editor such 
as "browsing", for example, must then be implemented as actions of clusters. 



158 

8.3. D a t a  s t r e a m  c o n t r o l  i n s t a n c e s  A D _ D A S C O  

When working in a distributed environment we have the problem of presenting to the 
user values which are produced by different sources (instances) at different slices of time. 
We assume that  the user operates a user display station (uds) consisting of one device 
or several devices (displays, monitors) controlled by an instance AD_uds. We assume 
furthermore that  a window manager is part  of AD_uds and performs the manipulation 
of windows on uds. 

A user U, however, does not work with a real device (display, window) but with virtual 
objects called views and viewports. 

U can specify views, viewports, their layout and the mapping of virtual objects onto real 
devices. 

There is always a one-to-one correspondence between a viewport and a "value-delivering 
instance" AD_value which produces and delivers the stream of data  presented in this 
viewport. 

We introduce instances AD_DASCO as a means of specifying and controlling these vir- 
tual objects and the data flow between value-delivering instances and the "presentation 

instance" AD_uds. 

The construction process of AD_DASCO instances is iterative in the following sense: a 
value-delivering instance AD_value which corresponds to a viewport vp of a view vw can 
itself be a composed object and thus specify a view vw' by simply defining AD_value = 
AD_DASCO' (see the example below). I t  is furthermore possible to dynamically exchange 
an instance AD_value with another instance AD_vaJue'. 

The following example illustrates the situation where a user is working on a docu- 
ment doel  (controlled by AD_TEMA1) and looking into documents doe2, doe3 and into 
graphical data  (controlled by administrators AD_TEMA1, AD_TEMA2 and AD_ND). 
AD_TEMA1, AD_TEMA2, AD_TEMA3 and AD_ND are value-delivering instances for 
AD_DASCO1 and AD_DASCO2. AD_DASCO2 defines a view which is actually a view- 
port of AD_DASCO1. 
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: father-son relationship between AD~DASCO1 and AD_DASCO2; 

.~ actual flow of data (the mapping of views and viewports onto devices 
(windows) is part of the specification of AD_DASCO). 

figure 22 

8.4.  C o n c l u s i o n  

The utilities presented in the last sections of this paper constitute an important part 
of a "parallel user environment" which views the user of a distributed system as one of 
many cooperating instances (see figure 21), At present we know next to nothing about 
the nature and structure of such a parallel user environment. It is therefore very impor- 
tant to build an experimental system~ to work with it and to explore its potentialities. 

The combination of hypertext concepts with the advantages offercd by distributed pro- 
cessing and the use of distributed databases can and should be of particular value in 
supporting the development of distributed programs. 

Note that  a new computer architecture will not acquire a widespread user community as 
long as its user interface is "exotic" and/or  hard to work with. Users expect "innovative" 
systems to offer user interfaces which are at least as good as those given by an average 
PC. 
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