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Abstract. A new approach to find the underlying structure of a multidimensional
data cloud is proposed, which is based on a localized version of principal components
analysis. More specifically, we calculate a series of local centers of mass and move
through the data in directions given by the first local principal axis. One obtains
a smooth “local principal curve” passing through the "middle” of a multivariate
data cloud. The concept adopts to branched curves by considering the second lo-
cal principal axis. Since the algorithm is based on a simple eigendecomposition,
computation is fast and easy.

1 Introduction

Principal components analysis (PCA) is a well established tool in dimension
reduction. For a set of data X = (X1,...,X,)? with X; in R¢ the principal
components provide a sequence of best linear approximations to that data.
Specifically, let X' be the empirical covariance matrix of X, then the principal
components decomposition is given by

Y =rArt (1)

where A = diag(Aq, - .., A\q) is a diagonal matrix containing the ordered eigen-
values of X', with A\; > ... > A4, and I is an orthogonal matrix. The columns
of I' = (v1,...,74) are the eigenvectors of Y. The first eigenvector vy maxi-
mizes the variance of X«y over all v € R? with ||y|| = 1, the second eigenvector
72 maximizes the variance of X+ over all v € R? with |||| = 1 which are or-
thogonal to 7;, and so on. For illustration, we consider the location of scallops
near the NE coast of the United States (Fig. 1; the data are included in the
S+ SpatialStats Package). The first and second principal component axes,

g;(t) = p+tv; (j=1,2,teR), with p =L 3" | X;, are also depicted.
The principal axes unveil nicely the main directions in which the scallops
spread out: the first from SW to NE, and the second from NW to SE. In the



Fig. 1. First and second principal component through scallops near the NE coast
of the USA.

data cloud we clearly see two fields of scallops: one along the first principal
axis and the other one along the second principal axis. The crossing of the
axes is not positioned at the junction of the fields, since the default centering
in PCA is at the over-all-center of mass of the data. Intuitively, one might
determine the position of the crossing of the two fields by the point on the
first principal axis where the spread on the second principal axis is maximal.
In the following, we will go one step further and abandon the assumption of
linearity, i.e. not only linear structures shall be described, but any form of
multivariate curvaceous, possibly branched, connected or disconnected data
structures. The goal is to find smooth nonparametric local principal curves
passing through a data cloud. Therefore, it can be seen as a competitor to the
principal curve algorithms from Hastie & Stuetzle (1989), Tibshirani (1992),
Kégl et al. (2000), and Delicado (2001). Only the latter one is also based on
the concept of localization. However, Delicado does not use local principal
components, but rather local principal directions, which however cannot be
calculated by a simple eigendecomposition. Principal directions are defined
as vectors orthogonal to the hyperplane that locally minimize the variance
of the data points projected on it. For a comparison of the principal curve
algorithms we refer to Einbeck et al. (2003).

2 Local principal curves

Assume a data cloud X = (Xy,...,X,)7, where X; = (Xj1,..., X;q)T. We
propose the following algorithm to find the local principal curve passing
through X:



Algorithm 1 (Local principal curves)

1.

Choose a set So # 0 of starting points. This may be done randomly, by
hand, or by choosing the mazimum/mazima of a kernel density estimate.
Draw without replacement a point xg € Sy. Set © = xg.

Calculate the local center of mass

T _ E?:l KH(XZ - w)Xt
Z?:l KH(X’l - ‘T‘.)

7

at ©, where Kg(-) is a d—dimensional kernel function and H a multi-
variate bandwidth matriz. Denote by uj the j-th element of p®.
Estimate the local covariance matriz X% = (05, at T via

0% = > wi(Xij — pd) (Xik — pif)
=1

with weights w; = Kg(X; — )/ Y 1y Ku(X; — z), and H as in step 3.
Let v be the first column of the loadings matriz I'* computed locally at
x in analogy to equation (1).

Update x by setting

T = /J’z + t07z5

where to determines the step length.

Repeat steps 3 to 5 until the border of the data cloud is reached. This is
the case when the sequence of u® remains approzimately constant. Then
set again x = xg, set ¥* := —* and continue with step 5.

Repeat steps 2 to 6 as long as the set Sy is not empty.

The local principal curve (LPC) is given by the sequence of the u”. Note

that, in step 5, one has to make sure that the orientation of the local eigen-

vector () after a number i of loops is the same as the local eigenvector f; _;,

one loop before, and has to change its signum if ’Y(Ei—l) o ,y(zi) < 0, where o

denotes the scalar product.

In the sequel, we will extend the algorithm and look at local principal

components of higher order. Let the term “k-th local eigenvalue” denote the

k-th largest eigenvalue of X?. The k—th local eigenvalues A} (k > 2) are

useful indicators for branching points.



Definition 1 (Branches of order § and depth ¢ ).

e The order 8 of a branch of a LPC is the order of the local principal com-
ponent which launched it. In other words, § = k means that this branch
of the LPC was induced by the k-th local eigenvalue. LPC’s according to
Algorithm 1 lead for all g € Sy to a branch with § = 1.

e The depth ¢ of a branch is the number of junctions (plus 1) between the
starting point and the branch. Thus, a branch of depth ¢ = £ (¢ > 2)
is launched by a high k-th (k¥ > 2) local eigenvalue on a branch with
¢ = £ — 1. Algorithm 1 always yields curves of depth ¢ = 1.

e Denote the maximum values of # and ¢ used to construct a LPC by 0,42
and @nyqez, rESP-

Obviously, 04 = 1 implies ¢pmaz = 1; Omar > 2 implies Pmaz > 2;
and vice versa. The case 0,4, > 3 might be interesting for highdimensional
and highly branched data structures. However, for the most applications it
should be sufficient to have only one possible bifurcation at each point. Thus,
we extend Algorithm 1 only to the case ¢mar > 2,0maee = 2

Algorithm 2 (LPC with ¢,,45 > 2,00, = 2)
Let 0 < pg <1 be a suitable constant, e.g. po = 0.5.

1. Construct a local principal curve a according to Algorithm 1. Compute

the relation
_N

Y
for all points x which were involved in the construction of a.

2. Iterate for all ¢ = 2,..., omas:
a. Let (1,...,(n denote all points x belonging to branches of depth ¢—1

€T

with p* > po. If this condition is fulfilled for a series of neighboring
points, take only one of them.
b. Iterate for j =1,...,m:
i. Compute the second local eigenvector 5’ .

i. Set x = uSi + 2toys’ and continue with Algorithm 1 at step 3.
Afterwards, set x := p% — 2tyy,’ and continue with Algorithm 1
at step 3.

The factor 2 employed in 2.b.ii) for the construction of starting points of
higher depth shall prevent that branches of second order fall immediately
back to the branch of first order. In order to avoid superfluous or artificial
branches one can apply a very simple form of pruning: If starting points of
depth ¢ > 2 fall in regions with negligible density, simply dismiss them.



3 Simulated data examples

The performance of the method shall be illustrated by means of some simu-
lated examples. Our simulated data clouds resemble letters, keeping in mind
that the recognition of hand-written characters is a possible application of
principal curves (Kegl & Krzyzak, 2002). We consider noisy data structures
in the shape of a “C”, “E”, and “K”. In all examples, the set of starting
points Sy contains only one element zy which was chosen randomly. For the
“C” only one branch of depth ¢ = 1 is needed and thus Algorithm 1 is ap-
plied. The letter “E” requires to compute branches of depth up to ¢ = 2. The
letter “K” is even a little more complicated, and depending on the position
of zy one needs branches of depth ¢ = 2 or ¢ = 3. Table 1 shows the setting
of the simulation, and the parameter values used in the algorithm. We apply
a bandwith matrix H = h2 - I, where I is the 2-dimensional identity matrix.

Table 1. Parameters for simulation and estimation of characters.

Simulation Estimation

g n ¢maz emam h=tg Po
“C”10.01 60 1 1 0.1 —

0.1 60 1 1 0.15 |-
“E”10.01) 100 2 2 0.1 0.4

0.1 100 2 2 0.1 0.4
“K”|0.01 90 3 2 0.08 (0.4

0.07 90 2 2 0.15 |04

The results are depicted in Fig. 2. The large amount of tunig parameters
might give the impression that finding an appropriate curve might be quite
cumbersome. In practice, however, there is only one crucial smoothing pa-
rameter: the bandwidth h. The parameter ¢ has certainly to be chosen as
well, but it turned out to be a sensible choice setting it equal to the band-
width. The parameters 6,4, and ¢4, depend directly on the data structure.
The parameter py does not play any role when 6,,,,,, = 1, and will usually be
situated in the small interval between 0.3 and 0.6. We illustrate the detection
of branching points by means of the “E” with small noise. Fig. 3 shows the
flow of the second local eigenvalue starting from the right bottom end of the
“E” and rising to the right top end of it. One sees that the peaks are distinct
and well localized, and thus useful for the detection of a bifurcation.
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Fig. 2. LPC through letters with small (top) and large noise (bottom). Data points
are depicted as “-”. Branches of depth ¢ = 1 are symbolized by a solid line, branches
of depth ¢ = 2 by a dashed line, and branches of depth ¢ = 3 by a dashed-dotted
line. The numbers indicate the starting points for branches of the corresponding
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Fig. 3. Flow diagram of p® = A3 /A7 from the right bottom to the right top of the
“E” with small noise. The horizontal line symbolizes the threshold po = 0.4.

4 Real data examples

We return to the scallops example from the introduction. From the structure
of these data it is immediately clear that one needs curves of second order
and depth, i.e. 0,4, = 2 and ¢ = 2. Fig. 4 shows that the results of
Algorithm 2 can differ for different starting points. Thus, it is natural to ask
what the constructed curves represent. Scallops are known to like shallow
ocean water. This suggests that the resulting local principal curves follow



N |

the ridges of underwater mountains. This hypothesis is confirmed by looking
at contour plots from that area (Fig. 4 right). Obviously the left one of the
two pictures represents nicely the underwater ridges: One small one from NW
to SE (corresponding to the branch with ¢ = 2), and one larger one from SW
to NE (corresponding to the branch with ¢ = 1). Certainly, the gap between
the two branches is not a real feature but is due to the factor 2 employed in
step 2.b.ii) in Algorithm 2.

o5 K

Fig. 4. Left, Middle: LPC of scallops data with bandwidth h = 0.15. Branches of
depth ¢ = 1 are launched by starting points “1” and branches of depth ¢ = 2 start

at points “2”. Right: Contour plot of underwater plateaus. The numbers indicate
the depth: High numbers mean shallow water. In all three pictures the NE coast
line of the USA is plotted for orientation.

The scallops data are highly noisy, but not very far from linearity. We
will provide one more real data example with data having small noise, but
having a very complex nonparametric structure. The data are coordinates of
European coastal resorts (taken from Diercke, 1984). Suppose one wants to
reconstruct the European coast line given these sites. The European coast
does not have mentionable ramifications, thus we use ¢mee = Omae = 1, but
choose 10 starting points randomly. A typical result is shown in Fig. 5. Taking
into account that Algorithm 1 does not have the notion about the shape of
Europe that humans have, the coast is reconstructed nicely, although it failed
to describe areas with very few data, as Albania, and highly chaotic regions
as Schleswig-Holstein and Southern Denmark.

5 Conclusion

We demonstrated that local principal components can be effectively used to
explore the structure of multivariate complex data structures. The method
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Fig. 5. LPC (solid line) through European coastal resorts (-). The positions are

given on a digitalized 101 x 135 grid, and the applied bandwidth is A = 2, meaning
that about 2 digits in each direction are considered for construction of the curve.

is especially useful for noisy spatial data as frequently met in geostatistics.
The next step should be to reduce the dimensionality of the predictor space
in a multivariate regression or classification problem by employing the local
principal curve as low-dimensional, but highly informative predictor.
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