Skip to main content

Systolic algorithms for path-finding problems

  • Conference paper
  • First Online:
  • 138 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 316))

Abstract

This paper deals with systolic algorithms for some path-finding problems. First we present the Guibas-Kung-Thompson systolic array for computing the reflexive and transitive closure of a binary relation. Then we introduce a more general class of all-pairs shortest paths problems in complete semi-rings which can not be solved using the previous array. We introduce the well-known Gauss-Jordan algorithm to solve this general class of problems, and we show how to map it onto a systolic array whose performances overcome those of all the systolic arrays previously introduced in the literature.

This work has been supported by the Coordinated Research Program C3 of C.N.R.S.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHMED H.M., DELOSME J.M., MORF M., Highly concurrent computing structures for matrix arithmetic and signal processing, Computer 15 (1982), 65–82

    Google Scholar 

  2. ATRUBIN A.J., A one-dimensional real time iterative multiplier, IEEE Trans. Computers 14, 6 (1965), 394–399

    Google Scholar 

  3. CODD E.F., Cellular Automata, Academic Press, 1968

    Google Scholar 

  4. COLE S.N., Real-time computation by n-dimensional iterative arrays of finite-state machines, IEEE Trans. Computers 18, 4 (1969), 349–365

    Google Scholar 

  5. GUIBAS L.J., KUNG H.T., THOMPSON C.D., Direct VLSI implementation of combinatorial algorithms, Proc. Caltech Conference on VLSI, California Inst. of Technology, Pasadena (1979), 509–525

    Google Scholar 

  6. HELLER D., Partitioning big matrices for small systolic arrays, in VLSI and Modern Signal Processing, S. Y. Kung et al. eds, Prentice Hall, Englewood Cliffs, NJ (1985), 185–199

    Google Scholar 

  7. HENNIE, Iterative arrays of logical circuits, MIT Press, Cambridge MA, U.S.A. 1961

    Google Scholar 

  8. HWANG K., CHENG Y.H., Partitioned matrix algorithm for VLSI arithmetic systems, IEEE Trans. Computers 31 (1982), 1215–1224

    Google Scholar 

  9. KRAMER M.R., VAN LEEUWEN J., Systolic computation and VLSI, Foundations of Computer Science IV, J.W. DeBakker et aJ. Van Leeeuwen eds (1983), 75–103

    Google Scholar 

  10. KUNG H.T., Why systolic architectures, Computer 15, 1 (1982), 37–46

    Google Scholar 

  11. KUNG H.T, LAM M.S. 1984 Fault-tolerance and two-level pipelining in VLSI systolic arrays, Journal of Parallel and Distributed Computing 1, 32–63

    Google Scholar 

  12. KUNG H.T, LEISERSON C.E., Systolic arrays (for VLSI), Proc. of the Symposium on Sparse Matrices Computations, I.S. Duff and G.W. Stewart eds, Knoxville (1978), 256–282

    Google Scholar 

  13. KUNG S.Y., On supercomputing with systolic/wavefront array processors, Proceedings of the IEEE 72 (1984), 867–884

    Google Scholar 

  14. KUNG S.Y., VLSI array processors, IEEE ASSP Magazine 2, 3 (1985), 4–22

    Google Scholar 

  15. KUNG S.Y., LO S.C., A spirial systolic architecture/algorithm for transitive closure problems, IEEE Int. Conf. on Computer Design ICCD'85, New-York, USA (1985), 622–626

    Google Scholar 

  16. MOLLER F., A survey of systolic systems for solving the Algebraic Path Problem, Report CS-85-22 (1985), Univ. of Waterloo, Canada

    Google Scholar 

  17. MORAGA C., Systolic Algorithms, Technical Report, Computer Science department (1984), University of Dortmund, F.R.G.

    Google Scholar 

  18. NASH J.G., HANSEN S., Modified Faddeev algorithm for matrix manipulation, Proc. 1984 SPIE Conf., San Diego, CA, USA, August 1984

    Google Scholar 

  19. ROBERT Y., Block LU decomposition of a band matrix on a systolic array, Int. J. Computer Math 17 (1985), 295–315

    Google Scholar 

  20. ROBERT Y., TCHUENTE M., Résolution systolique de systèmes linéaires denses, RAIRO Modélisation et Analyse Numérique 19 (1985), 315–326

    Google Scholar 

  21. ROBERT Y., TRYSTRAM D., Un réseau systolique orthogonal pour le problème du chemin algébrique, C.R.A.S. Paris, 302 I (1986), 241–244

    MathSciNet  Google Scholar 

  22. ROTE G., A systolic array algorithm for the algebraic path problem (shortest paths; matrix inversion), Computing 34 (1985), 191–219

    Google Scholar 

  23. ULLMAN J.D., Computational aspects of VLSI, Chapter 5: Systolic algorithms, Computer Science Press, Rockville, Maryland, USA, 1984

    Google Scholar 

  24. VON NEUMANN, Theory of self-reproducing automata, University of Illinois Press, Urbana IL, U.S.A, 1966

    Google Scholar 

  25. WARSHALL S., A theorem on boolean matrices, J.A.C.M. 9, 1 (1972), 11–12

    Google Scholar 

  26. ZIMMERMANN U., Linear and combinatorial optimization in ordered algebraic structures, Ann. Discrete Math. 10 (1981), 1–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Choffrut

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robert, Y. (1988). Systolic algorithms for path-finding problems. In: Choffrut, C. (eds) Automata Networks. LITP 1986. Lecture Notes in Computer Science, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19444-4_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-19444-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19444-6

  • Online ISBN: 978-3-540-39270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics