
Delaunay Refinement by Corner Lopping

Steven E. Pav1 and Noel J. Walkington2

1 University of California at San Diego, La Jolla, CA. spav@ucsd.edu
2 Carnegie Mellon University, Pittsburgh, PA. noelw@andrew.cmu.edu

Summary. An algorithm for quality Delaunay meshing of 2D domains with curved
boundaries is presented. The algorithm uses Ruppert’s “corner lopping” heuristic
[1]. In addition to admitting a simple termination proof, the algorithm can accept
curved input without any bound on the tangent angle between adjoining curves. In
the limit case, where all curves are straight line segments, the algorithm returns a
mesh with a minimum angle of arcsin

`
1/2
√

2
´
, except “near” input corners. Some

loss of output quality is experienced with the use of curved input, but this loss is
diminuished for smaller input curvature.

Key words: unstructured, simplicial, planar, curved boundary, Delaunay, mesh.

1 Introduction

The Delaunay Refinement method is used for quality simplicial mesh genera-
tion in two and three dimensions. A Delaunay Refinement algorithm takes an
input of points and segments (or curves) and adds Steiner Points to guarantee
that the output Delaunay Triangulation conforms to the input and has high
quality simplices, as measured by the circumradius to shortest edge length
ratio. A Steiner Point is added to “split” an input segment into subsegments
if a mesh vertex forms an obtuse angle with the segment. A Steiner Point is
added at the circumcenter of a poor triangle in the mesh. Termination of the
algorithm is had by proving a lower bound on the distance between Steiner
Points, and applying compactness arguments [1, 2].

Ruppert was a pioneer of the Delaunay Refinement method. Ruppert’s
Algorithm accepts a planar straight line graph, and outputs a Delaunay mesh
where no output angle is smaller than a user-chosen parameter, which can
be as large as 20.7◦. In Ruppert’s analysis input segments have to meet at
nonacute angles, otherwise his näıve algorithm might not terminate [1].

Ruppert offered two heuristic solutions to this problem. The first, “con-
centric shell splitting,” has been adapted to a working algorithm, and allows
better output quality guarantees [3, 2, 4]. In this solution, segments sharing

2 Steven E. Pav and Noel J. Walkington

a common endpoint are split at the same distance from the endpoint, i.e.,
on the same “shell.” This simple fix gives a good lower bound, and an input-
independent upper bound, on output angles. However, its analysis is involved,
and does not generalize naturally to higher dimensions or curved input (due to
its reliance on “power of two” arguments). Ruppert’s second solution, “corner
lopping,” is analyzed herein, and admits a simple proof.

Delaunay Refinement for curved input was considered by Boivin and
Ollivier-Gooch [5]. Their analysis requires that input segments meet at an
angle of at least π/3. Concentric shell splitting to deal with smaller input
angles was mentioned in this context, but not shown to give a working algo-
rithm; this fix clearly would require further modification to the output quality
guarantee.

Fig. 1. The outline of a mock air foil and output from the meshing algorithm.
Solving a fluid dynamics PDE would probably require further mesh refinement.

The Delaunay Refinement Algorithm has also been generalized to three
dimensions. Early analysis required input segments and faces to meet at nona-
cute angles [6]. As a fix, later work used protective regions around input points
and segments [7, 8, 9, 10]. In that way these algorithms resemble corner lop-
ping, which places a protective ball around acute corners in the input. Reverse

Delaunay Refinement by Corner Lopping 3

from what is usually seen, these three-dimensional algorithms do not appear
to be the natural generalization of any known two-dimensional algorithm.

The motivations for the present work, then, are:
1. To present an algorithm which accepts straight or curved input without

a lower bound on input angle, yet admits a simple termination proof.
2. To find an algorithm which is the “projection” into the plane of recently

discovered three-dimensional algorithms, and thereby to gain a better un-
derstanding of those algorithms.

2 Preliminaries

The input to the algorithm is assumed to be a PRCC.

Definition 1 (PRCC). A set of points and a set of non-closed regular curves
embedded in R

2, (P, C), form a Piecewise Regular Curve Complex (PRCC) if
(i) for any curve, c ∈ C, the endpoints of c are elements of P.
(ii) given two curves, c1, c2 ∈ C, their intersection is either empty or an

endpoint (or endpoints) common to both curves.
(iii) given p ∈ P, c ∈ C, either p is an endpoint of c, or p is not on c.

The goal of meshing is to produce, from input (P, C), the Delaunay Trian-
gulation of a set of points, P′, hereafter denoted as D (P′), such that (i) P ⊆ P′,
(ii) each input curve of C is approximated by a piecewise linear curve which
is the union of edges in D (P′), (iii) all or most of the triangles of D (P′) are
“high quality.” Absent of a specific interpolation problem, triangle “quality”
is taken to be inversely proportional to its minimum angle. When guarantee-
ing a large minimum angle is not possible due to input constraints, an upper
bound on the maximum angle of the mesh is often desired [11, 12, 4].

Given two points, p, q let pq be the line segment with these points as
endpoints, and let p̃q denote a curve with p and q as endpoints. Let |p − q|
denote the distance between p and q. For a curve c, and a point p, let

|p − c| = min
x∈c

|p − x|

be the distance from p to c. We use a∨b to denote the maximum of quantities
a and b, and a ∧ b to represent the minimum.

The local feature size, first defined by Ruppert [1], is used to prove termi-
nation and quality of the output mesh. We take the classical definition:

Definition 2 (Local Feature Size). Given a PRCC, (P, C), define lfsi (x),
for i = 0, 1, as the distance from x to two mutually disjoint features of the
PRCC of dimension no greater than i. By “feature” we mean a point in P or
a curve in C. Thus, for example, lfs

0
(x) is the distance from x to the second

nearest point of P. Let lfs (x) = lfs
1
(x) be the local feature size.

4 Steven E. Pav and Noel J. Walkington

Note 1. The following facts about local feature size are immediate: (i) For any
x, lfs

1
(x) ≤ lfs

0
(x) , (ii) lfsi (x) is a Lipschitz function with constant 1, i.e.,

lfsi (p) ≤ lfsi (q) + |p − q| , (iii) lfsi (x) has a positive minimum value on R
2.

Some authors use “local feature size” to describe a different function, the
distance of a point on the input to the medial axis of the input [13]. While both
definitions give Lipschitz functions, our definition yields a function defined in
all of R

2 with a strictly positive lower bound. The latter fact is important
because our local feature size will describe, roughly, the size of triangles we
expect to see nearby in an output mesh of the given input.

In the case of straight line input, a lower bound on the angle subtended
by input segments is used to show that Steiner Points on input segments are
not placed too close together. For PRCC input, we instead use the following.

Definition 3 (Curve Separation). For the sake of this definition, given
curve c = x̃y, we say that a point z on c is sufficiently far from x if |x − z| ≥
lfs (x) /2C0, where C0 = 1 +

√
2, is a “grading constant” (see Lemma 4).

Given two curves c1, c2 sharing a single endpoint x, then the separation
between them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ,

where zi is a point on ci that is sufficiently far from x.
If curves c1, c2 share both their endpoints, say x and y, then the separation

between them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ,

where zi is a point on ci that is sufficiently far from both x and y.
For a given PRCC, let σ be a lower bound on the separation between any

pair of curves with at least one common endpoint. We say σ is the “minimum
curve separation” of the PRCC.

Given that input curves are continuous and may meet at most at their end-
points, the separation between two curves is strictly positive, and thus σ is
positive as well. In the case where all input curves are straight line segments,
we have σ = 2 sin (θ∗/2) , where θ∗ ≤ π/3 is a lower bound on the angle
subtended by the segments.

Following Boivin and Ollivier-Gooch [5], we make the following

Definition 4 (Total Variation of a Curve). The total variation of curve
C is

∫
| dθ| , where θ is the angle subtended by the tangent of the curve. Let τ

be an upper bound on the total variation of every curve in an input PRCC.

For the remainder of this paper we assume τ ≤ π/3. Such a bound can be
achieved by splitting curves in a preprocessing step.

Delaunay Refinement by Corner Lopping 5

Algorithm 1 Algorithm for meshing via corner lopping.

Input: A PRCC, an angle bound, the splitting fraction
Output: A mesh

cornerLop((P, C) , κ, β)
(1) Let P

′ ← P, C′ ← C.
(2) Construct D (P′).
(3) Use D (P′) to find lfs0 (·) for points in P’.
(4) foreach p ∈ P

(5) if p is the corner of an acute angle in C
′.

(6) d(p)←
`√

2 − 1
´
lfs0 (p)

(7) splitball(p, 1)
(8) else

(9) Let d(p)← 0.
(10) while any of these rules can be executed, execute one of them, with the

rules listed in descending priority:
(11) if there are p ∈ P, q ∈ P

′, with |p− q| < d(p) then splitball(p, β)
(12) if there is z ∈ P

′, c ∈ C
′ such that z encroaches c then splitcurve(c, z)

(13) if there is ∆xyz ∈ D (P′) such that ∠xyz ≤ κ and the circumcenter of
∆xyz is not closer to some q ∈ P than d(q) then splittri(∆xyz)

(14) return D (P′)

splitball(p, C)
(15) Let d(p)← Cd(p).
(16) foreach ept ∈ C

′

(17) Let x be the point on ept such that |p− x| = d(p)
(18) Add x to P

′. Remove ept from C
′, replacing it with fpx, ext.

splitcurve(fxy, [z])
(19) if a z is given
(20) Let p be some point on fxy, perhaps based on z.
(21) else

(22) Let p be some point on fxy.
(23) Add p to P

′, replace fxy in C
′ by subcurves fxp and fpy.

splittri(∆xyz)
(24) Let p be the circumcenter of ∆xyz.
(25) if p encroaches curve c ∈ C

′

(26) splitcurve(c)
(27) else

(28) Add p to P
′.

3 The Algorithm

The Delaunay Refinement algorithm we consider maintains sets, P′, and C′,
which are initialized, respectively, as P and C. The algorithm adds Steiner
Points to P′, then returns D (P′) on termination. Throughout this work,
“curve” or “subcurve” means a member of C′, while “input curve” refers to a

6 Steven E. Pav and Noel J. Walkington

member of C. “Input point” refers to a point of P. We will take lfsi (·) to be
with respect to the PRCC input to the algorithm, (P, C).

Our algorithm protects regions around the input points and (sub)curves.
Following the notation of Ruppert [1], a (sub)curve is said to be “encroached”
if there exists a vertex of the mesh inside its diametral circle, where the
diametral circle of curve p̃q is the circle with pq as diameter. We denote the
diametral circle of curve c by Cd (c).

The algorithm assigns to each input point, p, a radius d(p) ≥ 0, and, by
analogy with curves, p is said to be encroached if a vertex of the mesh is in
B (p), which is defined to be the open ball of radius d(p) centered at p.

The algorithm, given as Algorithm 1 on the preceding page, takes the input
PRCC and two parameters: κ, the desired angle bound of the output mesh,
and β ∈

[
1

2
, 1
)
, which is the factor by which a radius d(p) is reduced when an

input point p is encroached.
To split the curve c = x̃y, an intermediate point p ∈ c is selected and c is

replaced by two subcurves x̃p and p̃y. In the case c is a segment, traditionally
p is chosen as the midpoint of the segment. Without a clear definition of the
midpoint of a curve, we assume only that the algorithm satisfies the following
assumption regarding the selection of p:

Assumption 1. Assume there are constants η ≥ 1 and µ ≥ 1 such that the
algorithm is implemented so that
(1) if p is selected to split curve c by a call to splitcurve(c, z), then

|p − Cd (c)| ≥ |p − z|/η.
(2) if p is selected to split curve c = x̃y by a call to splitcurve(s), then

|p − Cd (s)| ≥ r/µ, where r is the radius of the circumcircle, i.e., |x − y| /2.

The need for this assumption is illustrated in Figure 2.

4 Proof of Termination

We first consider some facts regarding curved input. The following lemma is
a consequence of the Mean Value Theorem:

Lemma 1 (Lens Containment). Let C be a curve with endpoints x, y, and
with total variation less than τ . Suppose z is a point on C distinct from the
endpoints. Then

∠xzy ≥ π − τ.

This lemma claims that the worst case of a curve of total variation no more
than τ is a circular arc. That is, a curve x̃y with bounded total variation
is contained in a diametral lens of segment xy. The corollaries claim that
by careful choice of p in step 20 and step 22, the algorithm will conform to
Assumption 1, with

η =
1 + tan (τ/2)

1 − tan (τ/2)
, µ =

1

1− tan (τ/2)
.

Delaunay Refinement by Corner Lopping 7

cor2

cor1

PSfrag replacements

zp

w

(a) Case 1

cor2

cor1

PSfrag replacements

z

pw

(b) Case 2

Fig. 2. For the case of segment input, as shown in (a), Assumption 1 can be satisfied
with η = µ = 1. For general curves, as in (b), a point p selected to split a curve may
be near the diametral circle of the curve, i.e., near other Steiner Points which may
lie outside the diametral circle.

Corollary 1. Let c = x̃y be a curve with total variation less than τ . Let Cd (c)
be the diametral circumcircle of c, and let z be a point in this circle. Then there
is a point p on c such that

|p − Cd (c)| ≥ |p − z| 1 − tan (τ/2)

1 + tan (τ/2)
.

Corollary 2. Let c = x̃y be a curve with total variation less than τ . Let Cd (c)
be the diametral circumcircle of c. Then there is a point p on c such that

|p − Cd (c)| ≥ r (1 − tan (τ/2)) ,

where r is the radius of the diametral circle.

Both the corollaries are proven by taking p to be the intersection of the curve
with the perpendicular bisector of segment xy, as shown in Figure 2(b).

The following lemma is needed since we protect curves with the diametral
circle of their secant segments, but add “midpoints” on the curve. Thus, in
general, the diametral circle of a curve may not wholly contain the diametral
circles of its subcurves.

Lemma 2 (Diametral Circle Protection). Let c = x̃y be a curve with total
variation less than τ . Let p be a point which does not encroach the diametral
circle of c. Letting |p − c| be the distance from p to the curve c, then

|p − c|
|p − x| ∧ |p − y| ≥

1

ζ
,

8 Steven E. Pav and Noel J. Walkington

where ζ =
√

2 sin (τ/2)/
(√

1 + sin τ − 1
)
.

 cor2

 cor1

C

PSfrag replacements

x y

p

w

`1

`2

p′

p′′

m

(a) Case 1

 cor2

 cor1

C

PSfrag replacements

x y

p

w

`1

`2

m

(b) Case 2

Fig. 3. Two cases in the proof of Lemma 2. In (a), wp intersects the arc `1, while
there is no such intersection in (b).

Proof. We assume that |p − x| ≤ |p − y| . Let `1, `2 be the two arcs of points
subtending angle π − τ with x, y. By Lemma 1, c is between these two arcs.
Without loss of generality, assume p is “above” `1. Let w be the center of arc
`1.

We consider two cases:
1. The first case is if pw and `1 intersect. Let p′ be their point of intersection.

Let p′′ be the intersection of pw with the diametral circle of segment xy,
as in Figure 3(a).
Then, using the sine rule,

|p − c|
|p − x| ∧ |p − y| =

|p − c|
|p − x| ≥

|p − p′|
|p − x| =

sin ∠p′xp

sin ∠pp′x
≥ sin ∠p′xp′′

sin ∠p′′p′x
=

|p′′ − p′|
|p′′ − x| .

Note that since ∠pp′x is obtuse, then ∠p′xp is acute and we can indeed
conclude that sin ∠p′xp ≥ sin ∠p′xp′′. Let R = |w − x| , and let r =
|m − x| , where m is the midpoint of x and y. Because ∠xwy = τ, then
r = R sin (τ/2) . Let φ = ∠p′′mx. Then

|p′′ − p′| = |w − p′′| − R =

√
(R cos (τ/2) + r sin φ)

2
+ (r cosφ)

2 − R

= R
(√

1 + sin τ sin φ − 1
)

.

Then

Delaunay Refinement by Corner Lopping 9

|p′′ − p′|
|p′′ − x| =

R
√

1 + sin τ sin φ − R

2r sin (φ/2)
=

√
1 + sin τ sin φ − 1

2 sin (τ/2) sin (φ/2)
.

This quantity decreases as φ increases, thus it takes minimum value when
φ = π/2. Thus

|p′′ − p′|
|p′′ − x| ≥

√
1 + sin τ − 1√
2 sin (τ/2)

.

2. The other case is that pw and `1 do not intersect, as shown in Figure 3(b).
That is, ∠mxp > π/2 + τ/2. Looking at the circle centered at w through
`1, then |p − c| ≥ |p − `1| = |p − x| . Thus

|p − c|
|p − x| ∧ |p − y| ≥ 1 >

1√
2
≥

√
1 + sin τ − 1√
2 sin (τ/2)

.

As expected, this lower bound is “worse,” i.e., smaller, for larger τ . However,
we can make the rough uniform bound, ζ < 2 for 0 ≤ τ ≤ π/3.

For p ∈ P, let B (p) be the open ball of radius d(p) centered at p during
any step of the execution of Algorithm 1. Let ∂B (p) be the boundary of B (p),
and let B (p) be the closed ball of radius d(p) centered at p. If d(p) = 0, let
B (p) be the empty set and let B (p) be the point p.

After d(p) is set for all p ∈ P, then for p, q ∈ P,

d(p) + d(q) ≤
(√

2 − 1
)

(lfs
0
(p) + lfs

0
(q)) <

lfs
0
(p) + lfs

0
(q)

2
≤ |p − q|

Since d(p) can only shrink for a given p ∈ P during the lifetime of the
algorithm, we make the following claim.

Claim. For distinct p, q ∈ P, at all times B (p) ∩ B (q) = ∅.
In the following analysis, we will refer to points of P as “input;” points

which are added to split curves, that is at step 7 or step 23, as “midpoints;”
triangle circumcenters added at step 28 are called “circumcenters.”

The following two lemmata assert that a ball B (p) is only split by a mid-
point on an input edge disjoint from p, and thus d(p) is always bounded below
by a constant times lfs (p).

Lemma 3. If a point t is added to P′ such that t ∈ B (p) for some p ∈ P then
t must be a midpoint on a curve of C disjoint from p.

Proof. Consider the possible identity of such a t:
• It cannot be that t ∈ P, as B (p) ∩ B (t) = ∅.
• It cannot be that t was added to P′ in step 7, as if t is on ∂B (p) then it

is not in B (p), and if t ∈ ∂B (q) for some q ∈ P, then since B (p) does not
meet B (q), q is not in B (p).

10 Steven E. Pav and Noel J. Walkington

• Suppose t is the midpoint of some curve, c, which was added in step 23 or
step 26. Then c cannot have been encroached by some q ∈ B (p) with q 6= p
as then the rule splitball would have been preferred to splitcurve or
splittri. Thus c cannot have endpoint p, as otherwise its diametral circle
would be contained in B (p), and thus it could not be encroached by such
a q. That is, c must be disjoint from p.

• It cannot be that t was the circumcenter of a triangle, as this kind of
circumcenter is explicitly prohibited from being added to P′.

Lemma 4. During execution of Algorithm 1, if p ∈ P, and d(p) > 0 then

lfs (p) ≤ C0d(p),

where C0 =
(
1 +

√
2
)
≈ 2.41.

Proof. A nonzero d(p) is set at two places in the algorithm, step 6 and step 15:

(step 6) In this case, because lfs (p) ≤ lfs
0
(p) ,

lfs (p) ≤ lfs
0
(p) =

1√
2 − 1

d(p) = C0d(p).

(step 15) In this case, by Lemma 3, the input point is encroached by a point
t on a curve disjoint from p. Then before d(p) is reduced to βd(p) it is the
case that lfs (p) ≤ |p − t| ≤ d(p). Considering the new value of d(p), this
is lfs (p) ≤ d(p)/β ≤ 2d(p) < C0d(p).

Thus the radius d(p) associated with an input point is never too much
smaller than suggested by the local feature size, which is determined by the
input. This implies that for a given input, splitball(p, C) is called a finite
number of times. Next we show that this lower bound on d(p) gives a bound
on the distance between midpoints on nondisjoint input curves.

Lemma 5. Suppose p, q are midpoints in P′. Furthermore assume the mid-
points are on distinct nondisjoint curves of C. Then

lfs (p) ≤ 1 + C0

σ
|p − q| ,

where C0 =
(
1 +

√
2
)

is the constant from Lemma 4.

Proof. Let the two curves share input point x. By the Lipschitz property, then
using Lemma 4

lfs (p) ≤ |p − x| + lfs (x) ≤ |p − x| + C0d(x).

Since p is a point on an input curve with endpoint x, it is the case that
d(x) ≤ |p − x| . Thus lfs (p) ≤ (1 + C0) |p − x| . Since q is also on a curve with
endpoint x, then d(x) ≤ |q − x|. Moreover, using Lemma 4, we can claim that

Delaunay Refinement by Corner Lopping 11

|p − x| ∧ |q − x| ≥ d(x) ≥ lfs (x)

C0

>
lfs (x)

2C0

The, by the definition of minimum curve separation (Definition 3), |p − q| ≥
|p − x| σ, and thus

lfs (p) ≤ (1 + C0) |p − x| ≤ 1 + C0

σ
|p − q| .

The following theorem asserts that the spacing between points in P′ is
bounded by the local feature size of the input, i.e., the output of the algorithm
is “well graded.” Moreover, this theorem proves termination of the algorithm,
by a ball-packing argument [1, 2].

Theorem 1. Suppose p is to be added to P
′ during the execution of Algo-

rithm 1. Suppose the algorithm is implemented such that Assumption 1 is
satisfied. Let q be a point in P′ at the time p is to be added. Then there are
constants C1, C2 such that

lfs (p) ≤
{

C1 |p − q| if p is a curve midpoint,

C2 |p − q| if p is a triangle circumcenter.

Proof. We consider the cases:
1. Suppose p is a midpoint on input curve c. If q is an input point disjoint

from c, or a midpoint on a curve disjoint from c, then lfs (p) ≤ |p − q| ,
and it suffices to take 1 ≤ C1. If q is an input endpoint of c, then since
d(q) ≤ |p − q|, by Lemma 4, lfs (p) ≤ |p − q|+ lfs (q) ≤ |p − q|+ C0d(q) =
(1 + C0) |p − q| . Thus 1 + C0 ≤ C1 suffices.
If q is a midpoint on a curve nondisjoint from c, then by Lemma 5, it
suffices to take

1 + C0

σ
≤ C1

Thus we can assume q is a circumcenter, or another midpoint on c. Now
consider the subcases for the identity of p:
a) Suppose p is a point on input curve c = x̃y, added to P′ in step 7.

Since no circumcenters have been added to P′ when step 7 is executed,
q must be a midpoint on c. Since at most two midpoints are added to
c during the grooming phase, p, q are associated with the endpoints,
x, y respectively. That is |p − x| = d(x), and |q − y| = d(y). Then

|p − q| = |x − y| − d(x) − d(y) ≥ 1√
2 − 1

(d(x) ∨ d(y)) − 2 (d(x) ∨ d(y))

=
3 − 2

√
2√

2 − 1
(d(x) ∨ d(y)) .

Because x, y are input points

12 Steven E. Pav and Noel J. Walkington

lfs (p) ≤ |p − x| ∨ |p − y| = d(x) ∨ (|p − q| + d(y))

≤
(

1 +

√
2 − 1

3 − 2
√

2

)
|p − q| = (1 + C0) |p − q|

Thus 1 + C0 ≤ C1 suffices.
b) Suppose p is added in step 18 when the ball around input point x

is reduced. Let B− (x) be ball around x before d(x) is reduced, i.e.,
the ball of radius d−(x) = d(x)/β, where d(x) reflects the value after
step 15 has been executed. Then we have |p − x| = d(x), and the
distance from x to the boundary of B− (x) is (1 − β)d(x)/β.
By Lemma 3, d(x) is only reduced if there is some t on a curve disjoint
from x with t ∈ B− (x) . In this case lfs (x) ≤ |x − t| ≤ d−(x) =
d(x)/β.
We entertain the two possible locations of q. The first is that q is
outside B− (x), and thus |p − q| ≥ (1 − β)d(x)/β. Then

lfs (p) ≤ |p − x| + lfs (x) ≤ (1 + 1/β) d(x) =

(
1 + β

1 − β

)(
1 − β

β

)
d(x)

≤ 1 + β

1 − β
|p − q| .

Thus we must take
1 + β

1 − β
≤ C1

The second possibility is that q is inside B− (x). We assumed q is
a circumcenter or on the input curve c also containing p. However,
by design of the algorithm, q cannot be a circumcenter in P′ and be
inside B− (x). The remaining possibility is that q be x itself. In this
case lfs (p) ≤ |p − x| + lfs (x) ≤ |p − x| + C0d(x) = (1 + C0) |p − x| ,
and so the requirement 1 + C0 ≤ C1 suffices.

c) Suppose p is added to P′ by a call to splitcurve(c′, z). If z is an
input point or midpoint on an input curve distinct from c, then by
arguments above

lfs (p) ≤ 1 + C0

σ
|p − z| .

If z is a circumcenter, then at the time it was added it did not en-
croach a supercurve of c′, as otherwise it would have been rejected. By
Lemma 2, since p is a point on that supercurve, |z − p| ≥ rz/ζ, where
rz is the radius of the triangle that z killed. Using this result induc-
tively when z was added, lfs (p) ≤ |p − z| + lfs (z) ≤ |p − z| + C2rz ≤
(1 + ζC2) |p − z| .
Similarly, if q is any other point of P′ which encroached c′, then by
the arguments of the previous paragraph,

Delaunay Refinement by Corner Lopping 13

lfs (p) ≤ max

{
1 + C0

σ
, 1 + ζC2

}
|p − q| .

Now, since Assumption 1 is satisfied, |p − q| ≤ η |p − Cd (s′)|, and so
it suffices to take

η
1 + C0

σ
≤ C1 and η (1 + ζC2) ≤ C1

If q is a point of P′ which does not encroach c′ then |p − Cd (c′)| ≤
|p − q| , and the above bounds on C1 suffice.

d) Suppose p is added to P′ by a call to splitcurve(s′) at step 26.
Then there was some circumcenter x which encroached s′, but was
rejected. Inductively lfs (x) ≤ C2 |x − t| , where t is either endpoint
of s′. Letting r be the radius of s′, i.e., half its length, this gives
lfs (x) ≤

√
2C2r, by the classical argument [1]. Then lfs (p) ≤ |p − x|+

lfs (x) ≤
(
1 +

√
2C2

)
r. Since splittri was being executed, s was

not encroached, thus q cannot encroach s′, or |p − Cd (s′)| ≤ |p − q|.
Using Assumption 1, then lfs (p) ≤

(
1 +

√
2C2

)
µ |p − Cd (s)| , and so

it suffices to take

µ
(
1 +

√
2C2

)
≤ C1

2. Suppose p is the circumcenter of a triangle ∆xyz ∈ D (P′) , with ∠xyz ≤ κ.
Without loss of generality, assume z was added to P

′ after x. If x, z are
points of P, then lfs (z) ≤ |x − z|. Otherwise, if z is not an input point
then, inductively, lfs (z) ≤ (C1 ∨ C2) |x − z| . By the sine rule, |x − z| =
2 |p − z| sin θ ≤ 2 |p − z| sinκ. Thus

lfs (p) ≤ |p − z| + lfs (z) ≤ (1 + 2 sin κ [C1 ∨ C2]) |p − z| .

Because the triangle is Delaunay, it must be that |p − z| ≤ |p − q| . Thus
it suffices to take

1 + 2 sinκ [C1 ∨ C2] ≤ C2

Then the following choices of constants work:

C1 = max

{
1 + β

1 − β
,
η (1 + C0)

σ
,

η (1 + ζ)

1 − 2ζη sin κ
,

µ
(
1 +

√
2
)

1 − 2µ
√

2 sinκ

}
,

C2 = 1 + 2C1 sin κ,

as long as κ < arcsin
(
1/2µ

√
2
)
∧ arcsin (1/2ζη) .

Corollary 3. If κ < arcsin
(
1/2µ

√
2
)
∧arcsin (1/2ζη) , the algorithm will ter-

minate.

Lemma 6. Let (P′, C′) be the point and curve sets at the termination of Al-
gorithm 1. Then

14 Steven E. Pav and Noel J. Walkington

1. For every c ∈ C there are c0, c1, . . . , cn ∈ C′ such that c is the union of the
ci, and each of the ci has empty diametral circle with respect to P′, and
thus each ci corresponds to an edge in D (P′).

2. If ∆xyz ∈ D (P′) , then either the minimum angle of the triangle is no
less than κ, or there is a point p ∈ P with

max (|x − p| , |y − p| , |z − p|) ≤ 2d(p).

Note that, if midpoints are chosen properly (cf. Corollary 1 and Corol-
lary 2), then as τ → 0, that ζ →

√
2, and η and µ go to 1, and thus the bound

on κ goes to arcsin
(
1/2

√
2
)
. This is the classical output bound of the segment

input case [2, 1].
Thus the user can select κ arbitrarily close to arcsin

(
1/2

√
2
)

by subdivid-
ing his/her input to make τ sufficiently small. It is straightforward to automate
this process for commonly used curves [5]. However, this preprocessing step is
likely unnecessary; rather if κ is set to the desired level, curves with too large
variation will automatically be split. An argument of this type was used by
the authors in the analysis of a three-dimensional algorithm [10].

From Theorem 1, and the definition of σ, it should be clear that the al-
gorithm can accept input with curves that meet at zero tangent angle. See
Figure 4 for an example.

5 Results

A prototype of the algorithm was implemented using CGAL [14]. The code ac-
cepts straight segments, circular arcs, and quadratic and cubic curves. Curves
are automatically split to meet a user-specified curvature bound, τ .

The input in Figure 4 contains several curves which meet at a zero tangent
angle. Where input curves meet with small curve separation, the output mesh
contains a large number of large number of triangles, as predicted by the
reliance of the grading constants on 1/σ. This is shown in detail in Figure 5,
which shows the region just above where the two circles meet a line segment
and two cubic curves, all at zero tangent angle. There is small curve separation
near the tangency point, which results in a number of small angle triangles.

6 Discussion and Improvements

The presence of large angles in the output meshes is an obvious annoyance,
for which a fix has been discovered: The fix involves protecting the ball B (p)
with “pseudo-input” arcs, and enforcing the empty diametral circle property
for these arcs. The arcs need to be split to ensure a bound of π/3 on total
curvature, which introduces pseudo-midpoints. When a ball B (p) is split, the
pseudo-input arcs are removed from consideration, while the pseudo-midpoints
remain in the mesh.

Delaunay Refinement by Corner Lopping 15

(a) Input

(b) Output

Fig. 4. Results of the prototype code applied to an example PRCC. The input was
first subdivided with Steiner Points to insure τ = 0.5. The code was executed with
β = 0.95 and κ = arcsin

`
1/2
√

2
´
. The minimum output angle, however, was only

about 0.29◦, due to the presence of small angles in the input. The mesh contains
2503 points.

16 Steven E. Pav and Noel J. Walkington

Fig. 5. Detail from Figure 4, showing the region near where the two larger circles
touch a line segment and two cubic curves. All five curves meet at a zero tangent
angle. The input is shown in bold red lines. Note the presence of triangles with large
angles facing small angle triangles emanating from the point of tangency (which is
not shown).

Then when a ball B (p) is split, check the pseudo-midpoints it would gen-
erate. If one of these has nearest neighbor closer than d(p)/2, split the ball
again. If one of the pseudo-midpoints would encroach a segment, split the
segment if its diameter is less than d(p), otherwise split the ball again. If the
ball need not be split again, add the pseudo-input points to P′.

Then protect the pseudo-input segments as real segments. In particular,
if a circumcenter encroaches one, split the pseudo-input segment instead of
adding the circumcenter. The only other modification is to, of course, not

Delaunay Refinement by Corner Lopping 17

attempt to kill a poor quality triangle which is wholly contained in a ball
B (p).

The changes in the proof are minimal: C0 needs to be increased to 3, the
proof of Lemma 4 has to include the new reasons a ball B (p) might be split,
and minor changes need to be made in Theorem 1.

This modification is not considered in the main of the paper because of the
added complication of the description of the algorithm and its proof, because
of the increase in output cardinality (and the following chorus of “Your mesh
has too many points!”), and because it has not yet been implemented.

The use of pseudo-input arcs would make the algorithm similar to the
initialization part of the three-dimensional Delaunay Refinement Algorithm of
these authors, wherein the boundaries of input faces are protected by portions
of arcs [10]. The use of an implicit boundary to protect B (p) in Algorithm 1,
as opposed to an explicit circle of pseudo-segments, is more akin to the three-
dimensional algorithm of Cheng et al. [9]. The presence of large angles in the
meshes produced by this two-dimensional algorithm raises doubts about the
three-dimensional algorithms which appear to generalize it: do they not also
produce simplices with large (solid) angles, even in the absence of small angles,
dihedral and otherwise, in the input? It is possible this problem is avoided by
the more aggressive approach of Cheng and Poon, who place explicit spherical
patches around input facet boundaries to protect small dihedral angles [15].
Among these three algorithms, only that of Cheng et al. appears to have been
implemented, so they cannot be compared directly. It seems that an aggressive
protection strategy may be necessary in three dimensions, but this creates
meshes with large cardinalities, and papers with impenetrable technicalities.

The ambiguity in the choice of a midpoint by splitcurve, i.e., that it
follows Assumption 1, allows room for heuristic modifications to the algorithm.
In particular, it may not always be desireable to split a curve x̃y by the point
where it intersects the bisector of x and y. In the case where point z encroaches
x̃y, one may instead choose the intersection of the angle bisector of ∠xzy with
the curve as the splitting point. Using this heuristic on the input shown in
Figure 4 results in a mesh with approximately 10% more points. However, in
some situations this heuristic can slightly improve the maximum output angle
of the mesh.

The choice of β appears to affect mesh cardinality for some input. For the
input of Figure 4, the use of β = 0.5 results in a mesh with approximately
32% more points, compared to the use of β = 0.95. Note that the term (1 +
β)/(1−β) which bounds C1 from below is modest for β ≈ 1

2
. That is, it should

be smaller than the other terms which bound C1, so there appears to be little
lost by increasing β, as was seen in this case. By no means, however, is there
a clear relationship between β and mesh cardinality.

18 Steven E. Pav and Noel J. Walkington

References

1. Ruppert J. “A Delaunay refinement algorithm for quality 2-dimensional mesh
generation.” J. Algorithms, vol. 18, no. 3, 548–585, 1995. Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA) (Austin, TX, 1993)

2. Pav S.E. Delaunay Refinement Algorithms. Ph.D. thesis, Department of Mathe-
matics, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 2003. URL
http://www.andrew.cmu.edu/~spav/work

3. Shewchuk J.R. Delaunay Refinement Mesh Generation. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May
1997. Available as Technical Report CMU-CS-97-137

4. Miller G.L., Pav S.E., Walkington N.J. “When and Why Delaunay Refine-
ment Algorithms Work.” Internat. J. Comput. Geom. Appl., vol. 15, no. 1,
25–54, 2005. Special Issue: Selected Papers from the 12th International Mesh-
ing Roundtable, 2003

5. Boivin C., Ollivier-Gooch C.F. “Guaranteed-Quality Triangular Mesh Genera-
tion For Domains with Curved Boundaries.” Internat. J. Numer. Methods Eng.,
vol. 55, no. 10, 1185–1213, 2002

6. Miller G.L., Pav S.E., Walkington N.J. “Fully Incremental 3D Delaunay Mesh
Generation.” Proceedings of the 11th International Meshing Roundtable, pp.
75–86. Sandia National Laboratory, September 2002

7. Murphy M., Mount D.M., Gable C.W. “A point-placement strategy for con-
forming Delaunay tetrahedralization.” Proceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms, pp. 67–74. Society for Industrial and
Applied Mathematics, 2000

8. Cohen-Steiner D., de Verdiere E.C., Yvinec M. “Conforming Delaunay Trian-
gulations in 3D.” CS 4345, INRIA, 2001

9. Cheng S.W., Dey T.K., Ramos E.A., Ray T. “Quality meshing for polyhedra
with small angles.” SCG ’04: Proceedings of the Twentieth Annual Symposium
on Computational Geometry, pp. 290–299. ACM Press, 2004

10. Pav S.E., Walkington N.J. “Robust Three Dimensional Delaunay Refinement.”
Proceedings of the 13th International Meshing Roundtable, pp. 145–156. Sandia
National Laboratory, September 2004

11. Babuška I., Aziz A.K. “On the angle condition in the finite element method.”
SIAM J. Numer. Anal., vol. 13, no. 2, 214–226, 1976

12. Ciarlet P.G. The Finite Element Method for Elliptic Problems. North–Holland,
1978

13. Amenta N., Choi S., Kolluri R.K. “The power crust.” SMA ’01: Proceedings
of the sixth ACM symposium on Solid modeling and applications, pp. 249–266.
ACM Press, New York, NY, USA, 2001

14. Fabri A. “CGAL - The Computational Geometry Algorithm Library.” Proceed-
ings of the 10th International Meshing Roundtable, pp. 137–142. Sandia National
Laboratory, October 2001

15. Cheng S.W., Poon S.H. “Graded conforming Delaunay tetrahedralization with
bounded radius-edge ratio.” Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (Baltimore, MD, 2003), pp. 295–304. ACM,
New York, 2003

