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ABSTRACT

We consider the ciassiGcation of polygons (i.e. closed polygonal paths) in which,

essentially, two polygons are equivalent if one can be continously transformed into the

other without causing two adjacent edges to overlap at some moment. By a theorem

of Hopf (for dimension 1, applied to polygons), this amounts to counting the winding

number of the polygons. We show that a quadratic number of elementary steps suffices

to transform between any two equivalent polygons. Furthermore, this sequence of

elementary steps, although quadratic in number, can be described and found in linear

time. In order to get our constructions, we give a direct proof of Hopf's result.
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1 Why a circle differs from a figure-of-eight

First consider closed planar curves that are smooth. It is intuitively clear that there are no

smooth transformations from a figure-of-eight into a circle without introducing a 'kink' at some

intermediate moment.

Figure 1. Appearance of a kink

We will say two closed planar curves are equivalent if one is transformable to the other in a

kink-free manner and consider the problem of classifying the equivalence classes.

This problem has been completely solved, and we describe its mathematical formulation: let

C : S —* E be the natural parameterization (by arc-length) of a smooth closed curve, where 5'

is the unit circle. We then define wc :
-5' —» 5' where (jJc{t) is defined to be the orientation of the

directed tangent at the point C{t). The notion of kink-free transformation is captured by saying

that two curves C and D are equivalent if uc anc? ujd are hornotopic. The winding number (or

degree) of C is defined to be

/ dujc.
Js*

For instance the winding number of the figure-of-eight and the circle are and 27r, respectively.

Then a famous theorem of llopf (for dimension 1) says that C and D are equivalent if and only if

ihcy have the same winding number. See [2,1).

The purpose of this paper is to give a constructive version of Hopf's theorem for dimension

one, in order to give quantitative and complexity information implicit in the result.

The rest of this paper is organized as follows. In section 2, we convert Hopf's theorem to the

polygonal setting. In section 3, we introduce a normal form for polygons. In section 4, we give a

constructive proof of Hopf's theorem for polygons. In section 5, we use the insights of the proof to

develop a linear time algorithm. We conclude in section 6.

2 Classification of Polygons

In order to make our problem concrete (computational), we will turn this into a problem on closed

polygonal paths (which we will simply call a polygon). Since polygons have kinks at their vertices,

we reformulate kink-free transformations as transformations of polygons that do not cause two

adjacent edges to overlap at some point. This is made precise next.
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Definition: A path 11 is specified by a sequence

II =< vi,V2,...,v„ >,n > 2

of points which we call vertices. The initial and final vertices are vi and «„, respectively. We
require v, ^ u,+i for i = l,...,n — 1. The edges of the path are the line segments [v,, v.+i) for

1= l,...,n— 1. A closed path is one of the form

n =< t)i,...,t;„,v„+i >,n > 3

such that fn+i = vi. Two closed paths 11,0' are said to combinatorially equivalent if one sequence

can be obtained from the other by a cyclic shift, possibly followed by a reversal. More precisely, if

n =< vi, . .
.

, v„, vi >, then fl' is either equal to

< D,, ...,t;„,ui,...,D,_i,v,- >

for some i = 1, . .
.

, n, or the reverse of this sequence. A polygon P on n vertices is defined as the

combinatorial equivalence class of some closed path Fl =< vi,...,Vn,vi >. We will express the

polygon as

P = (vi,...,v„).

So P can also be written as {vj,V3, . . . ,v„,vi), say. For this paper, we further require that

polygons satisfy the following local condition:

(C) For any consecutive triple v,_i, r,, ii, + i, if the three vertices are collinear, then

V, lies strictly between the other two,

t;, = avi-i + (I - a)u,+i

for some < Q < 1.

(Here, as throughout the paper, arithmetic on indices of vertices of a polygon P is modulo n,

the length of the sequence P.) Note that (C) in particular prevents Vi = Vj for |i — _7|
= 1 or 2.

However, we allow v, = Vj for |t — y| > 2 and in fact edges may even coincide. The reason for (C)

is that the equivalence we seek allows local transformations that do not create kinks, and if (C)

fails then it sometimes becomes ambiguous whether a kink is introduced.

The transformations we allow are of three types:

(TO) Insertion. We may transform P = {vi,...,Vn) to

Q = (ui,...,t;,,u,t;, + i,...,t;„),(» = l,...,n)

where u is a point lying strictly between d, and v,+i.

(Tl) Deletion. We may transform P = (ui,.. . , v„) to

Q = (vi,...,u,-i,u,>i,...,v„),(t = l,...,n)
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provided tt,_i, t),, t;,-(-| are collinear.

To introduce the last type of transformation, we need a definition. Relative to any vertex

V,, we define two forbidden cones (at v,_i and fi+i, respectively): the forbidden cone at d,_i is

bounded by the two rays emanating from Vi-i, one ray directed towards v,_2 and the other directed

away from Vi+i. Of the two choices of cones bounded by these rays, we choose the one that does

not contain v,-. The forbidden cone at Vi+i is similarly defined, being bounded by the two rays

emanating from D,^-t and directed towards v,^2 ^tid away from v,-i, respectively. Each cone is a

closed region so it includes the bounding rays. This definition applies for all n > 3. We are now

ready for the third transformation type.

v.-

Figure 2. Forbidden cones

(T2) Translation. We may transform P = (i'i,...,fn) to

Q = (t),,...,v,-i,u,D,+i,...,v„),(i = l,...,n)

where u is any noint not in the union of the two forbidden cones of u,. In otherwords, we replace

the point u, by u.

Definition: We say that two polygons P,Q are equivalent if one can be transformed to the

other by a finite sequence of operations of types T0,T1,T2.

It is not hard to see that the relation is a true equivalence relation. Of course, we know from

Hopf's theorem (applied to polygons) that it is sufficient to look at the winding number of a poly-

gon. However, given two equivalent polygons P and Q, it is unclear how one can

(A) transform P into Q by a sequence of (T0-T2) transformations,

(B) bound the number of transformation steps needed, and

(C) give an efi^icicnt algorithm to find a sequence of such transformation steps.

Indeed, standard proofs of Hopf's theorem yield no constructive information to answer these ques-

tions.

We answer these questions (A-C) by defining a unique normal form (i.e. representative) of each

equivaJcnce class, and showing that a quadratic number of steps suffices to reduce a polygon into

the normal form. The algorithm to find these steps runs in linear time. In particular, this solves

the problem of transforming between two equivalent polygons P,Q since the normal form is unique

and the steps are reversible: first convert P to the normal form and then reverse the steps from

the normal form to Q.



3 STAR POLYGONS

To think about what might be desirable, we note (see Fig. 3) that the triangle and the bow-tie

are obvious candidates for normal forms. Perhaps less convincingly, the 5-point star (5-8tar) also

seems like a good candidate for a normal form.

x
Figure 3. The triangle, bowtie and 5-star

The next figure illustrates a sequence of transformations to reduce a Victoria Cross polygon to

one with fewer vertices.

SUps

Figure 4. Reduction of the Victoria Cross

Remark. Any smooth closed curve can be approximated by a polygon and the transformations

can discrctized as a series of our (TO-2) transformations. So in some sense we have also solved the

corresponding question for smooth curves.

3 Star Polygons

DeBnitlon: A polygon is reductble if it is equivalent to one with fewer vertices. It is irreductble

otherwise.

One can check that the triangle, bow-tie and 5-star cannot be transformed by (Tl) or (T2)

transformations into any polygon with fewer vertices. But it turns out that even with (TO) trans-

formations (which insert new vertices) the result is true: these are irreducible polygons. Since they

have different number of vertices, it follows that they are inequivalent to each other. (Of course we
can conclude this at once if we apply Ilopf's theorem.) In fact, all polygons on 3, 4 and 5 vertices

are equivalent to these three candidates using only (T2) transformations. One may also check that

there are no irreducible polygons on 6 vertices!
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The 5-3tar is also equivalent to the polygons in Fig. 5.

Figure 5. Polygons equivalent to the 5-star: the Fox, the Rabbit and Radioactive Sign

Note that the first polygon in Fig. 5 has the minimal number of self- intersections among its

equivalence class, so perhaps it is a better choice of a normal form than the 5-8tar. This indicates

that the choice of a good normal form is not obvious. Our first result, though simple, helps to

narrow our choices considerably.

Theorem 1 Every polygon P can he transformed by (T2) transformations into a polygon Q all of

whose vertices are disltiict and he on a circle.

Proof. Let C be a circle that contains all the vertices of F in its interior. For each vertex v of P,

we may move v onto C using a (T2) transformation: this follows from the observation that the

non-forbidden region relative to v always contain an infinite cone K at i». We may move v in any

direction inside K until we reach C. Furthermore, we can make sure that we avoid any vertex

already on C. Q.E.D.

Henceforth, wc assume that polygons have their vertices on some circle. Among the polygons

on a circle, wc define a particularly nice class.

Definition: A path II =< vi,...,v„ > is called a star path if the edges e, = lu,,t^i-n] (for each

I = 1 , . .
.

, n - 1) intersect each of the edges

ei,e2,...,c,-i.

Here the edges are closed line segments and so c, (t > 2) always intersects e,-i. A polygon

P = (ui, . .
.

, Vn) is called an n-slar if for some choice of an initial vertex v,, t = I, . .
. ,

n, the path

n, =< Vi,...,Vn,Vl,...,Vi-i >

is a star path.

This terminology agrees with what we had called the 5-star before. The triangle is a 3-star and

the bow-tie a 4-star. The following figure shows the next few n-stars.
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Figure 6. 6-, 7-, and 8-stars

The following lemma is easy:

Lemma 2

1. For n = 4 or for odd values of n, if a polygon P = (ui,. . . ,Un) is an n-siar then for every choice

of intlial vertex v,, the path Fl, =< Vi,...,v„,v\ r,-i > is o star path. (In other words, the

definition of a n-star does not depend on the choice of the initial vertex in these cases.)

2. For all other cases of n, there is a unique choice of an initial vertex v, which makes 0, a star

path.

Lemma 3 Let n, m be odd positive integers or equal to 4- If n jt m, then the n-star and the m-star

are inequivalent.

Proof. One checlcs that the winding number of the 4-star is and for each positive integer k, the

{2k -f l)-star has winding number ±2kn (where the sign corresponds to a choice direction for the

polygon). The result then follows from the fact that the winding number of a polygon is unchanged

by any transformation of types (TO-2). Q.E.D.

This lemma supplies us with an infinite list of inequivalent polygons. We next prove that this

list exhausts all the equivalence classes.

4 A Canonical Form for Polygons

We now set out to prove

Theorem 4 (Canonical Form) Every polygon can be transformed by a sequence of (Tl) and

(TS) transformations into an n-star, for some n that is either odd or equal to 4-

Corollary 5 An n-star is irreducible if and only if n = A or n is odd.

Proof. Suppose that an n-star is irreducible. Then the theorem implies that n must be 4 or odd.

Conversely, let n = 4 or odd. If an n-star is reducible, then the theorem shows that it is reducible

to an m-star for some m < n where m = 4 or odd. This contradicts the previous lemma that the

n- and m-stars are inequivalent. Q.E.D.
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We prove the canonical form theorem by a sequence of lemmas.

A polygon that can (resp. cannot) be transformed to one with fewer vertices using just (Tl)

and (T2) transformations will be called semt-reductble (resp. serm-irreductble).

We need a useful notation. Henceforth, we write only the indices (i.e. subscripts) of vertices

to denote the vertices. So we write F = (1, 2, . .
.

, n) for n > 3. Next, if ui, U2, . .
.

, ujt (^ > 3) are

indices (not necessarily consecutive) we shall write

ui < U2 < ••• < ujt

to mean that as we traverse the circle of P in a clockwise direction, starting from ui, we will meet

the indices U|, U2, . .
.

, Ujt in this order.

The following simple fact is very useful:

Lemrua 6 Suppose P = (l,...,n) (n > A) is such that the pair of edges [1,2] and [3,4] do not

intersect, and also the pair [2, 3] and [A, 5] do not intersect. Then P 15 equivalent to (1, 2, 4, 5, ... , n)

by a (Tl) transformation. In other words, we may delete index S.

4- i

Figure 7. Can delete index 3

This is the only form of deletion of vertices used in our proof. Henceforth, whenever we delete

vertices it is by appeal to this lemma.

We say that P = ( 1
, 2, . .

.
, n) conjoins an N-shape if n > 4 and for some choice of index «", we

have

i < t+ 1 < I + 3 < i + 2

or

t < » + 2 < I + 3 < t+ 1.



4 A CANONICAL FORM FOR POLYGONS

t+a

Figure 8. An N-shape

Lemma 7 A aemt-trreducible polygon P = (1,2 n) does not contain an N-shape unless n = 4.

Proof. By way of contradiction, assume P has an N-shape. By symmetry, assume 1 < 2 < 4 < 3.

n 6

{?)
Figure 9. Reduction of an N-shape

The result is true for n = 4, so suppose n > 5. Since P is semi-irreducible, by the previous

lemma, the edge [4, 5] must intersect [2, 3]; hence 3 < 5 < 2. Similarly, 2 < n < 3. This shows that

n 51^ 5 so assume ti>6. Ifl<5<2 (Fig. 9a) then we can translate index 2 so that 1 < 2 < 5 (this

translation can occur because 2 < n < 3). Then we can delete 3. Therefore, we have 3 < 5 < 1.

By symmetry, we have 2 < n < 4. The situation is shown in Fig. 9b.

If n = 6 then it is easy to see that P is semi-reducible. Otherwise, consider the location of

index 6. There are two cases. First suppose n < 6 < 4 (Fig. 9c). Then we may translate index

5 so that 2 < 5 < 6. Then we can delete index 3. In the other caae, 4 < 6 < n, we can translate

index 4 so that 2 < 4 < n. Next translate index 3 so that 2 < 4 < 3 < n. Now we may delete

index 2. Q.E.D.

Corollary 8 An n-star is semi-reducible if n even and not equal to 4-

Proof. Let n be even, n ^ 4, and let P = (1, . . . ,n) be an n-star. Then the vertices n-2, n-l,n, 1

forms an N-shape. Q.E.D.
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We say that P = (1,2,.

have

or

,
n) contains an U-shape if n > 4 and for some choice of index i, we

1 < i + 1 < I + 2 < i + 3

I < t + 3 < I + 2 < » + I.

Figure 10. An U-shape

Lemma 9 A semi-irreducible polygon F = (1,2, . . . ,ti) cannot contain a U-shape.

Proof. The result is true for n = 3, 4 and 5, so assume n > 6. By the previous lemma, we know

that P does not contain an N-shape. Suppose indices (2,3,4,5) forms a U-shape as in the figure,

2 < 5 < 4 < 3.

Figure 11. The elimination of U-shape

Since index 3 cannot be deleted, we have 4 < 1 < 3, and similarly, since index 4 cannot be

deleted, 4 < 6 < 3. Suppose the relative position of indices 1 and 6 satisfies

4 < 1 <6<3

as in Fig. 11a. Then we may translate index 3 so that 1 < 3 < 6 and then translate index 4 so

that 1 < 4 < 3 < 6. Then we may delete index 3 (or 4), contradicting the semi-irreducibility of P.

Hence we may assume the situation of Fig. lib, with 4 < 6 < 1 < 3.

Consider index n. If 2 < n < 1 then (n, 1,2,3) forms an N-shape which implies P is semi-

reducible. Hence we have 1 < n < 2. (In particular, this means n j^ 6, so n > 7.) So choose
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the smallest index v from 7, . . . ,n such that 1 < v < 5. Such a choice of v exists since, a fortiori,

1 < n < 5. We now use induction on v to prove the following claim: we may transform P such

that indices 1, . .
.

, 5 remain fixed but index 6 satisfies

4 < l< 6 < 3.

Clearly v > 6. If v = 7 then (4,5,6,7) forms an N-shape which is a contradiction. If w = 8

then note that v— l<6<l<t^. We can translate 6 so that 1 < 6 < v; next translate 3 so that

1 < 6 < 3 < u. Now we may delete index 4. Hence assume u > 8.

Consider indices v — l,w — 2 and v — 3. These vertices, by definition of v, all lie on the arc

clockwise from index 5 to index 1. Since there are no N-shapes in P, we have u— l<u — 2<1.
There are two cases forv-3. Ifi;-l<w-2<u-3 then there are 2 possibilities for d - 4: either

(a) u - 3 < u - 4 < 1 or (b) D - 4 < u - 2 < u - 3. If (a) holds then v - 2 can be deleted. Hence

(b) holds, in which case we may translate v - 3 so that 1 < v - 3 < t). Now, for this transformed

polygon, we can apply the induction hypothesis (replace t; by v — 3). The other case for v — 3 is

v-3<D-l<t;-2. Then we may translate v - 2 so that 1 < u - 3 < t; and again we may apply

the induction hypothesis (replace t; by v — 2).

This completes the proof of the claim. But the claim transforms P into the shape in Fig. 11a,

which we already show is a contradiction. Q.E.D.

We now give the last lemma.

Lemma 10 Let P = (1,2,. . . ,n) be any semi-irreducible polygon. Then H =< 1,2, . . . ,n > is o

star path.

Proof. We now know that P has no N- and no U-shapes. We will show that Hi, =< 1,2, ...,t; >

(t; = 3, . .
.

, n - 1) is a star path implies Hv+i is a star path. Consider the situation in Fig. 12 (so

1 <3< 2).

S ^l^V-3

Figure 12. Star paths (Vx evet<)

The result v = 3 follows from the previous two lemmas since if H^ is not a star path, then it

forms a U- or an N-shape. The same is true when v = 4, so let t; > 5.

First suppose v ia odd. If I!i, + i is not a star path then l<t; + l<v-2. Then we can move

index v - 1 so that l<v-l<3. In fact, we can repeat this for v - 3, u - 6, . .
.

, 4 (in this order)

80 that I<v-l<v-3<--'<4<3. Now (1, 2, 3, 4) is a U-shape, contradiction.
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Suppose V is even. Then 2 < u + 1 < v and we move indices n— l,n-3,...,5 (in this order)

so that l<5<7<---<n-l<4. Now (2, 3, 4, 5) is a U-shape. Q.E.D.

The main theorem now follows: given any polygon P, we can reduce it by (Tl) and (T2)

transformations until it is semi-irreducible. Then by the last lemma, the result must be an n-star.

By the corollary to lemma 7, n cannot be even and not equal to 4. This proves the theorem.

5 Algorithm

The proof of the canonical form theorem contains an implicit quadratic time algorithm to transform

a polygon to its normal form. We now give a linear time algorithm to construct the sequence of

these quadratic transformation steps - this apparent paradox will be clarified below.

Since transforming a polygon so that its vertices all lie on a circle is a linear time process, we

may assume that the input polygon P = (tii, . .
.

, t)„) is already in this form. We further iissume

that the circle is the unit circle centered at the origin, with vi = (—1,0) and vj = (1,0).

The algorithm processes the input vertices in order. In the generic situation, the vertices

V|,. . . ,tjj-i have been processed and the polygon has been transformed into an equivalent polygon

Furthermore, we assume that

forms a star path. The current vertex being processed is Vj although our algorithm may look

ahead slightly, up to Vj+z. It is a redtime algorithm in the sense that each vertex takes 0(1) time

to process, and it outputs 0{j) transformation steps with the processing of each vertex Vj. This

apparent paradox (that 0{j) steps can be described in 0(1) processing time) arises because the

0{j) steps involve translating blocks of 0{j) vertices of a star path. Such transformations can be

described in 0(l) time. Thus Pj can be obtained from P by applying the entire sequence of 0(j )

transformation steps output up to now.

An interesting feature of the algorithm is that it uses only 0(1) runtime memory. More precisely,

at the moment of processing Vj, we only need in the active memory the values of the indices i,j;

the values of the vertices

vj,...,Vj+s;

and the sign (i.e. left or right) of the turns

(u,_2,u,-,,Vj) and (u,_i, Vj, vy+,).

We will call the latter the sign information. In our algorithm, we must be careful to show how we

can reconstruct this sign information despite the fact that we do not explicitly store the u's.

For simplicity, in our description we will not explicitly say what (Tl,T2) transformation steps

will be output. But each step of the algorithm will be given justification and the reader can easily

deduce the transformation steps needed.
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The relation i < j jJways hold (since we do not create new vertices). Therefore it is unambigous

to refer to the vertices by their indices, as long as it is clear whether an index is less than i or at

least j. We may now begin and assume that i — 1 > 3 and j > 4. To initialize, we may let u, = v,

for J = 1,2,3. Without loss of generality, let 1 < 3 < 2 (i.e. (1,2,3) is a left turn).

There are 4 cases to describe in the processing of vertex Vj-. (u,_2,Ui-i,t;j) is either a left turn

or a right turn, and i is either odd or even. First assume i = odd (see Fig. AA).

t-3

Figure AA. Case i =odd

Case A. (j - 2,t - l,j) is a right turn.

Case Al. («' - l,j,j + 1) is a left turn. Decrease i.

J

i /
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Figure CC. Case A21

Justification: We may assume that j < j + I < t — 2 since we can move the odd u- vertices (i.e.

ti3, Us, . .
.

, u,_2) clockwise as close to index 2 as desired. This is shown in Fig. CC. We can then

delete t - 1 and note that (j — 3, j — 2,j) and (i — 2,j,j + 1) are left and right turns, respectively.

Case A22. 1 < ; < 2 < j + 1. Decrease « by 1.

Figure DD. Case A22

Justification: We may assume t — 4 < j < t — 2 and i - 3 < j + 1 < t — 1 since the u's

can be moved appropriately. Then we are as in Fig. DD(a). We may now move i — 1 such that

t - 4 < » - 1 < y (Fig. DD(b)), and then delete i - 2. Now (l, . . . ,i - 3, t - 1) is a star path and

(j - 3,1 - l,j) and (j — 1,/, J + 1) are both right turns.

Case A23. > < 1 < 2 < > + 1. So (t - l,j,j + 1) is a right turn (Fig. EE)

'Obsrrve that this 'assumption' actually require a sequence of 0{j) transforrnation steps to realize, but it is easily

described in 0(l) time since we are transforming a consecutive sequence of vertices in a star path. This clarifies an

earlier remark.
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Figure EE. Case A23

Case A231. 1 < J + 2 < ;. Decrease i by 1.

Justification: We can move j such that 1 < j < 2 which brings us into case A22.

Case A232. ; < j + 2 < 1. So {j,j + 1, j + 2) is a left turn, see Fig. FF.

Figure FF. Case A232

Case A2321. (j + l,j + 2, j + 3) is a right turn. Increment ; by 2.

Justification: We may delete ; + 1 and ; (in that order). Also (« -2,t- l.J + 2) and (t - 1,; +

2, J + 3) are both right turns.

Case A2322. {j + 1, j + 2,j + 3) is a left turn. Increment j by 3.

Figure GG. Case A2322

Justification: See Fig. GG(a). We move j + 1 counterclockwise so that 1 < j'+ I < i — 2, as in

Fig. GG(b). Now we may delete t - l,j and j -I- 1, in that order. Then (1, . . . ,i - 2,; + 2) is a star
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path. Also (j- 2, > + 2, y + 3) is a left turn. We can determine the sign of the turn (?-f2 j + 3 1 + 41
by looking at j + 4.

>j ,J
j

Case B. (j - 2,t - l,j) is a left turn. Then j < n.

Case Bl. » - 2 < > < 2. Increment i and ; by 1 each. See Fig. HH.

t-l

Figure HH. Case Bl

Justtficatton: (l,...,t - 1,;) is a star path.

Case B2. 2 < j < i - 1.

Case B21. (i - 1,;,; + 1) is a right turn. Increment j by 1.

JusUficaixon: By moving the even u- vertices (i.e. uj, . .
.

, u.-g) if necessary, we may assume that
2 < 1 - 3 < y, as in Fig, JJ. Now delete i - 1 and (1, . .

.
, t"- 2, j) is a star path. Also (t - 2,;,; + 1)

is a right turn.

Figure JJ. Case B21

Case B22. (i - 1, j, j + 1) is a left turn.

Case B221. > < > + 1 < 1. See Fig. KK



5 ALGORITHM 17

l-t

Figure KK. Case B221

Case B2211. j < ; + 2 < 2. Increment both t and j by 1.

Jusltfication: We can move j counterclockwise so that t — 2 < j < 2. This reduces to caae Bl.

Case B2212. 2 < j + 2 < ;. See Fig. LL.

i-1

U-l-2

Figure LL. Case B2212

Cnae B22121. (; + 1,; + 2, j + 3) is a left turn. Increment ; by 2.

Justtficatton: We delete j + I and then j. The turns (i - 2, J - 1,; + 2) and (» - 1, J + 2,j + 3)

are both loft turns.

Case B22122. [j + \,j+ 2, j + 3) is a right turn. Increment t by 1 and ; by 2.

Figure MM. Case B22122

Juslificalion: We may assume that i - 3 < j < i - 1 (Fig. MM(a)). Then we can move j

clockwise so that t - 2 < j + 1 < 2 and delete i-1. The sequence (1,.. • ,« - 2,;, j + l) is a star
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path, Fig. MM(b).
Case B222. 1 < j + 1 < 2. Increment t by 1 and j by 2.

i^3 (a;

V-l 3

Figure NN. Case B222

Justtfication: See Fig. NN(a). We may assume that 3 < j + 1 < 2. Now move the vertices

I — 2, 1 — 4, . .
.

, 7, 5 (in that order) clockwise between 2 and j, i.e.,

2 < 5 < 7 < • • < I - 2 < J.

Similarly move the vertices i — 1, « — 3, . . . ,6, 4 (in that order) clockwise between 1 and j + 1, i.e.,

i<4<6<-<i-i<y+i.

See Fig. NN(b). Now we delete index 3 and obverve that (1, 2,4, 5,. .. ,» — l,y,y + 1) is a star path.

Obviously wc can deduce the sign of the turns {j,j + 1, J + 2) and (j + 1,^ + 2,j + 3).

Case B223. 2 < ; + 1 < j. Increase j by 1.

^-Z

3+ 1

Figure OO. Case B223

Jusltficalion: We can delete j in this situation. This completes subcase B and hence the case

I = odd. The case i = even is similar and we leave it to the reader.

6 Conclusion

We have given an elementary proof of Hopf's theorem, resulting in a linear algorithm to "untan-

gle" any polygon. We emphasize that the true contribution of this work the construction of the
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transformation steps: checking if two polygons are equivalent is in itself a trivial process of keeping

a cumulative sum of the angles turned. The key insight comes from putting the vertices on a circle,

thereby reducing polygons to combinatoriaJ objects (the cyclic permutation of their vertices around

the circle).

Our proof shows incidentally: (1) It suffices to use (Tl,T2) transformations to make a polygon

irreducible and (2) any two equivalent irreducible polygons are inter-transformable using only (T2)

transformations.

We can generalize the problem to the classification of polygonal paths. The transformations

of vertices not near the endpoints are as before, with the following important modification: the

transformation must not let an edge cross either endpoints of the path. Without this requirement,

the cieLssification becomes trivial. At the endpoints, we require that the end edges never overlap

the imaginary edge connecting both endpoints. The methods of this paper ought to suffice for this

classification.

We pose as a problem for further research to reduce the higher dimensional version of Hopf's

theorem to a constructive, algorithmic form as we have done here.
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