Skip to main content

Unstructured Computational Meshes for Subdivision Geometry of Scanned Geological Objects

  • Conference paper

Summary

This paper presents a generic approach to generation of surface and volume unstructured meshes for complex free-form objects, obtained by laser scanning. A four-stage automated procedure is proposed for discrete data sets: surface mesh extraction from Delaunay tetrahedrization of scanned points, surface mesh simplification, definition of triangular interpolating subdivision faces, Delaunay volumetric meshing of obtained geometry. The mesh simplification approach is based on the medial Hausdorff distance envelope between scanned and simplified geometric surface meshes. The simplified mesh is directly used as an unstructured control mesh for subdivision surface representation that precisely captures arbitrary shapes of faces, composing the boundary of scanned objects. CAD model in Boundary Representation retains sharp and smooth features of the geometry for further meshing. Volumetric meshes with the MezGen code are used in the combined Finite-Discrete element methods for simulation of complex phenomena within the integrated Virtual Geoscience Workbench environment (VGW).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz O, Taylor R (2000) The finite element method, Volume 1. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. A. Munjiza (2004) The combined discrete finite element method. Wiley, Chichester

    Google Scholar 

  3. Latham J-P, Munjiza A (2004) The modeling of particle systems with real shapes. Phil Trans Royal Soc London 362:1953–1972

    Article  MathSciNet  Google Scholar 

  4. Bajaj C, Bernardini F, Xu G (1996) Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica 19:362–379

    MathSciNet  Google Scholar 

  5. Karbacher S, Laboureux X, Schon N, Hausler G (2001) Processing range data for reverse engineering and virtual reality. In: Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling (3DIM’01). Quebec City, Canada, 270–280

    Google Scholar 

  6. Boissonnat J-D, Cazals F (2002) Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comp Geo 22:185–203

    Article  MathSciNet  Google Scholar 

  7. Frey P (2004) Generation and adaptation of computational surface meshes from discrete anatomical data. Int J Numer Meth Engng 60:1049–1074

    Article  MATH  Google Scholar 

  8. Xue D, Demkowicz L, Bajaj C (2004) Reconstruction of G1 surfaces with biquartic patches for HP Fe Simulations. In: Proceedings of the 13th International Meshing Roundtable, Williamsburg

    Google Scholar 

  9. Mezentsev A, Woehler T (1999) Methods and algorithms of automated CAD repair for incremental surface meshing. In: Proceeding of the 8th International Meshing Roundtable, South Lake Tahoe

    Google Scholar 

  10. Owen S, White D (2003) Mesh-based geometry. Int J Numer Meth Engng 58:375–395

    Article  Google Scholar 

  11. Lang P, Bourouchaki H (2003) Interpolating and meshing 3D surface grids, Int J Numer Meth Engng 58:209–225

    Article  Google Scholar 

  12. Cebral J, Lohner R (1999) From medical images to CFD meshes. In: Proceeding of the 8th International Meshing Roundtable, South Lake Tahoe

    Google Scholar 

  13. Lorensen W, Cline H (1987) Marching Cubes: a high resolution 3D surface reconstruction algorithm. Comp Graph 21(4):163–169

    Google Scholar 

  14. Kolluri R, Shewchuk J, O’Brien J (2004) Spectral surface reconstruction from noisy point clouds. In: Eurographics Symposium on Geometry Processing

    Google Scholar 

  15. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1992) Surface reconstruction from unorganized points. Comp Graph 26(2):71–78

    Google Scholar 

  16. Beall M, Walsh J, Shepard M (2003) Accessing CAD geometry for mesh generation. In: Proceeding of the 12th International Meshing Roundtable

    Google Scholar 

  17. Zorin D, Schroder P, Sweldens W (1996) Interpolating subdivision with arbitrary topology. In: Proceedings of Computer Graphic, ACM SIGGRAPH’96, 189–192

    Google Scholar 

  18. Rypl D, Bittnar Z (2000) Discretization of 3D surfaces reconstructed by interpolating subdivision. In: Proceeding of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler

    Google Scholar 

  19. Lee C (2003) Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model. Int J Numer Meth Engng 56:1593–1614

    Article  MATH  Google Scholar 

  20. Lee C (2003) Automatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 2: Mesh generation algorithm and examples. Int J Numer Meth Engng 56:1615–1646

    Article  MATH  Google Scholar 

  21. Dyn N, Levin D, Gregory J (1990) A butterfly subdivision scheme for surface interpolation with tension control. In: Proceedings of Computer Graphic, ACM SIGGRAPH’90, 160–169

    Google Scholar 

  22. Loop C (1987) Smooth subdivision surface, based on triangles. MA Thesis, University of Utah, Utah

    Google Scholar 

  23. Chetverikov D, Stepanov D (2002) Robust Euclidian alignment of 3D point sets. In: Proc. First Hungarian Conference on Computer Graphics and Geometry, Budapest, 70–75

    Google Scholar 

  24. Borouchaki H (2000) Simplification de maillage basee sur la distance de Hausdorff. Comptes Rendus de l’Académie des Sciences, 329(1):641–646

    Google Scholar 

  25. Mezentsev A (2004) MezGen-unstructured hybrid Delaunay mesh generator with effective boundary recovery. http://cadmesh.homeunix.com/andrey/Mezgen.html

    Google Scholar 

  26. Weatherill N, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Meth Engng 37:2005–2039

    Article  Google Scholar 

  27. George P, Hecht F, Saltel E (1991) Automatic mesh generator with specified boundary. Comp Meth Appl Mechan Engng 92:269–288

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mezentsev, A.A., Munjiza, A., Latham, JP. (2005). Unstructured Computational Meshes for Subdivision Geometry of Scanned Geological Objects. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics