Skip to main content

Interface Reconstruction in Multi-fluid, Multi-phase Flow Simulations

  • Conference paper
Book cover Proceedings of the 14th International Meshing Roundtable

Summary

An advanced Volume-of-Fluid or VOF procedure for locally conservative reconstruction of multi-material interfaces based on volume fraction information in cells of an unstructured mesh is presented in this paper. The procedure employs improved neighbor definitions and topological consistency checks of the interface for computing a more accurate interface approximation. Comparison with previously published results for test problems involving severe deformation of the materials (such as vortex-in-a-box problem) show that this procedure produces more accurate results and reduces the “numerical surface tension” typically seen in VOF methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Glimm, J. Grove, X. L. Li, K.-M. Shyue, Y. Zeng, and Q. Zhang. Three-dimensional front tracking. SIAM Journal of Scientific Computing, 19:703–727, May 1998.

    Article  MathSciNet  Google Scholar 

  2. S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent results. Journal of Computational Physics, 169(2):463–502, May 2001.

    Article  MathSciNet  Google Scholar 

  3. M. Sussman, E. Fatemi, P. Smereka, and S. Osher. Improved level set method for incompressible two-phase flows. Computers & Fluids, 27(5-6):663–680, Jun-Jul 1998.

    Article  Google Scholar 

  4. D. L. Youngs. Time-dependent multi-material flow with large fluid distortion. In K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics, pages 273–285. Academic Press, 1982.

    Google Scholar 

  5. W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal of Computational Physics, 141:112–152, 1998.

    Article  MathSciNet  Google Scholar 

  6. R. DeBar. Fundamentals of the KRAKEN code. Technical Report UCID-17366, Lawrence Livermore National Laboratory, 1974.

    Google Scholar 

  7. D. L. Youngs. An interface tracking method for a 3d eulerian hydrodynamics code. Technical Report 44/92/35, AWRE, 1984.

    Google Scholar 

  8. B. Swartz. The second-order sharpening of blurred smooth borders. Mathematics of Computation, 52(186):675–714, Apr 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on unstructured meshes. In Proceedings of the 27th Aeroscience Meeting, Reno, NV, Jan 1989. AIAA.

    Google Scholar 

  10. D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein. Volume tracking of interfaces having surface tension in two and three dimensions. In Proceedings of the 34th Science Meeting, Reno, NV, Jan 1996. AIAA.

    Google Scholar 

  11. M. J. Shashkov. Conservative Finite-Difference Methods on General Grids. CRC Press, Boca Raton, FL, 1996.

    Google Scholar 

  12. S. J. Mosso, B. K. Swartz, D. B. Kothe, and R. C. Ferrell. A parallel, volume-tracking algorithm for unstructured meshes. In P. Schiano, A. Ecer, J. Periaux, and N. Satofuka, editors, Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers, pages 368–375. Elsevier Science B.V., 1997.

    Google Scholar 

  13. M Staley. Core, conservative remapper. Technical Report LAUR-04-8104, Los Alamos National Laboratory, 2004.

    Google Scholar 

  14. J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method of the incompressible navier-stokes equations. Journal of Computational Physics, 85:257–283, 1989.

    Article  MathSciNet  Google Scholar 

  15. R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal of Numerical Analysis, 33:627–665, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 183:83–116, 2002.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garimella, R.V., Dyadechko, V., Swartz, B.K., Shashkov, M.J. (2005). Interface Reconstruction in Multi-fluid, Multi-phase Flow Simulations. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics