Skip to main content

Predesign of an Anthropomorphic Lightweight Manipulator

  • Conference paper

Abstract

One of the main goals in the service robotics field is the design of mobile robots which are able to operate in human environments and interact with people in a safety way. The basic functionalities that an assistance robot must fulfil, from a mechanical point of view, are the mobility and the manipulation. Currently, assistance robotic, is based on the development of mobile manipulator robots with the basic characteristics of reliability, safety and easiness of the use. The mobile base and the manipulators optimum mechanical design is the key to obtain the aims. To go more deeply into the manipulator, the optimum design of the elements and joints is based on the previous and detailed kinematical and dynamical studies. The goal of this work consists of designing the preliminary mechanical analysis of the light robotic arm LWR-UC3M-1 placed in the mobile manipulator MANFRED, in order to observe the arm dynamical behaviour with and without load applied in the end of the kinematical chain. The model and simulations presented in this manuscript have been developed based on the COSMOS MOTION® of SolidWorks® tool. A static analysis for the links has been also developed, and in this work we present the results for the links with more fault probability to be used as experience for a future redesign.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Roy, G. Baltus, D. Fox, F. Gemperle, J. Goetz, T. Hirsch, D. Margaritis, M. Montemerlo, J. Pineau, J. Schulte, and S. Thrun, “Towards personal service robots for the elderly,” in Workshop on Interactive Robots and Entertainment (WIRE 2000), 2000.

    Google Scholar 

  2. A. Gimenez, A. Jardon, and C. Balaguer, “Light weight autonomous service robot for disable and elderly people help in their living environment,” in The 11th International Conference on Advanced Robotics, 2003.

    Google Scholar 

  3. T. Rofer and A. Lankenau, “Architecture and applications of the Bremen autonomous wheelchair”, in Proceedings of the Fourth Joint Conference on Information Systems, pp. 365–368, 1998.

    Google Scholar 

  4. L.M. Bergasa, M. Mazo, A. Gardel, J.C. Garcia, A. Ortuno, and A.E. Mendez, “Guidance of a wheelchair for handicapped people by face tracking”, IEEE International Conference on Emerging Technologies and Factory Automation, 1999.

    Google Scholar 

  5. S. Fioretti, T. Leo, and S. Longhi, “Navigation systems for increasing the autonomy and security of mobile bases for disabled people” Proceedings of the 1998 IEEE International Conference on Robotics& Automation, Leuven, Belgium. May 1998.

    Google Scholar 

  6. O. Khatib, K. Yokoi, O. Brock, K. Chang, and A. Casal, “Robots in human environments: basic autonomous capabilities,” International Journal of Robotics Research, vol. 18, no. 7, pp. 684–696, july 1999.

    Article  Google Scholar 

  7. O. Khatib, O. Brock, K. Chang, F. Conti, D. Ruspini, and L. Sentis, “Robotics and interactive simulation,” Comunications of the ACM, vol. 45, no. 3, pp. 46–51, march 2002

    Google Scholar 

  8. V. Fernández; C. Balaguer; D. Blanco; M.A. Salichs. Active Human-Mobile Manipulator Cooperation Through Intention Recognition. “IEEE International Conference on Robotics and Automation”. Seoul. Korea. May, 2001. pp.2668–2673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castejón, C., Blanco, D., Kadhim, S.H., Moreno, L. (2006). Predesign of an Anthropomorphic Lightweight Manipulator. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics