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1. INTRODUCTION

Embedding a graph in the plane is a fundamental problem in several areas of computer sci

ence, including circuit layout, graphics, and computer-aided design. The problem of testing the 

planarity of a graph and of constructing a planar embedding has been extensively studied in the 

past years, and the development of linear time algorithms for it has brought significant advances 

in algorithm design and analysis [2,14]. Nevertheless, as confirmed by recent results [3,10], 

graph planarity is a still vital area of research, rich in interesting issues to be explored.

In this paper we consider the problem of incrementally constructing a planar embedding of 

a graph. We investigate a dynamic data structure that allows us to perform efficiently the fol

lowing operations:

(1) queries: given two vertices u and v, determine whether there is a face of the current 

embedding whose boundary contains both u and v;

(2) updates: modify on-line the current embedding by adding and/or removing vertices and 

edges.

The performance of such a data structure will be measured in terms of: (1) the space require

ment; (2) the query and update times; and (3) the preprocessing time.

Although very important in practical applications, only a few dynamic data structures have 

been devised for graph problems. Existing results are of preliminary nature, and limited to con

nectivity [9], minimum spanning tree [11], transitive closure [16,17], and shortest path [24]. In 

fact, in several of the above data structures the capability of handling update operations is lim

ited, and the space/time performance appears far form optimal.

Formally, our problem can be defined as follows: Let G be a planar graph embedded in the 

plane, referred to henceforth as a plane graph. For generality, we allow G to have parallel 

edges, and we denote with n and m the number of vertices and edges of G, respectively. We 

consider the dynamic embedding problem, which consists of performing the following opera

tions on G:

TEST (w, v): Test if there is a face /th a t has both vertices u and v on its boundary. In

case such a face /  exists, output its name.
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LIST (m,v): List all the faces that have both vertices u and v on their boundary.

ADD (c,m,v, / , / ! , / 2): Add the edge e = (w,v) to G inside face / , which is decomposed into

faces f \  and / 2. Vertices u and v must both be on the boundary of face

/

INSERT(e,v,ei,e2): Split the edge e = (u,w) into two edges ei= (u ,v)  and e 2 = (v,w), by

adding vertex v.

REMOVE (e,/): Remove the edge c, and merge faces f \  and f i  formerly on the two

sides of e into face /.

JOIN (v,e): Let v be a vertex of degree two. Remove v and replace its incident

edges e\ = (fl,v) ande2 = (v,w) with edge e = (u,w).

The dynamic embedding problem naturally arises in interactive CAD layout environments. 

Applications include the design of integrated circuits, motion planning in robotics, architectural 

floor planning, and graphic editing of block-diagrams.

We present a data structure that uses 0{m ) space, supports all of the above operations in 

O (logm) time, and can be constructed in 0(m )  time. Notice that if G is simple, i.e. it has no 

parallel edges, m = 0 (n ), so that the above bounds become O (n) space requirement and prepro

cessing time, and O(logn) query and update times. In addition to the good theoretical 

space/time performance, our data structure is also practical and easy to implement, and therefore 

suited for real-life applications.

These results are obtained by maintaining on-line an orientation of the graph, called spheri

cal st-orientation and exploiting the partial order among the vertices, edges, and faces induced 

by such orientation. Besides the applications to this problem, the concept of spherical st- 

orientation is of theoretical interest in its own right, and extends the results on bipolar orienta

tions and cylindric orientations of planar graphs presented in [25,27,28].

The problem of testing whether two vertices are on the same face can be considered a topo

logical version of the point-location problem in the plane [6,18,20,26]. While our results show 

that “ topological location” can be efficiendy dynamized, it is an outstanding open problem to 

devise a dynamic data structure for point-location that uses linear space and supports query and 

update operations in logarithmic time. Preliminary results on dynamic point-location are given
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in [12,23].

This work constitutes also a first step in the direction of an efficient data structure for the 

dynamic planarity testing problem, which consists of performing the following operations on a 

planar graph G: (1) testing if a new edge can be added to G so that the resulting graph is itself 

planar; (2) adding and removing vertices and edges.

The rest of this paper is organized as follows: Section 2 contains definitions and prelim

inary results on orientations of planar graphs. In Section 3, we study the topological location 

problem, which consists of performing operations TEST and LIST. Section 4 describes the fully 

fledged data structure for the dynamic embedding problem. Finally, applications to a dual prob

lem are discussed in Section 5.
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2. ORIENTATIONS OF PLANAR GRAPHS

We consider only planar finite undirected and directed graphs without self-loops and 

without isolated vertices. We allow parallel edges between two vertices. For the basic terminol

ogy about graphs and planarity, see [1, 8].

Before introducing the following definitions, we recall that a source (sink) of a digraph is a 

vertex that has no incoming (outgoing) edges. A spherical st-graph is a plane digraph G such 

that: ;
(1) G has exactly one source, s, and exactly one sink r,

(2) every vertex v of G is on some directed simple path from s to r, and

(3) every directed cycle separates s from t.

We can visualize a spherical sr-graph as embedded in a sphere, with s and t at the South and 

North pole, respectively (see Fig. 1).

The concept of spherical sf-graph extends the one of planar st-graph introduced in [21], 

which has important applications in the test of graph planarity [21] and the construction of

Figure 1 Example of spherical if-graph
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planar drawings [5,25,27].

Lemma 1 For every vertex v of G, the incoming (outgoing) edges appear consecutively around 

v. (See Fig. 2.a).

Proof: Assume, for a contradiction, that there is a vertex v, v*s,r, for which the lemma is not 

true. Then there must be four edges incident upon v, denoted e \ (vv^v), e 2(v,w2), e3(w3,v), and 

¿4(v,W4), which appear in this order counterclockwise around v. Vertices wl5 w2, w3, and vv4 

must be distinct, otherwise there is a face consisting of two edges whose boundary is a cycle that 

does not separate s from t, which would violate Property (3). From Property (2), there are 

directed paths from s to w\ and w3. Let s' be the vertex farthest from s that is on both these 

paths. We denote with tci and rc3 the portions of such paths from s' to and w3, respectively. 

The union of ici, % , e\> and e 3 forms an undirected cycle y, which separates w2 from W4. The

(a)

TOP (f)

>32
3

Figure 2 Examples for Lemmas 1-2
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two regions of the plane delimited by cycle y will be denoted by A and B, where A is the region 

that contains vertex W2- We assume that both A and B contain cycle y. From Property (2), there 

must be paths %2 and 4̂ from W2 and W4 to t, respectively. Now, we have four cases for the 

relative placement of s and t with respect to cycle y: If both s and t are in A, then rc4 intersects y 

at some vertex, (see Fig. 3.a). This creates a cycle that does not separate s from t. If s is in A 

and r is in 5 , then n i  intersects y, and again we have a cycle that does not separate s from t (see 

Figs. 3.b-c ). The cases when both s and t are in B , or s is in B and t is in A are similar. We con

clude the proof by observing that in all cases we have a contradiction to Property (3). □

Lemma 2 For every face /  of G, the boundary of /consists of two directed paths with common 

origin and destination. (See Fig. 2.b).

Proof: Assume, for a contradiction, that there is a face /  for which the lemma is not true. Then 

there are distinct vertices u and v on the boundary of /  such that the edges of the boundary o f /  

incident upon them are all outgoing. We denote these edges with ei(u,w i), e2(v,w4), e 3(v,w3),

Figure 3 Examples for the proof of Lemma 1



and e^{u,w2), in counterclockwise order on the boundary of /. From Property (2), there are 

directed paths from s to u and v. Let s' be the vertex farthest from s that is on both these paths. 

We denote with ku and 7tv the portions of such paths from s' to u and v, respectively. The union 

of ku, 7tv, and the portion of the boundary of/clockwise from v to u forms an undirected cycle y, 

which contains vertices w2 and W3. The two regions of the plane delimited by cycle y will be 

denoted by A and B, where A is the region that does not contain face / . We assume that both A 

and B contain cycle y. From Property (2), there must be paths 7t l5 n2, 713, and 7t4 from wi, w2, 

W3, and w4 to t, respectively. Now, we have four cases for the relative placement of s and t with 

respect to cycle y.

First, suppose that both s and t are in A. Path Ttj must intersect at least one of tzu and 7tv. If 

it intersects first ku, then we have immediately a cycle that does not separate s from r (see Fig. 

4.a). Otherwise, let r be the intersection vertex of with 7tv. The path tt4 must intersect either 

tcv, or the portion of 7ti from w\ to r and then ku. In both cases, we have again a cycle that does 

not separate s from t (see Fig. 4.b-c).

Now, consider the case when s is in A and t is in B. Path 7t2 must intersect at least one of 

7tu and nv. If it intersects first ku at vertex r, then we have a cycle formed by edge e 4(«,y), the 

subpath of k2 from w2 to r, and the subpath of nu from r to u. If this cycle does not separate s 

from r, we are done (see Fig. 4.d). Otherwise, let n' be a path from s to s'. k2 must intersect n' 

at some vertex q, and 713 must intersect the directed path consisting of the portion of 712 from w2 

to q, the portion of k' from q to s', and path 7tv. Hence, also in this case, we have a cycle that 

does not separate s from t (see Fig. 4.e).

The cases when both s and t are in B , or s is in B and t is is in A are similar, and omitted for 

brevity. In all cases we have a contradiction to Property (3), and the proof is completed. □

Motivated by the previous lemmas, we introduce further terminology: Let e = (w,v) be an 

edge of G. First, we denote with LEFT(e) and RIGHT(e) the faces that appear on the left and 

right side of e when traversed from u to v. With reference to Lemma 1, we denote with LEFT(v) 

and RIGHT(v) the faces that separate the incoming and outgoing edges of a vertex v, where 

LEFT(v) is the face to the left of the leftmost incoming and outgoing edges, and RIGHT(v) is 

the face to the right of the rightmost incoming and outgoing edges (see Fig. 2.a). With reference

7



(a) (b)

(c)

(e)

Figure 4 Examples for the proof of Lemma 2
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to Lemma 2, we call the two paths on the boundary of a face /  the left path and right path of /, 

respectively. Also, we call bottommost and topmost vertex of / ,  denoted BO T(f) and TOP(f), 

the common origin and destination of these paths, respectively, (see Fig. 2.b). Notice that if 

vertex v in on the left (respectively, right) path of face /  and is distinct from BOT(f) and 

TOP(f), then RIGHT(v) = /(respectively, LEFT(v) = f).

Let G be a plane graph, and s and t two distinct vertices of G. A spherical st-orientation of 

G is a spherical si-graph whose undirected version is isomorphic to G. G is said to be si- 

orientable if it admits a spherical si-orientation. The following theorem provides a characteriza

tion of si-orientable graphs, and is similar to the characterization of si-numerable graphs given in 

[21]. We recall that a graph G is st-2-connectible if there are vertices s and i such that adding 

the edge (s,i) to G makes G 2-connected [21]. Clearly, a 2-connected graph is also si-2- 

connectible for every pair of vertices s and i.

Theorem 1 Let G be a plane graph. The following statements are equivalent:

(1) G is si-orientable;

(2) G admits an acyclic spherical si-orientation;

(3) G admits an si-numbering;

(4) G is si-2-connectible.

Also, there are O (m) time algorithms for testing if G is si-orientable and constructing a spherical 

si-orientation for G.

Proof; It is proved in [21] that (4)—»(3). Given an si-numbering for G, we can construct an acy

clic spherical si-orientation by orienting each edge from the lowest to the highest numbered ver

tex. We have thus (3)—»(2). Clearly, (2)—>(1). To complete the proof of the characterization, 

we show that (l)->(4). Assume, for a contradiction, that G is not si-2-connectible. Then there is 

a cutvertex v of G such that one of the components generated by the removal of G, denoted by C, 

does not contain neither s nor i. Let u be a vertex of C. Any path from s to i through v is not 

simple, which is a contradiction.

The algorithm for testing if G is si-orientable consists of verifying that each cutvertex of G 

belongs to exactly two blocks (connected components) of G and that each block of G contains no
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more than two cutvertices. This takes O (m) time. Finally, since computing the ^-numbering of 

a planar graph can be done in 0(m )  time [7], we have also that constructing a spherical st- 

orientation takes O (m ) time. □

Now, we turn our attention to operations that update a spherical sf-graph by additions and 

deletions of vertices and edges. The operations ADD, INSERT, REMOVE, and JOIN, defined in 

the introduction, are suitable for this purpose. However, further restrictions must be imposed on 

their applicability in order to ensure that the resulting graph is itself a spherical sf-graph.
f

Lemma 3 Let G be a spherical si-graph, and G' be the graph obtained by performing operation 

II on G. Depending on II, G ' is a spherical si-graph if and only if:

(1) for II = ADD (e ,u ,v ,f,fi , / 2), edge e must not create a cycle with the edges of face /,

(2) for I I =INSERT {e, v, e \ , e 2), there is no restriction;

(3) for 11=REMOVE (e,f), e -(u ,v )  must be an edge such that deg+(v)>2 and deg“ (v)>2, 

where deg+(v) and deg~(v) are the outdegree and indegree of v, respectively;

(4) for I I =JOIN (v,e), v must be a vertex distinct from s and r.

Proof: The proof of (2), (3), and (4) is straightforward. For operation ADD, we consider two 

cases. First, assume that there is a path n on the boundary of /  from u to v. If edge e(u,v) 

creates a cycle that does not separate s from i, then by replacing e with k we have that G already 

had a nonseparating cycle, a contradiction. Now, if there is no path on the boundary of/from  u 

to v, we are in the situation shown in Fig. 5. Let y be the cycle that does not separate s from t, 

and kb and Tij be paths from s to BOT(f) and from TOP(f) to t, respectively. One of these two 

paths must intersect y, which implies that G already had a nonseparating cycle, again a contrad

iction. □

Lemma 4 Let G be a spherical sr-graph, and G 1 and G2 be the graphs obtained by performing 

operations ADD {e,u,v,f , f \ , f 2) and ADD (e ,v ,u ,f,f\ , / 2) on G, respectively, where both ver

tices u and v are on the boundary of face /. Then at least one of G 1 and G2 is a spherical di

graph.

10



Figure 5 Example for the proof of Lemma 3
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3. TOPOLOGICAL LOCATION

In this section we consider the topological location problem, which consists of performing 

efficiently the TEST and LIST operation on a plane graph. We assume that vertices, edges, and 

faces are identified by names, which are elements of a sorted set. For example, names can be 

integers, alphanumeric strings, or pairs of coordinates. The total order among names will be 

referred to as lexicographic order. Regarding the complexity analysis, we assume that a name 

uses 0 (1) space, and that the lexicographic comparison between two names can be done in O (1) 

time. Also, for generality, we assume that the query and update operations use the names as 

input parameters. Throughout this paper, logjt means max { 1 , log2 x }.

3.1. st-Orientable Graphs

Let G be a spherical si-graph. If vertices u and v of G are on the same face / , one of the fol

lowing must be true (see Fig. 6):

Case 1: /  is either to the left or right of u and, also, either to the left or right of v, i.e.:

(f=LEFT(u) or f=RIGHT(u)) and (f=LEFT(y) or f=RIGHT (v));

Case 2: u is either at the top or bottom of / , an d /is  either to the left or right of v, i.e.:

0u=BOT(f) or u=TO P(f)) and (f=LEFT(y) or f=RIGHT (v));

Case 3: v is either at the top or bottom of / ,  and / i s  either to the left or right of u, i.e.:

(v =BOT(f) or v =TOP(f)) and (f=LEFT(u) or / = RIGHT(u));

Case 4: one of u and v is at the top of / ,  and the other is at the bottom, i.e.:

Cu=BOT(f) and v =TOP(f)) or (u=TOP(f) and v =BOT(f)).

In order to check cases 1-3, we store for each vertex v the faces LEFT(v) and RIGHT (y), 

and for each face /  the vertices TOP i f )  and BOTif). For each of these cases, the test is carried 

out in 0 (1) time. To check the remaining case 4, we store with each vertex v a search table 

BELOWiy) that contains the faces /  such that TOP(f) = v. The faces in this table are sorted 

according to the lexicographic order of the name of vertex BO T(f), so that the test for this case 

takes O (log m) time. This proves the following theorem:

12



Figure 6 The four cases for two vertices on the same face

Theorem 2 There exists a data structure for the topological location problem in spherical di

graphs that uses O (m) space, can be constructed in 0(m )  preprocessing time, and supports 

operations TEST and LIST in time O (logm) and O (logm +&), respectively, where k is the 

number of retrieved faces.

Corollary 1 There exists a data structure that solves the topological location problem for st- 

orientable graphs with the following performance:

13



(1) the space requirement and preprocessing time are both 0  (m);

(2) operations TEST and LIST take time O (logm) and O (logm +k), respectively, where k is 

the number of retrieved faces.

Proof: Construct a spherical sr-orientation for G and apply Theorem 2. □

3.2. General Plane Graphs

For plane graphs that are not sf-orientable, the algorithm of the previous subsection cannot 

be directly applied. Instead, we will combine the above technique with a data structure that 

takes into account the plane arrangement of the blocks of the graph.

First, we recall some definitions on graph connectivity. A graph that is not connected will 

be called O-connected. A cutvertex of a graph G is a vertex whose removal disconnects G [1, p. 

31]. A connected graph G is said to be 2-connected if it has no cutvertices, and 1-connected oth

erwise. The block-cutvertex tree of a 1-connected graph G is a tree whose nodes represent the 

blocks and cutvertices of G, and whose edges connect each cutvertex v to the blocks that contain 

v. For O-connected graphs, the block-cutvertex forest T of G is defined as the set of the block- 

cutvertex trees of the connected components of G. In the following, we will be interested in 

preprocessing a graph G in order to determine quickly whether there is a block that contains two 

given vertices u and v. This can be done efficiendy by orienting each tree of T so that it becomes 

a directed source tree with any block at the root, and marking each vertex v with a label 

BLOCK(v), where:

(1) if v is not a cutvertex, BLOCK (v) is the (unique) block that contains v;

(2) if v is a cutvertex, BLOCK(v) is the father of v in T.

See an example in Fig. 7.

Lemma 5 Using the above data structure, testing if u and v belong to the same block can be 

done in O (1) time and O (m) space.

Proof: The algorithm consists of testing the following condition:

14



Figure 7 Example of orientation of the block-cutvertex forest of a graph.

BLOCK(u) =BLOCK(v) or u=FATHER {BLOCK(v)) or BLOCK(v)=FATHER (u) or 

v = FATHER (BLOCK(m)) or BLOCK(u)=FATHER (v). □

Now, let G* be the dual graph of a plane graph G. There is a bijection between the blocks 

of G and the ones of G*, expressed by the following lemma:

15



Lemma 6 A subset of edges of G forms a block of G if and only if their duals form a block in

We construct the block-cutvertex forest of G*, and denote it with T*. Notice that, since 

G * is always connected, T* is actually a tree. In the following, the faces that are cutvertices of 

G* will be called cutfaces, and T* will be called the block-cutface tree of G. We orient each 

edge e*= (tfB ) of T* from /  to B if the boundary of / is external to B , i.e. all the edges of the 

external boundary of B are on / ,  and from B to /  otherwise (see Fig. 8).

Lemma 7 The above orientation transforms T* into a directed source tree, whose root is either 

the external face or the outermost block of G.

For uniformity, if the root of T* is a block, we augment T* with a new root representing the 

external face. This corresponds to considering the external face as being always a cutface. From 

now on, T and T* are assumed to be oriented and augmented as explained above.

Lemma 8 Let v be a cutvertex of G. The set of blocks and cutfaces that contain v is a subgraph 

of T* with a unique source node, which is a cutface.

According to the previous lemma, we call HIGH(v) the source of the subgraph of T* asso

ciated with cutvertex v, i.e. the outermost cutface that contains v. For example, in Fig. 8 the 

cutvertex w4 is contained in cutfaces / ,  i, and m, and in blocks E, G, P, Q, and R, and we have 

HIGHiy) = /. We extend this definition also to the vertices that are not cutvertices, but are on the 

external boundary of their block, by setting HIGH(v) as the external face of BLOCK (v), i.e. 

HIGH(v) = FATHER (BLOCK(v)). Finally, for the remaining vertices HIGH(v) is set to nil.

Let /  be a cutface, and B 0 be the block which is the father of f i n  T*. With reference to 

Fig. 9, the boundary of/consists of the boundary po of an internal face of B q, plus the external 

boundaries of the blocks which are the sons of / i n  T*. We call po the main cycle o f/. For the 

special case when /  is the external face, the main cycle of /  is the empty cycle. Using the 

definition of T* and simple topological considerations, one can show that if a vertex W3 is on the

16
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boundary of / but not on the main cycle of / , then HIGH{w) = /:

Theorem 3 Let u and v be vertices of G that are on the boundary of the same face /:

(1) If u and v belong to the same block B, then they are also on the boundary of face / in  B.

(2) Otherwise, /  is the outermost face for at least one of u and v; i.e. f=HIGH(u) or 

/ = HIGH (v). Also, if / i s  the outermost face for only one of u and v, then the other vertex 

is on the main cycle of /.

The data structure for the topological location problem in general plane graphs is as fol

lows:

(1) A data structure to test whether two vertices belong to the same block, see Lemma 5.

Figure 9 Structure of the boundary of a cutface
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(2) A separate data structure for performing operations TEST and LIST in a 2-connected graph 

(see the previous subsection), for each block B of G.

(3) A pointer MAIN ( f)  to the representative of the cutface /  in the block B 0, father of /  in T *, 

for each cutface /. Notice that the boundary of MAIN ( f)  is the main cycle of /.

(4) A pointer HIGH(v), for each vertex v.

A detailed description of the algorithm for the TEST operation is given in Fig. 10. The algorithm 

for the LIST operation is similar and omitted for brevity.

Theorem 4 There exists a data structure that solves the topological location problem for plane 

graphs with the following performance:

(1) the space requirement and preprocessing time are both O (m);

(2) operations TEST and LIST can be performed in time G(logm) and O (\ogm+k), respec

tively.

Proof: The correctness of the data structure and of the algorithms follows from Theorem 3 and 

the results of the previous section. The time complexity of the TEST and LIST operations fol

lows from Corollary 1 and Lemma 5. With reference to the space requirement and preprocess

ing time we note: Constructing the dual and the block-cutvertex forest of a plane graph can be 

done in 0{m ) time using standard algorithms [8]. From Lemma 5, the data structure for testing 

whether two vertices belong to the same block uses O (m ) space. If G has b blocks and the z-th
b

block has m,- edges, i = 1, ••*,&, we have that £  =m, so that the total space requirement and
¿ = 1

preprocessing time for the data structures of the blocks of G is G (m). Orienting T* can be done 

in O (m) time by performing a depth-first-search in G* starting at the external face. Finally, set

ting up the MAIN and HIGH pointers can be also done in O (m ) time by maintaining bidirec

tional pointers between the blocks of T and the corresponding ones of T*. □
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procedure TEST(u,v);
{ Test if there is a face /  that has both vertices u and v on its boundary. } 
begin

if u and v are in the same block B 
then perform the test on the data structure for B 
else begin

l e t / :=HIGH(it); g:=HIGH(y); f 0 :=MAIN(f ); g 0 :=MAIN(g);

« t f = g
then return i f)
else if u=TOP(g0) or u=BOT(g0) or LEFT(u)=g0 o r RIGHT(u)=g 0 
{ test whether u is on g 0 } 

then return (go);
else if v =TOP(f0) or v =BOT(f0) or LEFT(y) =/0 or RIGHT(v) =/0 
{ test whether v is on /o  ) 

then return (fo);
else return ( “ w and v are not on the same face’ ’ ) 

end 
end

Figure 10 Algorithm for the TEST operation in general planar graphs
(static data structure)
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3.3. Average Query Time

Let Quv(n,m) be the time to perform the query operation TEST(u,v). We have shown in 

the previous subsection that in the worst case Q uvi^m )-O  (logn). Here, we consider the aver-
r

age query time over all possible n
UJ queries, defined by:

Q(n,m) ^Quv(n*m)
u,v
l&V

From the description of the algorithm for the TEST operation we have that 

Quv(n,m) = 0  (log deg- (u) + log deg- (v)). Hence, we have:

Q(n,m) = - j-^ r -0

* ' 

2 (log deg- (ii)+ log deg- (v))

0II n 2 10g deg ( v)
UJ u,v 2 L v J

Since ]£ deg (v)=m, we obtain the following theorem:
V

Theorem 5 In the previously described data structure for the topological location problem the 

average time for the TEST operation over all possible j^j queries is Q(n,m) = 0

Notice that for simple plane graphs the average query time is Q(n,m) = O (1).
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4. DYNAMIC PLANAR GRAPH EMBEDDING

In this section, we present the complete data structure for the dynamic embedding problem. 

First, we consider the problem in spherical sr-graphs, and then extend the the results to 

undirected graphs using spherical sf-orientations.

4.1. Directed Graphs

In this subsection we describe a data structure for efficiently solving the dynamic embed

ding problem for spherical sr-graphs. Let G be a spherical sr-graph.

The data structure has a record for each vertex, edge, and face of G. The records for the 

vertices are arranged in a vertex-tree Ty, which is a balanced search tree whose nodes are 

ordered according to the lexicographic order of the names of the vertices. Similarly, the records 

of the edges and faces are arranged in lexicographic order in a face-tree 7>, and in an edge-tree 

Te , respectively. The above trees allow us to access in O(logm) time the records associated 

with the vertices, edges, and faces involved in the current operation.

The record for a face /  stores the following information:

(1) /: name of the face;

(2) TOP (J): pointer to the record of the topmost vertex of /,

(3) BOTif): pointer to the record of the bottommost vertex of /,

(4) Pointers to two balanced search trees, LPATH(f) and RPATHif), associated with the left 

and right paths of face / , respectively. Specifically, let

B O T(f)= vo ,* i,v i,* 2. • * * ,vk. u ektvk =TOP(f)

be, say, the left path of /. The nodes of LPATH(f) represent the edges and vertices 

£i>vi,e2, * * * ,v*_i,ek, in this order. Notice that for all i = 1, • • • , k - \  , f=RIGHT(vi), 

and for all j  = 1, • • • ,k f =RIGHT(ej). The tree RPATHif) is similarly defined. The roots 

of LPATHif) and RPATHif) point back to face /.

The record for a vertex v stores the following information:

(1) v: name of the vertex;
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(2) deg+(v), deg (v): outdegree and indegree of v.

(3) IN(v): pointer to a tree whose nodes represent the incoming edges of v, sorted according to 

the lexicographic order of the name of the other endpoint vertex.

(4) OUT(v): pointer to a tree whose nodes represent the outgoing edges of v, sorted according 

to the lexicographic order of the name of the other endpoint vertex.

(5) PLEFT(v): pointer to the representative of v in the tree RPATH(f), where / = LEFT(v);

(6) PRIGHT(y): pointer to the representative of v in the tree LPATH(g), where g -RIG HTiy);

(7) BELOW(v): pointer to a balanced search tree whose nodes represent the faces /  whose top

most vertex is v. The nodes in BELOW(v) are sorted according to the lexicographic order 

of the name of vertex BOT(f).

The record for an edge e stores the following information:

(1) e: name of the edge;

(2) the head and tail vertices of e\

(3) pointers to the representatives of e into the IN and OUT trees of the endpoint vertices of e\ 

and

(4) pointers PLEFT(e) and PRIGHT{e) to the representatives of e in the trees RPATH(f) and 

LPATH{g\ where/ = LEFT(e) and g = RIGHT(e).

We show in Fig. 11a spherical sr-graph and a fragment of the data structure for it.

Using the above data structure, the TEST operation can be performed with the same stra

tegy as in the static case. The only difference is that now the faces to the left and right of u and v 

are not immediately available, and must be retrieved by walking up to the roots of the trees that 

contain the representatives of u and v pointed to by PLEFT(m), PRIGHT{u), PLEFT(v), and 

PRIGHT (v).

With regard to the ADD operation, we assume that f \  is to the left of e and /2 is to the right 

of e. The LPATH and RPATH trees of the new faces will be obtained by splitting LPATHif) 

and RPATH(f) at vertices u and v, and splicing appropriately the resulting trees. Formally, we 

will perform on these trees the following operations:
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vertex record:

PL
EF

T NAME

PRIG
H

TBELOW

face record:

¡t; TOP >3
s
5 NAME s

BOT

edge record:

" 0

> 1
a ,

p

Figure 11 A spherical sr-graph and a fragment of the dynamic data structure for it.
The edges are oriented upward.
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(1) SPLIT, denoted by (T \,v ,T i)'.-SP LIT (7), returns node v and two balanced trees, T\ and 

T 2, that contains the nodes of T  preceding and following v, respectively.

(2) SPLICE, denoted by T := SPLICE (T 1,72), takes as input two trees 7 i and T 2 such that the 

maximum node of 7 1 precedes the minimum node of 72 , and returns a new tree 7  that con

tains the union of the nodes of T\ and 72-

Standard techniques allow us to perform the above INSERT and SPLICE operations in 

O (log 171) time, see for example the implementation with AVL trees described in [4,19], and 

the one with (2,4)-trees given in [22].

Detailed pseudo-code descriptions of the algorithms designed to perform operations TEST, 

ADD and INSERT are given in Figs. 12,13, and 14, respectively.

The above data structure supports also operations REMOVE and JOIN. In fact, the 

REMOVE operation can be performed by reversing the transformations on the data structure 

realized by the algorithm for the ADD operation. Similarly, the JOIN operation is the inverse of 

the INSERT operation. Notice also that, from Lemma 3, the counters deg+(v) and deg~(v) allow 

us to test the feasibility of each such operation in O (1) time. This completes the proof of:

Theorem 6 The above data structure correctly solves the dynamic embedding problem for 

spherical sr-graphs and has the following performance:

(1) the space requirement and the preprocessing time are O (m);

(2) operations TEST, ADD, INSERT, REMOVE, and JOIN are each executed in O (logm) time;

(3) operation LIST is executed in O (log m+k)  time, where k is the number of retrieved faces.

In the execution of an update operation we can distinguish the search time spent in finding 

the nodes of the various trees involved in the operation, and the restructuring time that takes into 

account the update and rebalancing of the trees. The next theorem shows that in our data struc

ture the amortized restructuring time for a sequence of ADD and insert operations is optimal. 

For the definition of amortized time complexity, see [29].
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Theorem 7 There exists a data structure for the dynamic embedding problem in spherical di

graphs such that:

(1) The space occupation and time complexity of the various operations are the same as in 

Theorem 6.

(2) In a sequence of ADD and INSERT operations the amortized restructuring time complexity 

of each such operation is O (1).

Proof: Use 2-4 trees for the trees Tp, Ty, Tp, 7iV(v), O U Tiy), and BELOW(v). Such trees have 

0(1) amortized rebalancing time for insertions and deletions [15]. With regars to the LPATH 

and RPATH trees, their manipulation in a sequence of ADD and INSERT operations involves 

insertions and the kind of generalized splittings considered in [13]. It is shown there that circu

lar level-linked 2-4 trees support efficiently a sequence of insertions and generalized splittings. 

With arguments similar to the ones developed in [13] we can show that using circular level- 

linked 2-4 trees for the LPATH and RPATH trees, the amortized rebalancing time for them is 

also 0 (1). □
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procedure TEST(u,v);
{ Test if there is a face /  that has both vertices u and v on its boundary. } 
begin

find in Ty the nodes associated with u and v;

walk up to the roots of the trees that contain PLEFT(u), PRIGHTiu), PLEFT(v), 
and PRIGHT(v) to find faces f x =LEFT(u), f 2 -RIGHT{u), 
g i =LEFT(v), and g 2 = RIGHT(v), respectively.

i f  (fi = 8 1) o r  (fi  = £ 2 )  
then return (f i)
else if (f2= 8 i ) o r ( f 2= g 2)

then return (f2)
else if TO P(fi)=v or BO T(fi)=v  

then return (f i)
else if TOP(f2)=v  or BOT(f2)=v 

then return ( f2)
else if TOP{g 1) - u  or BO T{g{)-u  

then return (gi) 
else if TOP(g2)= or BOT(g2) = u 

then return (g2) 
else begin

search in tree BELOW(v) for a face/w ithBOT(f)  = u;

end

if such a face /exists 
then return ( f ) 
else begin

search in tree BELOWiu) for a face /w ith  BOT(f)=v;
if such a face /exists 

then return ( f)
else return ( “ w and v are not on the same face” )

end
end

Figure 12 Algorithm for the TEST operation in spherical sr-graphs 
(dynamic data structure)
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procedure AD D(e,w ,v,/,/!,/2);
{ Add an edge e = (u,v) to G inside face / , which is split into faces f \  andf 2.
The operation is rejected if vertices u and v are not both be on the boundary of face /  } 

begin

create a new node for edge e and insert it into 7#; 
insert edge e into IN(v) and OUT{u)\ 
delete from Tp the node for face/, 
create new nodes for faces f \  and / 2 and insert them in Tp;

let vB :=BOT(f) and vT :=TOP(f);

if u and v are both on RPATHif) and u precedes v 
then begin

BOT(fi)  :=vB; TOPifO  :=vr ;
BOT(f2):=u; TOP(f2):=v;
(R i , u,R 2,v,R 3) := SPLIT (RPATH ( f ));
LPATH ( f i ) :=LPATH ( f );
RPATHif x) :=SPUCE (fll9u,e,v,R3);
LPATH(f 2) :={e};
RPATH i f  2):=R2;
rename node / into /* in BELOW(v^); 
insert f 2 into BELOWiv); 

end
else if u and v are both on LPATH i f )  and u precedes v 

then { similar to the previous case }

vT

else if u is on LPATH i f)  and v is on RPATHif) 
then begin

B O Tifi)  :=u; T O P i f^ - v j ;  
BO Tif2):=vB; TOPif2):=v;
(L15m,L 2) := SPLIT iLPATH i f ));
{R !,v ,tf2) :=SPLIT iRPATH i f )); 
LPA77/(A):=L2;
^PAr/ZC/-!) :=SPLLCE (e,v,/?2);
LPATH i f2) SPLICE iL u u,e);
RPATH i f2) :=/?!*, 
delete /  from BELOW(V7); 
insert/i into BELOW(vj); 
insert / 2 into BELOW(v) 

end

else if is on RPATHif) and v is on LPATH i f )  
then { similar to the previous case }

Vy

Figure 13 Algorithm for the ADD operation in spherical sr-graphs 
(continues on the next page)
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else if u=BOT(f) and v is on RPATH(f) 
then begin

BOT(fO:=u; TOPifx) - v T;
BOT(f2):=u; TOPif2):=v;
(R ! ,v ,* 2) := SPLIT (RPATH i f ));
LPATHifi ):=LPATH(f);
RPATH(fO := SPLICE (e,v,/?2);
LPAT//(/2):={e};
RPATH(f2):= R i ;
rename node /  into / i  in BELOW(vj); 
insert f 2 into BELOW(v) 

end

else if u =BOT(f) and v is on LPATH(f) 
then { similar the previous case }

else if v =TOP(f) and u is on LPATHif) 
then begin

BOTifi):=u; TOP(fO:=v;
BOT(f2):=vB; TOPif2):=v;
(L i ,UjL 2)-S P L IT  (LPATH(f));
LPATHif 0  :=L2;
RPATHif i ) — {e};
LPATHif 2) := SPLICE (Lu u,e);
RPATH i f2)-R P A T H  if); 
insert/i into BELOW(v) 
rename node / in to /2 m BELOW(v); 

end

else if v=TOP(f)  and u is on RPATH i f )  
then { similar the previous case }

else if u=BOT(f) and v =TOP(f) 
then begin

B O T ifO -u ;  TOP(f\):=v;
BOT(f2) :=u; TOP(f2):=v;
LPATHifi) ;-LPATHif);
RPATH i f  i):={e};
LPATHif2) := [e);
RPATH i f2) :=RPATH if); 
rename node / into f \  in BELOW(v); 
insert f 2 into BELOW(v) 

end
else return ( “ illegal operation” ) 

end
Figure 13 Algorithm for the ADD operation in spherical sr-graphs (continued)
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procedure INSERT(e, v, e x, e 2)
{ Split the edge (m, w) into two edges e ! = (m,v) and 
¿2 = (v, w), by adding vertex v. } 

begin
create a new node for vertex v and insert it into Ty 

immediately after u; 
delete the node of e from 7#; 
delete e from IN(w) and OUT(u); 
create nodes for e j and ¿2 and insert them in 7#; 
insert e 1 into IN(v) and OUT(u); 
insert e 2 into IN(w) and OUT(v);

walk up to the roots of the trees that contain PLEFT(e) and 
FRIGHT(e) to find faces f=LEFT(e) and g = RIGHT(e);

delete the representative of e in RPATHif); 
insert representatives for e \ , ¿ 2, and v into RPATH if), 

and set the PLEFT pointers accordingly;

delete the representative of e in LPATH(g); 
insert representatives for e 1? e 2> and v into LPATH(g), 

and set the PRIGHT pointers accordingly;

BELOW (v ):= 0 ; 
end

Figure 14 Algorithm for the INSERT operation in spherical si-graphs
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4.2. Undirected Graphs

For undirected plane graphs, we maintain on-line a spherical sr-orientation and use the data 

structure previously described. Operations TEST, LIST, and INSERT do not require any 

modifications. In connection with operation ADD (e ,u ,v ,f,fi ,f2) we have to decide the orienta

tion of edge e so that it does not introduce cycles internal to face / . By Lemma 4, this can be 

done easily by reversing the direction of the orientation whenever the algorithm of Fig. 13 

rejects the operation. This proves:

Theorem 8 There is a data structure that supports operations TEST, LIST, ADD, and INSERT in 

a sr-orientable plane graph with the following performance:

(1) the space requirement and the preprocessing time are both O (m );

(2) operations TEST, ADD, and INSERT are each executed in O (log m) time;

(3) operation LIST is executed in O (log m+k) time, where k is the number of retrieved faces.

As regards the REMOVE and JOIN operations, we are faced with the difficulty that the data 

structure acts on a spherical sr-orientation of the graph, therefore permitting only deletions that 

preserve the si-structure of the orientation. We say that a vertex (edge) is free if operation JOIN 

(REMOVE) can be performed on it in the spherical sr-orientation; we say that it is locked other

wise. At any time the vertices and edges of the graph are partitioned into free and locked, and 

we are allowed to delete only the vertices and edges that are free. We have thus:

Theorem 9 The data structure of Theorem 8 supports also operations REMOVE and JOIN on 

free edges and vertices in O (logm) time.

In several layout applications, design methodologies limit the freedom of the designer in 

making arbitrary updates to the layout. For example, well known hierarchic design strategies for 

VLSI circuits suggest to build the layout in top-down fashion by means of successive 

refinements.

In the following, we show that the class of free edges and vertices is sufficiently large to 

allow the implementation of a hierarchic deletion scheme that allows to “ undo” any ADD and
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INSERT operation performed in the past (not only the last operation). For instance, we define 

the hierarchic embedding problem as a variation of the previously discussed dynamic embed

ding problem where the following restrictions are placed on the REMOVE and JOIN operations:

(1) an edge can be deleted by a REMOVE operation only if it was created (at any time in the 

past) by means of an ADD operation;

(2) a vertex can be deleted by a JOIN operation only if it was created (at any time in the past) 

by a INSERT operation.

In Fig. 15 we show a sequence of update operations in an instance of the hierarchic embedding 

problem.

The aforementioned restrictions on the REMOVE and JOIN operations can be enforced by 

storing with each edge e two flags, denoted FREE-TAIL(e) and FREE -HEAD (e), which are 

associated with the head and tail of edge e in the spherical sr-orientation, respectively. We use 

these flags to maintain the invariant that an edge e can be removed if and only if both 

FREE —TAIL(e) and FREE—HEAD(e) are true. This can be done by manipulating the flags in 

the various operations as follows:

ADD (e ,ii,v ,/,/!,/2): FREE-TAIL(e) :=true; FREE -HEAD (e 2) -tru e .

FREE-TAIL(ex) := FREE -TAIL (e); FREE -HEAD (e\): = false; 

FREE-TAIL(e2)-fa lse ;  FREE -HEAD (e 2) -FREE-H EAD  (e).

Accept the operation only if:

(FREE-TAIL(e)= true) and (FREE-HEAD(e2) = true).

Let e i = (m,v) and e 2 = (v,w) be the edges formerly incident to v. 

FREE-TAIL(e) := FREE-TAIL(e i);

FREE -HEAD (e) -FREE-H EAD  (e2).

In the example of Fig. 15 a flag is set whenever the corresponding endpoint is left unconnected.

It is not difficult to show that the edges (vertices) that can be deleted in an instance of the 

hierarchic embedding problem are free. We have thus the following theorem:

INSERT (e ,v ,e i,e2): 

REMOVE (e j) :  

JOIN (v,e):
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t t t

ADD (l,ujcf,g,h) SPLIT (1 ,w>,2,3) ADD (4,w,v,g,iJ)

t

REMOVE (4,o)

t t

ADD (9,z,t,o,p,q) REMOVE (5,r)

t

JOIN (w,10)

Figure 15 Sequence of hierarchic update operations on a plane graph
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Theorem 10 There exists a data structure that allows us to solve the hierarchic embedding prob

lem for sf-orientable plane graphs with the following performance:

(1) the space requirement is 0(m);

(2) operations TEST, ADD, INSERT, REMOVE, and JOIN are each executed in O (logm) time;

(3) operation LIST is executed in O (log m +k) time, where k is the number of retrieved faces.
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5. A DUAL EMBEDDING PROBLEM

In this section we extend the above results by providing a solution to an embedding prob

lem that is the dual of the previously discussed dynamic embedding problem. We also develop 

further concepts on orientations of plane graphs, extending the definition of cylindric orientation 

given in [28].

The dual dynamic embedding problem consists of performing the following operations on a 

plane graph G:

TEST* (f , g ):

LIST* ( f yg):

EXPAND (e,/,g ,v ,v1,v2): 

DUPLICATE (e jyeu e 2): 

CONTRACT (e,v): 

MERGE ( f ,e ):

Test if there is a vertex v that is on the boundaries of both faces /  

and g. In case such a vertex v exists, output its name.

List all the vertices that are on the boundaries of both faces /  and 

8 -

Expand vertex v into vertices vx and v2 connected by an edge e on 

the boundary of faces /  and g.

Replace the edge e with two parallel edges, e x and e 2, with the 

same endpoints, and call /  the resulting face between them.

Contract the edge e — (w,w), and call v the vertex resulting from 

the contraction of u and vv3.

Let /  be a face whose boundary consists of two parallel edges e i 

and e 2. Remove /b y  merging e j and e 2 into a new edge e.

We will show that this problem is the dual of the dynamic embedding problem in the sense 

of duality of plane graphs. To this extent, we will extend the notion of duality to spherical di

graphs.

The dual graph G* of a directed plane graph G is the directed graph obtained by orienting 

each edge of the dual of the undirected version of G from the left to the right. This means that, if 

e is an edge of G with faces /  and g on its left and right, respectively, then the dual edge e* is

directed from /  to g. Let s* and t* be two distinct faces of G. An s*t*-slit is a simple directed 

path of G* from s* tot*. A directed cut is a (simple) directed cycle of G*.
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A cylindrical s* t*-graph is a digraph G embedded in the plane such that:

(1) the boundary of only two faces, s * and t*, are directed cycles, where s * is clockwise and t* 

is counterclockwise;

(2) every face / o f  G is on some sY-slit; and

(3) every directed cut separates s * from t*.

We can visualize a cylindrical sY-graph as embedded in a cylinder, with external faces s* and 

t* (see Fig. 16).

Theorem 11 G is a spherical sf-graph if and only if G * is a cylindrical .s Y-graph.

Figure 16 Example of cylindrical sY-graph
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We observe that Lemma 1 of Section 2 expresses a separation property of the incoming 

and outgoing edges of each vertex of a spherical sr-graph. Similarly, Lemma 2 expresses a 

separation property for the clockwise and counterclockwise edges on the boundary of each face. 

The latter property is the dual of the former in the sense that if a digraph G has the separation 

property for vertices, then its dual has the separation property for the faces, and vice-versa. 

Therefore, by Theorem 11, the separation properties expressed by Lemmas 1-2 hold also for 

cylindrical sY-graphs.

A spherical s* t*-orientation for an undirected plane graph G is a cylindrical sY-graph 

whose undirected version is isomorphic to G. G is said to be s*t*-orientable if it admits a spheri

cal sY-orientation. From Theorems 1 and 11, we obtain a characterization for sY-orientable 

graphs, and a linear-time algorithm for testing this property. Notice that every 2-connected 

graph is sY-orientable.

As in the case of the dynamic embedding problem, we can define the same operations on a 

cylindrical sY-graph, where the restrictions on the operations are as follows:

Theorem 12 Let G be a cylindrical sY-graph, and G ' be the graph obtained by performing 

operation II on G. Depending on II, G ' is a cylindrical sY-graph if and only if:

(1) for n = EXPAND (*,/,£ ,v ,vi,v2), edge e must be oriented in such a way that neither v x nor 

V2 becomes a source or a sink;

(2) for n =DUPLICATE (e,f,e i ,e2), there is no restriction;

(3) for 11 = CONTRACT (e,v), e = (w,v) must be an edge such that the right path of face 

LEFT(e) and the left path of face RIGHT(e) have length at least 2.

(4) for I I = MERGE ( f ,e ) , f  must be a face distinct from s * and t *.

Using Theorem 11 and the results of Section 4, we obtain:

Theorem 13 There is a data structure that allows us to solve the dual dynamic embedding prob

lem for cylindrical sY-graphs with the following performance:
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(1) the space requirement is O (m);

(2) operations TEST*, EXPAND, DUPLICATE, CONTRACT, and MERGE are each executed 

in 0  (logm) time;

(3) operation LIST* is executed in O (log m +k) time, where k is the number of retrieved ver

tices.

The hierarchic dual embedding problem is defined as a variation of the dynamic embed

ding problem where the CONTRACT and MERGE operations can performed only on edges 

(respectively, faces) previously inserted by the EXPAND (respectively, DUPLICATE) operation. 

We have:

Theorem 14 There is a data structure that allows us to solve the hierarchic dual embedding 

problem for s’V-orientable plane graphs with the following performance:

(1) the space requirement is 0(m);

(2) operations TEST*, EXPAND, DUPLICATE, CONTRACT, and MERGE are each executed 

in O (logm) time;

(3) operation LIST* is executed in O (logm + k) time, where k is the number of retrieved ver

tices.
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