Skip to main content

Computational Methods for Large Distributed Parameter Estimation Problems in 3D

  • Conference paper
  • 1367 Accesses

Summary

This paper considers problems of distributed parameter estimation from data measurements on solutions of diffusive partial differential equations (PDEs). A nonlinear functional is minimized to approximately recover the sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a finite volume or finite element discretization of the forward differential equation, and a Tikhonov-type regularization term, involving the discretization of a mix of model derivatives.

We develop methods for the resulting constrained optimization problem. The method directly addresses the discretized PDE system which defines a critical point of the Lagrangian. This system is strongly coupled when the regularization parameter is small.

We then apply such methods for electromagnetic data inversion in 3D, both in frequency and in time domains. This involves developing appropriate discretizations for the forward problems as well as handling very large systems of algebraic equations.

Finally, we explore the use of the so-called Huber's norm for the recovery of piecewise smooth model functions. Since our differential operators are compact, there are many different models that give rise to fields that fit practical data sets well.

Supported in part under NSERC Research Grant 84306

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Ascher and E. Haber. Grid refinement and scaling for distributed parameter estimation problems. Inverse Problems, 17:571–590, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  2. U. Ascher and E. Haber. A multigrid method for distributed parameter estimation problems. ETNA, 2001.

    Google Scholar 

  3. G. Biros and O. Ghattas. Parallel Newton-Krylov methods for PDE-constrained optimization. In Proceedings of CS99, Portland Oregon, 1999.

    Google Scholar 

  4. G. Biros and O. Ghattas. Parallel preconditioners for KKT systems arising in optimal control of viscous incompressible flows. In Proceedings of Parallel CFD. North Holland, 1999. May 23–26, Williamsburg, VA.

    Google Scholar 

  5. G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization Parts I,II. Preprints, 2000.

    Google Scholar 

  6. L. Borcea, J. G. Berryman, and G. C. Papanicolaou. High-contrast impedance tomography. Inverse Problems, 12, 1996.

    Google Scholar 

  7. T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 20:1964–1977, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. J. Devaney. The limited-view problem in diffraction tomography. Inverse Problems, 5:510–523, 1989.

    Article  MathSciNet  Google Scholar 

  9. R. Ewing (Ed.). The mathematics of reservoir simulation. SIAM, Philadelphia, 1983.

    Google Scholar 

  10. C. Farquharson and D. Oldenburg. Non-linear inversion using general measures of data misfit and model structure. Geophysics J., 134:213–227, 1998.

    Article  Google Scholar 

  11. S. Gomez, A. Perez, and R. Alvarez. Multiscale optimization for aquifer parameter identification with noisy data. In Computational Methods in Water Resources XII, Vol. 2, 1998.

    Google Scholar 

  12. E. Haber. Numerical Strategies for the Solution of Inverse Problems. PhD thesis, University of British Columbia, 1997.

    Google Scholar 

  13. E. Haber and U. Ascher. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Scient. Comput., 22:1943–1961, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Haber and U. Ascher. Preconditioned all-at-one methods for large, sparse parameter estimation problems. Inverse Problems, 17:1847–1864, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Haber, U. Ascher, D. Aruliah, and D. Oldenburg. Fast simulation of 3D electromagnetic using potentials. J. Comput. Phys., 163:150–171, 2000.

    Article  MATH  Google Scholar 

  16. E. Haber, U. Ascher, and D. Oldenburg. Inversion of 3D electromagntic data in frequency and time domain using an inexact all-at-once approach. 2002. Manuscript.

    Google Scholar 

  17. P. J. Huber. Robust estimation of a location parameter. Ann. Math. Stats., 35:73–101, 1964.

    MATH  MathSciNet  Google Scholar 

  18. G. Newman and D. Alumbaugh. Three-dimensional massively parallel electromagnetic inversion—i. theory. Geophysical journal international, 128:345–354, 1997.

    Google Scholar 

  19. G. Newman and D. Alumbaugh. Three-dimensional massively parallel electromagnetic inversion—ii, analysis of a crosswell electromagnetic experiment. Geophysical journal international, 128:355–367, 1997.

    Google Scholar 

  20. J. Nocedal and S. Wright. Numerical Optimization. New York: Springer, 1999.

    MATH  Google Scholar 

  21. R. L. Parker. Geophysical Inverse Theory. Princeton University Press, Princeton NJ, 1994.

    Google Scholar 

  22. Y. Saad. Iterartive Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

    Google Scholar 

  23. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge, 2001.

    Google Scholar 

  24. D. Sidilkover and U. Ascher. A multigrid solver for the steady state navier-stokes equations using the pressure-poisson formulation. Comp. Appl. Math. (SBMAC), 14:21–35, 1995.

    MathSciNet  MATH  Google Scholar 

  25. N.C. Smith and K. Vozoff. Two dimensional DC resistivity inversion for dipole dipole data. IEEE Trans. on geoscience and remote sensing, GE 22:21–28, 1984. Special issue on electromagnetic methods in applied geophysics.

    Google Scholar 

  26. A.N. Tikhonov and V.Ya. Arsenin. Methods for Solving Ill-posed Problems. John Wiley and Sons, Inc., 1977.

    Google Scholar 

  27. U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.

    Google Scholar 

  28. C. Vogel. Computational Methods for Inverse Problem. SIAM, Philadelphia, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ascher, U.M., Haber, E. (2005). Computational Methods for Large Distributed Parameter Estimation Problems in 3D. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_2

Download citation

Publish with us

Policies and ethics