Skip to main content

A 3D Galloping Quadruped Robot

  • Conference paper
Book cover Climbing and Walking Robots

Abstract

In this work, we present a practical approach for producing a stable 3D gallop in a simulated quadrupedal robot which includes the prominent characteristics of the biological gait. The dynamic model utilizes biologically-based assumptions, and the resulting 3D gallop contains the prominent biological features of early leg retraction, phase-locked leg motion, a significant gathered flight phase, unconstrained spatial dynamics, and a smooth gait. A multiobjective genetic algorithm is used to find control parameters in a partitioned search space. During stance, a simple energy control law ensures a fixed amount of energy in the knee springs during each stride, which is a key factor for stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raibert M. H. (1990) Trotting, Pacing, and Bounding By a Quadruped Robot. Journal of Biomechanics, vol. 23, pp. 79–98.

    Article  Google Scholar 

  2. Furushu J., Akihito S., Masamichi S. and Eichi K. (1995) Realization of a Bounce Gait in a Quadruped Robot with Articular-Joint-Type Legs. Proceedings of the 1995 IEEE International Conference on Robotics and Automation (ICRA), Nagoya, Japan, pp. 697–702.

    Google Scholar 

  3. Kimura H., Akiyama S. and Sakurama K. (1999) Realization of Dynamic Walking and Running of the Quadruped Using Neural Oscillator. Autonomous Robots, vol. 7, pp. 247–258.

    Article  Google Scholar 

  4. Hoyt D. F. and Taylor C. R. (1981) Gait and the Energetics of Locomotion in Horses. Nature, vol. 292, pp. 239–240.

    Article  Google Scholar 

  5. Gambaryan P. P. (1974) How Mammals Run: Anatomical Adaptations. John Wiley & Sons, New York, NY, pp. 23–37.

    Google Scholar 

  6. Smith J. A. and Poulakakis I. (2004) Rotary Gallop in the Untethered Quadrupedal Robot Scout II. Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, pp. 2556–2561.

    Google Scholar 

  7. Morita K. and Ishihara H. (2005) A Study of Mechanisms and Control of Underactuated 4-Legged Locomotion Robot: Proposal of Walking Model by Underactuated System. Video Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain.

    Google Scholar 

  8. Nanua P. and Waldron K. J. (1994) Instability and chaos in quadruped gallop. Journal of Mechanical Design, vol. 116, pp. 1096–1101.

    Article  Google Scholar 

  9. Ringrose R. (1997) Self-Stabilizing Running. Proceedings of the 1997 IEEE International Conference on Robotics and Automation (ICRA), Albuquerque, NM, pp. 487–493.

    Google Scholar 

  10. Marhefka D. W., Orin D. E., Schmiedeler J. P. and Waldron K. J. (2003) Intelligent Control of Quadruped Gallops. IEEE/ASME Transactions on Mechatronics, vol. 8, no. 4, pp. 446–456.

    Article  Google Scholar 

  11. Herr H. M. and McMahon T. A. (2001) A Galloping Horse Model. The International Journal of Robotics Research, vol. 20, no. 1, pp. 26–37.

    Article  Google Scholar 

  12. Krasny D. P. and Orin D. E. (2004) Generating High-Speed Dynamic Running Gaits in a Quadruped Robot Using an Evolutionary Search. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 4, pp. 1685–1696.

    Article  Google Scholar 

  13. McMillan S., Orin D. E. and McGhee R. B. (1995) DynaMechs: An Object Oriented Software Package for Efficient Dynamic Simulation of Underwater Robotic Vehicles. Underwater Robotic Vehicles: Design and Control, (Yuh J., ed.), Albuquerque NM, TSI Press, pp. 73–98.

    Google Scholar 

  14. Craig J. J. (1989) Introduction to Robotics: Mechanics and Control, Addison-Wesley Publishing Co., Reading MA, pp. 48–49.

    MATH  Google Scholar 

  15. Heglund N. C. and Taylor C. R. (1988) Speed, Stride Frequency and Energy Cost per Stride: How Do They Change with Body Size and Gait? Journal of Experimental Biology, vol. 138, pp. 301–318.

    Google Scholar 

  16. Marhefka D. W. (2000) Fuzzy Control and Dynamic Simulation of a Quadruped Galloping Machine. Ph.D. thesis, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  17. Berkemeier M. (1998) Modeling the Dynamics of Quadrupedal Running. International Journal of Robotics Research, vol. 17, no. 9, pp. 971–985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krasny, D.P., Orin, D.E. (2006). A 3D Galloping Quadruped Robot. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics