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Abstract. Over the past few years continuously new process capability indices
have been developed, most of them with the aim to add some feature missed in
former process capability indices. Thus, for nearly any thinkable situation now a
special index exists which makes choosing a certain index as difficult as interpreting
and comparing index values correctly.
In this paper we propose the use of the expected value of a certain type of function,
the so-called desirability function, to assess the capability of a process. The resulting
index may be used analogously to the classical indices related to Cp, but can be
adapted to nearly any process and any specification. It even allows a comparison
between different processes regardless of their distribution and may be extended
straightforwardly to multivariate scenarios. Furthermore, its properties compare
favorably to the properties of the “classical” indices.

1 Introduction

The amount of indices developed in recent years has lead to insecurity among
the practitioners which index to use. The deficits of the classical indices re-
lated to the Cp-family have been extensively discussed (Kotz and Johnson
(1993), Jessenberger (1999)) and have led to the continuous development of
new indices which are custom-designed to eliminate these deficits one after
the other. A special problem arises with the interpretation of all these index
values. Most often the index values are associated with the percentage of
conforming or non-conforming (NC) product. However, this is only true if
implicit assumptions are valid. A Cp-value of 1 will only indicate a percent-
age of NC product of 0.27% if and only if the specification is symmetric, the
process is normally distributed, the mean equals the specification midpoint
and the process is under statistical control. In practice, the validity of these
assumptions often is not verified. If one additionally takes into account that
most capability values are estimates rather than true values and that the
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estimators of nearly all process capability indices are biased it is understand-
able that some authors propose to stop using process capability indices at all
(Pignatiello and Ramberg (1993)).
However, in this paper we will propose another index which overcomes the
above-mentioned problems and has the properties needed to assess the qual-
ity of a process: ease of interpretation, validity for all specification types,
flexibility with respect to process distributions, and existence of a good esti-
mator.
In the following we will present the new index for uni- and multivariate
processes, and compare its properties with the main classical indices in the
bivariate case. As all classical indices are dependent on the validity of the
normal assumption we will only discuss the new index for normal processes
although the extension for other distributions is straightforward. For quality
characteristics X we will assume a univariate or multivariate normal distribu-
tion (with p dimensions) with mean (vector) µ and variance σ2 / covariance
matrix Σ , denoted by X ∼ N(µ, σ2) and X ∼ Np(µ, Σ), respectively. In the
multivariate case often a process ellipsoid is used to characterize the process
properties. This is defined to be the ellipsoid which contains a certain per-
centage (usually 99.73%) of the process distribution. In the univariate case
the ellipsoid collapses to an interval containing the desired percentage of the
process distribution.
For the univariate case, specifications consist of a target value T and lower
and/or upper specification limits (LSL, USL). If the target value lies on the
midpoint m := (LSL+USL)/2 of the specification interval, the specification
is called a (two-sided) symmetric specification, else a (two-sided) asymmet-
ric specification. If either the lower or the upper specification limit is infi-
nite while still retaining the nominal optimal target value, the specification
is called one-sided. Multivariate specification is described by the Cartesian
product of the univariate specifications and denoted by (M1). Frequently, el-
lipsoids are used as multivariate specification regions which are typically the
largest-volume ellipsoids completely contained in (M1), denoted by (M2).
In this paper we will develop uni- and multivariate indices, but restrict our-
selves to the discussion of the multivariate case because of space restrictions.
For comparison we will use the most common classical multivariate indices.
A multivariate analogue of the univariate Cp-Index (Taam et al. (1993)) is
given by:

MVCp :=
vol(max. vol. ellipsoid in specification)

vol(process ellipsoid)
=

(

|A|

|Σ|

)1/2
(

1

χ2
p;0.9973

)p/2

.

χ2
p;0.9973 denotes the 99.73%-quantile of the χ2-distribution with p degrees

of freedom and A = diag(d2
1, ..., d

2
p), dj := (USLj − LSLj)/2, j = 1, ..., p,

is the specification matrix defining the specification ellipsoid (M2) given by
{x|(x − m)′A−1(x − m) ≤ 1}, m := (m1...mp)

′, mi := (USLi + LSLi)/2.
The multivariate analogue of the Cpm-Index (Taam et al. (1993)) additionally
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includes the Mahalanobis distance between the mean and the target vector
to measure a possible deviation of the mean from the target:

MVCpm : =
vol(max. vol. ellipsoid in specification)

vol((x − T )′Σ−1
T (x − T ) ≤ χ2

p;0.9973)

where ΣT := E[(X − T )(X − T )′] = Σ + (µ − T )(µ − T )′

=

(

|A|

|Σ|

)1/2
(

1

χ2
p;0.9973

)p/2
/

√

1 + (µ − T )′Σ−1(µ − T ) .

2 Combining capability and desirability - the indices

EDU and EDM

Desirability indices were invented in experimental design to summarize sev-
eral response variables and thus identify the direction of optimization (Der-
ringer and Suich (1980)). Typically, several - possibly contradicting - response
variables have to be optimized simultaneously where each response can be
modeled as a (different) function of a common set of predictors. The aim is to
have each response approach as much as possible their target optimum value
while at the same time ensuring that the overall result still is unacceptable
if only one of the responses attains an unacceptable value.
Derringer and Suich (1980) propose to transform the responses to so-called
“desirability values” between 0 and 1, which takes the value 1 if the quality
characteristic attains the target value and decreases if it deviates from the
target. Undesirable values have the desirability 0. Typically, for a two-sided
specification with target T and lower and upper specification limits LSL and
USL one would choose a desirability function as follows:

Dr;s : IR → [0, 1],

x 7→ Dr;s(x) :=











(x − LSL)r/(T − LSL)r , for x ∈ [LSL, T ]

(USL − x)s/(USL − T )s , for x ∈ [T, USL]

0 , else.

where r, s ∈ IR are suitably chosen constants to reflect how rapidly a devi-
ation from the target becomes undesirable. For one-sided specifications the
idea is easily extended. Usually in one-sided specifications there exists a point
beyond which desirability improves only marginally and thus is defined to be
constant 1.
The desirability index is then defined as the geometric mean of the desirabil-
ity functions in each dimension (cf. Harrington (1965), and Derringer and
Suich (1980)). In this paper we will use a different approach and define the
indices EDU and EDM as the expected desirability for a given process. The
EDU-Index (expected desirability, univariate) is defined as:

EDU := E(D(X)).
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Analogously, the multivariate index EDM (expected desirability, multivari-
ate) is given as

EDM := E(DMV (X)),

where D(x) and DMV (x) are suitable univariate and multivariate desirability
functions.
This construction has the advantage that the EDU and EDM index values in
principle can be calculated regardless of the distribution of the process and
regardless of the specification, as long as the expectation over the desirability
function exists.
Through the custom-designed desirability function the practitioner gains flex-
ibility as any shape and structure of the specification region can be modeled
through this function. Taking the expectation even allows differently dis-
tributed processes to be compared directly with each other whereas for the
classical indices normality must hold.
The explicit form of the EDU-Index with a linear desirability function D1 for
a normal distribution is given in the following (cf. Jessenberger (1999)) as an
example.
Let X ∼ N(µ, σ2) with density function f and distribution function F ,
(LSL, T, USL) a two-sided specification and D1 the linear desirability func-
tion (r = s = 1).
Let δ := (µ − T )/d, η := σ/d, β := (T − m)/d, d := (USL − LSL)/2, m :=
(USL + LSL)/2, a := (−(δ + β)− 1)/η, b := (−(δ + β) + 1)/η. Then EDU is
given as:

EDU = δ

[

2

1 − β2
Φ

(

−δ

η

)

−
Φ(a)

1 + β
−

Φ(b)

1 − β

]

− η

[

2

1 − β2
ϕ

(

−δ

η

)

−
ϕ(a)

1 + β
−

ϕ(b)

1 − β

]

− Φ(a) + Φ(b)

where ϕ and Φ denote the standard normal density and distribution function,
respectively.

The multivariate desirability function DMV is defined as follows:

DMV (x1, x2, ..., xp) := min(D1(x1), D2(x2), ..., Dp(xp)),

where Di(xi) are desirability functions for Xi, i = 1, ..., p.
This also shows an obvious way of finding the distribution of DMV . Thus,
DMV is defined as a non-standard desirability index in that the univariate
desirability functions are joined via a minimum function and not via the more
usual geometrical mean (cp. Kim and Lin (2000)). For the explicit expression
of EDM in the bivariate case with linear desirability functions and normality
see Jessenberger (1999).

In this paper we will concentrate on the comparison of EDM with the
classical indices.
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3 Discussion

Bivariate normal processes will be used to illustrate the performance of the
EDM-Index. Table 1 gives the variances σ2

1 = σ2
2 , covariances σ12 and corre-

lations ρ of the examined processes A, B, C and D. The two quality charac-
teristics of the processes A and C are highly correlated, whereas the variables
for processes B and D are uncorrelated.

For both quality characteristics a symmetric univariate specification of

Process A B C D

σ2

1 = σ2

2 50 15 15 10
σ12 49 0 14 0
ρ 0.98 0 0.9333 0

Table 1. Example processes

(LSL, T, USL) = (35, 50, 65) is assumed. The Cartesian product of the uni-
variate specifications will be denoted by (M1) = (35,50,65)×(35,50,65), the
specification given by the largest-volume ellipsoid will be denoted by (M2).
Furthermore, the behavior for on-target and off-target processes will be ex-
amined. For on-target processes µ equals the target value: µ = T = (50, 50)′

, for off-target processes the process mean is moved into the direction of the
bottom-left corner of the specification area: µ = (40, 40)′ 6= T . Figure 1 shows
process and specification ellipses for on- and off-target comparison. Table 2

Process 1 − q MV Cp EDM 1 − q MV Cpm EDM
(µ = T ) (µ = (40, 40)′)

A 0.175 1.912 0.595 0.171 1.100 0.338

B 0.466 1.268 0.709 0.340 0.335 0.211
C 0.612 3.532 0.760 0.513 1.257 0.311
D 0.751 1.902 0.762 0.470 0.415 0.224

Table 2. Example processes

shows the percentage of conforming product and the process capability index
(PCI) values for MV Cp, MV Cpm and EDM for the four example processes,
the highest values indicating the best processes are marked in bold type. For
all indices except EDM the processes C or D are the best. This result seems
to be intuitively sensible because these are the processes with the smallest
variation. For MV Cp and MV Cpm even the ranking of the processes A to
D is the same: The best process is the process with the smallest variation
and highest correlation (process C) and the worst process is the process with
largest variation and without correlation (process B). The reason for the good
performance of process C is that the volume of the corresponding process el-
lipsoid is much smaller than the specification ellipsoid. However, especially in
the case of process A (ranked second for both classical indices) this ignores
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the fact that a high percentage of the product produced with process A lies
outside the specification limits and is thus not or only partially fit for use.
The process ranking according to the EDM index is different. For the on-
target case the ranking of the processes by the EDM index is analogous to
the percentage of conforming product 1-q. Thus process D is the best and
process A the worst process according to EDM. For the off-target case the
situation changes. The highly correlated processes A and C are preferred to
the processes without correlation (B and D). It is intuitively clear that this
is because the deviation of the process means coincides with the direction of
correlation for processes A and C so that a larger percentage of the distri-
bution is close to the target. With the same argument A is preferred to C.
Overall it can be said that the EDM index - per definition -prefers processes
that are “on average close to target”.

Fig. 1. Specification (M1), process and specification ellipses (M2) for bivariate
processes

4 Estimation

Let us concentrate again on the bivariate case. Let δ := D(µ−T ), H := DΣD
and β := D(T − m), where D := diag(1/d1, 1/d2), m := (m1 m2)

′, mi :=
(USLi + LSLi)/2 and di := (USLi − LSLi)/2, i = 1, 2. With this, MV Cp,
MV Cpm may be written as functions of δ, η or H , respectively, EDU was
expressed in analogous terms above.
For the estimation of MV Cp and MV Cpm estimates of the transformed mean
and variation are inserted into the functional form and the resulting value
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is used as an estimate for each index. For the estimation of the EDM-Index
two approaches are considered. If the functional form of EDM is known, it
is possible to insert estimates instead of the unknown distribution parame-
ters expectation and variation (plug-in estimator). Secondly, estimates can
be achieved by the average of individually determined desirability values:
Let X, Xi := (X1i, X2i)

′ ∼ N2(δ, H) and X, X1, ..., Xn independently identi-

cally distributed variables. Further, let δ̂ := (δ̂1, δ̂2)
′ with δ̂j := (Xj1, . . . , Xjn)/

n, j = 1, 2, and η̂2
j := 1

n−1

n
∑

i=1

(Xji − δ̂j)
2, η̂2

12 := 1
n−1

n
∑

i=1

(X1i − δ̂1)(X2i − δ̂2),

ρ̂ = δ̂12/(η̂1η̂2).
Then two possible estimators of the EDM-Index are given as:

1. ˆEDM := EDM(δ̂1, δ̂2, η̂1, η̂2, ρ̂) and

2. ˆDMV := 1
n

n
∑

i=1

DMV (X1i, X2i).

From the functional form of the estimator it is clear that it is unbiased and
asymptotically normally distributed.

5 Simulation

A common criterion to compare the performance of estimators is the mean
squared error MSE. However, the MSE is heavily scale-dependent. As the val-
ues of the “classical” indices are not bounded from above as is EDU/EDM,
to compare the performance of the estimators for EDU/EDM with the esti-
mators for the “classical” indices it is necessary to standardize the MSE by
the magnitude of the estimated quantity:
Let MSE(θ̂) denote the mean squared error of the estimator θ̂ for a statis-

tic θ > 0 or θ < 0. Then the standardized MSE, MSEst(θ̂), is defined as

MSEst(θ̂) := MSE(θ̂)/θ2.
For the bivariate case combinations of the values -0.5, 0, 0.5 for β1, β2, δ1, δ2

and ρ and combinations of the values 0.1 and 1.1 for η1 and η2 have been ex-
amined. The number of random variates used for estimating the location and
variation parameters is n = 50, the number of repetitions N = 1000 which was
sufficient for a good precision of the simulation (cf. Jessenberger (1999)). Due
to space restrictions we give summary results rather than all detailed results
which can be found in the above-mentioned literature. ˆEDM and ˆDMV were
shown to be better than ˆMVCpm in terms of the maximal values of MSEst.

Moreover, the MSEst for ˆEDM and ˆDMV are maximal for small values of the
distribution parameters. If the variation and correlation increases the mean
standardized error decreases and even the maximum MSEst is reduced by
half or more. In contrast, for ˆMVCpm the maximum value of MSEst may be
attained throughout all considered combinations of η1, η2 and ρ. Only the
spread of the values decreases. With regard to the comparison between ˆEDM
and ˆDMV, the former has smaller MSEst than ˆDMV for all simulations. Thus
overall, ˆEDM is the best estimator among the estimators considered.
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6 Conclusion

In this paper we have presented a new index for assessing process capability
which is based on the expected value of desirability functions. These desir-
ability functions assign a “desirability value” to each value a quality/process
characteristic may take. An average desirability of a process may then be
used as a measure for process capability.
The proposed approach is feasible for any given specification and distribution
and allows a wide range of processes to be compared directly. A comparison of
the newly proposed EDM index with the classical multivariate analoga of Cp

and Cpm shows that the new index compares favorably. Moreover, in choos-
ing different desirability functions EDU/EDM-indices offer a good chance to
reflect virtually every specification region as long as the corresponding ex-
pectation exists. Furthermore, regardless of underlying process distribution
the interpretation of the index values is always the same so that processes
following different distributions may be compared directly. Simulation stud-
ies show that an obvious estimator for EDM exhibits equally good or better
behavior than the usual estimators for the classical indices.
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