N

N
N

HAL

open science

An Analysis of a Public-Key Protocol with Membranes

Olivier Michel, Florent Jacquemard

» To cite this version:

Olivier Michel, Florent Jacquemard. An Analysis of a Public-Key Protocol with Membranes. Ciobanu,
G. and Paun, G. and Pérez-Jiménez, J. Applications of Membrane Computing, Springer Verlag,

pp.283-302, 2005, Natural Computing Series, 10.1007/3-540-29937-8 . hal-00340140

HAL Id: hal-00340140
https://hal.science/hal-00340140
Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00340140
https://hal.archives-ouvertes.fr

Chapter 10
An Analysis of a Public Key Protocol with
Membranes

Olivier Michel', Florent Jacquemard?

! LaMI CNRS umr 8042 — Université d’Evry
Tour Evry—Z, 523 place des terrasses de I’agora, 91000 Evry, France
michel@lami.univ-evry.fr

2 INRIA FUTURS and LSV, CNRS umr 8643 — ENS de Cachan
61 avenue du Président Wilson, 94235 Cachan Cedex, France
florent. jacquemard@lsv.ens-cachan.fr

Summary. We develop an analysis of the Needham—Schroeder public key protocol
in the framework of membrane computing. This analysis is used to validate the
protocol and exhibits, as expected, a well known logical attack. The novelty of our
approach is to use multiset rewriting in a nest of membranes. The use of membranes
enables to tight the conditions for detecting an attack. The approach has been
validated by developing a full implementation for several versions of the analysis.

1 Goal and Motivations

Since the 1994 landmark demonstration by Adleman of the possibilities of
DNA to solve a class of combinatorial problems, biocomputing has often
be advocated to develop “chemically combinatorial problem solvers”. In this
chapter, we want to use an approach belonging to the membrane comput-
ing [23] area to address a well known combinatorial problem: the analysis of
a cryptographic protocol.

Our starting point is the logical analysis of the Needham—Schroeder public
key protocol (NSPK). The goal of the logical analysis is to find an interleav-
ing of elementary actions (sending and answering messages) that allows an
intruder to obtain confidential information. We have chosen this problem be-
cause it is simple to explain, at the same time it requires sophisticated data—
structures for the exploration of its state space, it is paradigmatic of this kind
of applications, and its solution is well-known — hence we can validate our
result.

The approach taken in this chapter is brute force and consists in the ex-
ploration of the state space of the protocol for a systematic search of attacks.

282 O. Michel, F. Jacquemard

Indeed, we are interested in the study of the states representation and genera-
tion, rather than in designing a new and smart search strategy. This approach
is motivated by the opinion that the representation of data is a central problem
in biocomputing.

The rest of this chapter is organized as follows. In Section 2 we give
some background on the logical analysis of cryptographic protocols. Section 3
describes precisely the Needham—Schroeder public key protocol. Section 4
presents the technical meat of the chapter. We develop a version of the anal-
ysis of NSPK that improves on a similar analysis initially proposed within
the ELAN rewriting framework [5], with a more accurate representation of
states using nesting. In the appendix are given a short presentation of the MGS
language, which enables a kind of membrane computing, together with the
MGS code of the algorithms detailed in Section 4.

2 Formal Verification of Cryptographic Protocol

In this section, we give a brief introduction to the verification problem we shall
consider. Cryptographic protocols define the exchange of a few messages be-
tween parties in order to distribute some secrete data like cryptographic keys
or to authenticate themselves. These messages are built with cryptographic
primitives, like encryption, signature or hash—functions, and therefore the se-
curity of protocols relies on the strength of the cryptographic functions in
use. However, it has appeared that even though when these functions are
assumed unbreakable, the security of a protocol can be compromised by an
unexpected interleaving of messages between honest agents and a malicious in-
truder which has some limited control over the communication network (like,
e.g., wire—tapping some messages or impersonating identities while sending
new ones). For instance, the well known problems of the distribution of keys
for symmetric cryptosystems like AES and the authenticity of public keys in
PKIs are beyond the scope of the study of encryption functions.

Such logical attacks can be realized at almost no computational cost and
hence can have disastrous consequences. Various formal methods have been
proposed for the automation of the analysis of the vulnerability of crypto-
graphic protocols to logical attacks, both for searching of flaws of this kind or
for the formal proof of their absence. Several systems have been implemented
in purpose for the search of flaws, e.g., [18, 17, 13]. But many general pur-
pose languages and tools have also appeared appropriate in this setting, with
the advantage of a greater expressive power, efficiency and maturity. To cite
only a few examples, there are model checkers like FDR [16] or mury [21],
first order theorem provers [25, 14] and declarative languages used as model
checkers [7, 5].

Our purpose in this chapter is to describe an experiment to use membranes
for modeling a cryptographic protocol and finding of attacks by state explo-
ration. The declarative style supported by the membrane computing frame-

An Analysis of a Public Key Protocol with Membranes 283

work is strongly advocated by the intruder—centric model which is generally
considered in order to apply formal methods to cryptographic protocol verifi-
cation. In this model, often referred as “Dolev—Yao model” [8], the agents ex-
ecuting the protocol communicate asynchronously via a unique channel which
has been compromised by an intruder. The intruder is able to spy and divert
every message on the channel, to analyze read messages, with the restriction
that he must know the appropriate encryption key in order to decipher an
encrypted message. He can also build and send new messages, possibly under
a fake identity. The global state of the system can hence be represented by a
heterogeneous set containing the local states of each agent (with a bounded
memory), the messages and sub-messages known to the intruder and the
messages sent and not yet received by an agent. The actions of the agents
(receiving and sending messages) as well as of the intruder can be modeled
using rewriting rules on multisets. The search of an interleaving leading to an
attack can be coded very simply with an appropriate pattern expression to
find sequences of value or arbitrary length.

The problem of finding attacks of protocols is highly undecidable, the state
space being infinite for several reasons: the unboundedness of the number
of agents in presence, the ability of agents to generate fresh random data
(nonces), the unlimited size of terms generated by the intruder. In order to
restrict our exploration to a finite search space, while keeping our procedure
reasonably complete, we shall rely on some theoretical results on protocol
verification. It is shown in [24] that the problem of protocol security (non-
existence of attacks) becomes decidable when the number of agents considered
is bounded. Indeed, [24] shows that in this case, whenever there exists an
attack, there exists an attack involving messages of a bounded size. We can
use this result here to ensure the completeness of our attack search procedure,
given a finite number of agents.

3 The Needham—Schroeder Public Key Protocol

The Needham—Schroeder public key protocol [22] (NSPK for short) is the
favorite example for the application of formal methods to the verification
of cryptographic protocols. This popularity certainly comes from one of the
most famous success story in this domain, which is the discover in 1994 by
G. Lowe [16] of a replay attack in this protocol 16 years after its publication.
In [16], G. Lowe models the protocol in the CSP process algebra and uses
the model checker FDR to explore the state space. We obtain here the same
result with a model based on membranes computing, implemented in the
language MGS .

3.1 Description of the Protocol

The Needham-Schroeder public key protocol involves two participants Alice
(A), Bob (B) which are willing to authenticate reciprocally with three mes-

284 O. Michel, F. Jacquemard

sages using public keys. The original protocol of [22] involves also a server
distributing the public keys to A and B with three additional messages. We
omit the server and its three messages here, assuming that A and B both
initially know each other’s public key, since they are not necessary in Lowe’s
attack. The messages are described below in the usual notation (see also Fig-
ure 1):

REQ A — B: {A:Na}K(B)

CHAL B — A: {Na:Nb}K(A)

AUTH A — B: {Nb}K(B)

In the first message (labelled REQ), Alice generates a random number (nonce)
N,, appends it to her name A (the append operator is denoted _, _) encrypts
the results with Bob’s public key K(B) (public key encryption is denoted
with the binary operator {_}_) and sends the result to the network. When
Bob receives a message of the form of REQ, he deciphers it and retrieves the
identity A of Alice and the nonce N,. Then he generates a second random
number N, appends it to N, and sends back the result encrypted with Alice’s
public key K (A) (message CHALfor a challenge). Alice, receiving message CHAL,
can decipher it and check whether the first component corresponds to the
nonce she sent in message REQ. Then, she resends Bob’s nonce N encrypted
with Bob’s public key (message AUTH). Bob can check that the message AUTH
contains the nonce N, he has generated at second step (CHAL).

A t4 Ao} (B)

REQ
Na» NeJKO) B

A {/\@}K(B)
M

Fig. 1. Description of the NSPK protocol.

B

3.2 A Replay Attack

Receiving the message AUTH ensures Bob that Alice has really received the
message CHAL and answered, because Alice is the only one able to decipher
this message. We assume indeed that each agent, as well as the intruder (let
us call him Charly, C), knows only its own private key, and that this key is
necessary to decipher a message encrypted with the corresponding public key.

Similarly, when receiving the message CHAL, Alice is ensured that it really
comes from B (and is not a fake message from Charly), as proven by the
presence of N, because the knowledge of Bob’s private key is necessary for
the extraction of N, from the message REQ. Hence, N, and N, are used as
authenticators in this protocol, and they must remain secret. However, the

An Analysis of a Public Key Protocol with Membranes 285

attack of [22], described in Figure 2, shows that it is not the case, even with
the above hypotheses concerning the private keys.

This attack involves two sessions in parallel. In the first session, Alice
enters in communication with Charly (without knowing that he is an intruder).
Since the message REQ is encrypted with Charly’s public key K(C), Charly
can retrieve A, N, and encrypts it with Bob’s public key K (B). He then sends
this message as the first message REQ’ of a second session between A and B. In
this step REQ', Charly impersonates A, which is denoted C'(A4). Bob answers
to REQ’ and Charly diverts this message CHAL' (it is by denoted C(A)). Then
Charly, with two messages CHAL and AUTH of the first session uses A as an
oracle in order to obtain Bob’s nonce Ny.

A {4,) (C)
REQ
C
C(A) {4, Na}K(B)
REQ'(Na, NoJ K B
C(A) CHAL'
(Na, NoY (&) c
AvtH C {Vo} k()
C(A) B
AUTH'

Fig. 2. A Replay attack following G. Lowe.

4 Finding an Attack on the NSPK Using Membranes

We shall describe here the specification of the Needham—Schroeder publi—
key protocol and the implantation of an attack—search procedure using rules
and membranes. For the implementation, we rely on rewriting modulo as-
sociativity and commutativity (AC) on terms representing nested multisets
(membranes). Rewriting rules can be guarded by arbitrary conditions. This
model is similar to the chemical computations presented in [1] and we use the
term “chemical solution” to denote the content of a membrane. Examples of
systems implementing such model of computations are Gamma, ELAN [2],
MAUDE [3] or MGS [9]. The ingredients of this model of computation are
rather sophisticated but a translation into the fundamental core mechanisms
of P systems is possible and we give in [19] some elements that support this
assertion.

We present in this chapter the principles of a simple version of the attack—
search procedure. This version improves on a similar analysis initially pro-
posed within the ELAN rewriting framework, because we use a more accurate

286 O. Michel, F. Jacquemard

representation of states using nesting. The functional representation of the in-
terleaving of actions is also a new idea. Note that another version is described
and fully detailed in [20]. This last version goes further by generalizing the
approach to the exploration of general state spaces and does not rely on the
assumption that attacks involve messages of bounded size.

The description of the protocol involves two different kind of components:
entities and evolution rules. The entities are records and evolution rules are
given by rewrite rules. A system state, we shall also write solution, is a finite
collection of entities which are of three kind: agents, messages transmitted
trough the network and messages components memorized by the intruder.
Several entities in a state shall react, firing an evolution rule which transforms
a system state into a successor state. The model is organized into the following
parts, detailed in the next sections:

record definitions, used to describe the three kind of entities (Section 4.1);
various predicates used to select, in the set of reacting entities, a specific
entity of a given kind — an agent, a message (Section 4.1);

e rules specifying the abilities of the intruder to collect all the messages that
have been exchanged between agents and extracts pertinent information
(Section 4.2);

e rules specifying the abilities of the intruder to produce fake messages from
the information gathered so far (Section 4.2);

e rules specifying the reception and sending of messages by agents: such rules
are defined as reactions between an agent and a (received) message which
fulfills some conditions (Section 4.3);

e rules implementing a state exploration procedure which halts with a pred-
icate checking whether a bad state is reached, hence that the search of an
attack was successful (Section 4.3).

4.1 Representing Agents, Messages and Intruder Knowledge

The three different kinds of entities (unstructured information) found in the
system states (solutions) are represented using records (the MGS code for this
section can be found in Appendix B.1).

Agents. We shall distinguish the roles, Alice and Bob in our example, which
are programs, from the agents executing the programs, characterized by an
identifier (agent’s name), a role and a bounded memory. In particular, there
can be several agents for one role. An agent consists in:

an identity id (its name; several agents may have the same identity),
two stores ni and nr to memorize the session—specific values of the nonces
Na and Nb,

e a program counter pc, which can take the value described below.

Every agent with either role Alice or Bob shall create a nonce and receive
another one during the execution of the protocol of Section 3.1. The fields

An Analysis of a Public Key Protocol with Membranes 287

ni and nr store these two values, for Alice, ni stores IV, and nr stores N,
and reciprocally for Bob (ni stands for nonce initial, because we can assume
that each agent initially creates the nonces before starting a session of the
protocol, and nr stands for nonce received).

The program counter pc of an agent can take the following values (these
values are arbitrary symbols and prefixed by a backquote), according to the
role: ‘REQ, ‘AUTH and ‘FINISHED for Alice and ‘CHAL, ‘WAIT and ‘FINISHED
for Bob. For Alice, pc = ‘REQ means that the agent is about to send the
message with the corresponding label in the protocol specified in section 3.1,
and similarly for pc = ¢AUTH (role Alice) and ‘CHAL (Bob). For an agent
playing the role of Bob, pc = ‘WAIT means that he is waiting for the answer
of Alice to his challenge CHAL, and pc = ‘FINISHED means that the agent has
completed his session of the protocol.

Messages. Three different kinds of messages are exchanged between Alice
and Bob during the protocol. We define a predicate to recognize each kind
of messages: REQ, CHAL and AUTH. Messages are also records and they are
characterized by the kind of information that they hold. For instance, messages
of type REQ contain a field na representing the content of the message and a
field kb which is the public key used for encryption. For the sake of simplicity,
in our program, every public key or private key is represented by the identity
of the owner.

Intruder Knowledge. The knowledge of the intruder is also represented
by records with fields name, nonce, pub, priv. We define several predicates
(infoname, info nonce, info_pub and info_priv) for each kind of infor-
mation that the intruder will be able to reveal from the whole history of
exchanged messages: name, nonce, public key and private key. These predi-
cates are used to determine the presence of a message of a given kind with a
given information in the solution.

4.2 The Intruder Transformation Rules

The network is common to all agents and the intruder, hence the latter is able
to read and produce new messages. This behavior is implemented by the rules
presented in the two following sections (the MGS code for this section can be
found in Appendix B.2).

Reading and Analyzing Messages. In our approach, the existing mes-
sages are read by the intruder from the current state and they are put back
unchanged. Moreover, the encrypted contents of a message are added as new
known information to the state if decryption is possible. More precisely, the
intruder can learn a plaintext encrypted with a public key (for instance the
nonce nb encrypted with kb in message AUTH) only if he knows the correspond-
ing private key.

The following three rules define the evolution of the knowledge of the in-
truder, according to the messages present in the network. There is exactly one

288 O. Michel, F. Jacquemard

rule for each kind of message. They will actually not generate all the infor-
mation that the intruder can extract from collected message. However, these
transformations are sufficient to extract all the information needed to built
messages with the forging rules below. For instance, if a message m present in
the solution has type REQ, and the intruder knows the private key associated
to m.kb, then he learns the components m.na and m.a of m. Theoretically,
he also learns the pair (m.na, m.a) but storing such an information is useless
since we assume that the intruder is able to build pairs arbitrarily.

m — m, {nonce = m.na}, {name = m.a}
where m € REQ A dk € self s.t. k.priv = m.kb

m — m, {nonce = m.na}, {nonce = m.nb}
where m € CHAL A 3k € self s.t. k.priv = m.ka

m — m, {nonce = m.nb}
where m € AUTH A Jk € self s.t. k.priv = m.kb

The keyword “self” used in the rules denotes the current multiset (i.e., the
multiset from which m is chosen). The existential quantifier in the guard of
the rules checks that some condition is satisfied by an element k in a given
multiset: such kind of predicate is easily computed by set of reduction rules.

Forging Some New Messages. In the previous section, we have describe
the intruder rules set which only reveals information according to already
known messages an keys. The following rule produces a new fake REQ message
from know information in the solution:

k,n,m — {na = m.nonce,a = n.name,kb = k.pub}

where info_pub(k) A info_name(n) A info_nonce(m)

There is one such rule for the two other kinds of messages CHAL and AUTH.
These rules are used to produce by saturation (fixed point computation) all
possible fake message that can be forged from the known facts in a multiset.

An attack consists in revealing all possible information using the above
rules of the intruder after having forged all possible fake messages. Actually,
we’ll see in the following that a real attack always consists in the application
of the attack rules of Section 4.3 until a fixed point is reached.

4.3 Nested Multiset Rewriting to Explore the State Space

The first idea to implement the logical analysis of NSPK is to aggregate all
the entities involved into the protocol in a single multiset acting as a chemical
solution containing the agents, the messages and the revealed information.
The agents and the intruder will react with messages to augment the solution
with new information. All information are in the solution at the same level.
An attack on the NSPK protocol consists here in finding an interleaving of

An Analysis of a Public Key Protocol with Membranes 289

the agents actions described below such that Bob’s nonce is revealed (the MGS
code corresponding to this section can be found in Appendix B.3).

This approach suffers from the following problem: let S be a solution and
a be an agent in a state where he might reply to two different messages m4
and ms. The two following scenarios could happen:

1. The agent replies to both messages: to m; to give m} and to ms to give
mb. Here, after the agent action, S becomes S Umj Um). In the future
evolution of the protocol, another agent may react to both m}| and m/,
leading to an incorrect situation, even where the intruder may break the
protocol and reveal the nonce.

2. The agent replies to only one of the two messages: to m; to produce mj}.
In that case, an attack might not be found because the case where the
reply should have concerned the other message has not been considered.
The protocol analysis is therefore too weak.

The consequence is that we have to take into account the different evolu-
tions of the protocol that might happen when an agent receives more than one
message. To model such a situation, we make use of several multisets (mem-
branes) to localize the computation and to avoid the (possible) interferences.
The initial state consists in a multiset of multisets. Each element in the top
multiset (the skin in the language of P systems) is a possible state in the
protocol and represent some possible evolution, as depicted in Figure 3.

e~ (a0

state s; state s;r1

. N %

Fig. 3. Creations of membranes.

The Agents. The behavior of each agent, at each possible pc, is described
by a set of rules. For example, the behavior of Alice with pc = ‘AUTH is to
switch to the state ‘AUTH and to produce a new message:

z,t — (z + {pc = ‘AUTH}), {kb = z.dest,na = z.ni,a = z.id}
where x € REQA x.id = alice At = ‘0K

the operator + is the asymmetric merge of records and the results of z+{pc =
¢AUTH} is a record equal to x except for the field pc that takes the value ¢AUTH.

290 O. Michel, F. Jacquemard

The variable ¢ matches a symbol used to inhibit or activate the rule: if the
symbol is present (e.g., t = ‘0K) then the rule can be triggered. If the symbol
‘0K is not present in the chemical solution, the rule is inhibited.

There are three additional similar rules to describe the evolution of Alice
waiting for the authentication, Bob waiting for a challenge and Bob in the
finishing state.

Note that the messages addressed to an agent must not be removed from
the solution and are available for other rule applications.

The Initial State. The initial state for the attack search consists in a multiset
(of multisets) with only one element:

e the two agents, Alice and Bob, initialized with their respective identity,
the destination of the message for Alice, initial nonces to arbitrary integer
values, program counter,

e intruder knowledge (public keys for all participants and its own private
key).

Looking for an Attack. In our definition of the initial state, the number of
agents is fixed and remains such. Therefore, the number of execution steps is
bounded accordingly. The problem consists in finding the correct interleaving
of Alice and Bob actions leading to a successful attack.

The basic idea is to generate all strings of bounded length made of four
symbols representing an evolution of one of the agent (see the rule set of an
agent described above). The combinatorial generation of such string is easy
and can be done randomly. Then a rule is used to trigger the “application”
one of such string to an agent to make this agent evolve:

m, ‘alicereq::s — m, ‘0K, s

The expression ‘alice_req::s denotes a string beginning with the symbol
‘Alice req. Note that the tail s of the string is released in the solution. The
production of the triggering symbol ‘0K activates the evolution rule on m.
By adjoining a trigger to this rule, which is released by the agent evolution
rule and consumed by this rule application, we can interleave correctly the
evolution of an agent until the exhaustion of the string s.

We still look for an interleaving leading to revealing the nonce. A successful
attack is to find in the chemical solution the nonce of Bob revealed. This is
done by adding a specific rule, e.g., a rule leading to a dissolution of all
enclosing membranes.

Validation in the MGS Programming Language. To validate our propo-
sitions, we have completely implemented and validated several versions of the
logical analysis using the MGS programming language. A presentation of MGS
and the commented code can be found in the Appendix.

MGS is a research project devoted to the design and the development
of a programming language dedicated to the simulation of biological pro-

An Analysis of a Public Key Protocol with Membranes 291

cesses [9, 11]. Based on topological notions, MGS supports the notion of trans-
formation: a localized computation specified by rules. One can for example
defines multiset rewriting rules [1] that act on a nest of multisets (i.e., mem-
branes). These rules can be used to move values from a multiset to another
one, as well as to dissolve, divide or create new multisets. So, MGS can poten-
tially be used to process membranes. However, we outline that the MGS project
focuses on the design of a programming language rather than the development
of a well founded computational model.

5 Summary

In this chapter, we have used the membrane computing approach to describe
and analyze the NSPK protocol. This application of membrane computing is
new to the best of our knowledge. It has been shown that using our approach,
the well-know security hole of [16] is easily (in less than one second) discovered
by our state exploration procedure.

In the proposed version, we are searching for the correct interleaving of
the agents actions leading to a possible attack. Using membranes permits us
to handle correctly the fact that an agent may have to react to more than one
message leading to more than one evolution of the state.

Nevertheless, this method is tailored for the search of an interleaving of
agents actions leading to the revelation of the nonce. This is possible because
we actually know that such an interleaving will lead to a successful attack.
We have proposed in [19] a more general approach where a full state space
search is done. The complete running code of the two versions have been
implemented in MGS and is detailed in [20]. The complete code is particularly
simple and readable. Moreover, it is also easy to evolve the initial analysis to
more sophisticated ones.

The approach presented here has been developed for this special protocol
and heavily relies on the nesting of membranes to localize the computation
and to avoid evolution interference leading to more approximate analysis. We
believe that the principles of our modeling are general enough to envision a
systematic way to derive a program for searching attacks from an abstract de-
scription of the messages of a protocol given with the notations of Section 3.1,
following [14].

Acknowledgments. The authors are grateful to Jean—Louis Giavitto, Julien
Cohen and Antoine Spicher at LaMI for stimulating discussions and thoughtful
remarks. This research is supported in part by the CNRS, the GDR ALP, the
University of Evry, Genopole©, INRIA and ENS Cachan, the RNTL project
PROUVE and the ACI-SI Rossignol.

292

O. Michel, F. Jacquemard

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J.—P. Banitre, P. Fradet, D. Le Métayer: Gamma and the Chemical Reaction
Model: Fifteen Years After. Lecture Notes in Computer Science 2235, Springer,
Berlin, 2001, 17-44.

. P. Borovansky, C. Kirchner, H. Kirchner, P.E. Moreau, M. Vittek: ELAN —

A Logical Framework Based on Computational Systems. FElectronic Notes in
Theoretical Computer Science, 4 (1996).

M. Clavel, F. Duréan, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, J.F. Que-
sada: The Maude System. Lecture Notes in Computer Science 1631, Springer,
Berlin, 1999, 240-243

. I. Cervesato, N. Durgin, P.D. Lincoln, J.C. Mitchell, A. Scedrov: A Meta—

Notation for Protocol Analysis. In Proc. 12th IEEE Computer Security Foun-
dations Workshop (CSFW1999), Mordano, Italy, 55-69.

H. Cirstea: Specifying Authentication Protocols Using ELAN. In Workshop on
Modeling and Verification, 1999.

D.L. Dill, A.J. Drexler, A.J. Hu, C.H. Yang: Protocol Verification as a Hardware
Design Aid. In International Conference on Computer Design, VLSI in Com-
puters and Processors (ICCD1992), 522-525, Los Alamitos, Ca., USA, 522-525.
G. Denker, J. Meseguer, C. Talcott: Protocol Specification and Analysis in
Maude. In Workshop on Formal Methods and Security Protocols, 1998.

D. Dolev, A. Yao: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory, IT-29, 2 (1983), 198-208.

J.-L. Giavitto: Topological Collections, Transformations and Their Applica-
tion to the Modeling and the Simulation of Dynamical Systems. In Rewriting
Technics and Applications (RTA’03), Lecture Notes in Computer Science 2706,
Springer, Berlin, 2003, 208-233.

J.-L. Giavitto, O. Michel: The Topological Structures of Membrane Computing.
Fundamenta Informaticae, 49 (2002), 107-129.

J.-L. Giavitto, G. Malcolm, O. Michel: Rewriting Systems and the Modeling of
Biological Systems. Comparative and Functional Genomics, 5 (2004), 95-99.

S. Peyton Jones, C. Hall, K. Hammond, W. Partain, P. Wadler: The Glasgow
Haskell Compiler: A Technical Overview. In Joint Framework for Information
Technology Technical Conference, 1993.

A. Huima: Efficient Infinite-State Analysis of Security Protocols. In Proceedings
of FLOC’99 Workshop on Formal Methods and Security Protocols, 1999.

F. Jacquemard, M. Rusinowitch, L. Vigneron: Compiling and Verifying Secu-
rity Protocols. In Logic for Programming and Automated Reasoning (LPAR’00),
Lecture Notes in Computer Science 1955, Springer, Berlin, 2000.

X. Leroy: The Objective CAML System, Release 3.07. Documentation and
User’s Manual. Technical report, INRIA, 2004.

G. Lowe: An Attack on the Needham-Schroeder Public Key Authentication
Protocol. Information Processing Letters, 56, 3 (1995).

C.A. Meadows: The NRL Protocol Analyzer: An Overview. Journal of Logic
Programming, 26, 2 (1995), 113-131.

J.K. Millen, S.C. Clark, S.B. Freedman: The Interrogator: Protocol Security
Analysis. IEEE Transactions on Software Engineering, SE-13, 2 (1987).

O. Michel, F. Jacquemard: An Analysis of the Needham—Schroeder Public Key
Protocol with MGS. In Fifth Workshop on Membrane Computing (WMC5),
Milano, 2004, 295-315.

An Analysis of a Public Key Protocol with Membranes 293

20. O. Michel, F. Jacquemard, J.—L. Giavitto: Three Variations on the Analysis
of the Needham-Schroeder Public Key Protocol with MGS. Technical Report
LaMI-98-2004, Univ. d’Evry - CNRS, 2004 — 25 pages.

21. J. Mitchell, M. Mitchell, U. Stern: Automated Analysis of Cryptographic Pro-
tocols Using Murphi. In Proceedings of the IEEE Symposium on Security and
Privacy, 1997, 141-151.

22. R.M. Needham, M.D. Schroeder: Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, 21, 12 (1978), 993-999.

23. Gh. Paun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

24. M. Rusinowitch, M. Turuani: Protocol Insecurity with Finite Number of Ses-
sions is NP-Complete. In Proceedings of the 14th Computer Security Foundations
Workshop (CSFW2001), 174-190.

25. C. Weidenbach: Towards an Automatic Analysis of Security Protocols in First—
Order Logic. Lecture Notes in Computer Science 1632, Springer, Berlin, 1999,
378-382.

Appendix A. A Brief Introduction to the MGS Language

We briefly present in this section the MGS language. We do not detail all
the features of the language but we rather focus on the notions required to
understand the next section.

A.1 MGS as a Functional Language

MGS embeds a complete, impure, dynamically typed, strict, functional lan-
guage. We only describe here the major differences between the construc-
tions available in MGS with respect to functional languages like 0CAML [15] or
HASKELL [12].

Values. Atomic values (like integers, floats, booleans, strings,...) with their
usual functions, are available. Constants are denoted with a backquote: ‘REQ
(they are reminiscent of LISP symbols). The only operations allowed on a
constant is to store it or to compare it for equality with another value.

Records (cartesian products with labels) are defined using braces: {x=0,
y=1} creates a pair with label x and y (MGS record are similar to Pascal’s
record or C’s struct). The fields are accessible using the dot notation: let v
= {x=0, y=1} in v.x has value 0. Since records are used in MGS to define
a particular state of an entity, MGS allows the definition of predicates based
upon the fields found in a record. The keyword record is used to define such
predicates:

record agent = \{id, ni, nr, pc\}

defines the predicate agent that holds only if applied on a record value that
has at least all the fields id, ni, nr and pc. Record alice defined as record
alice = {dest} + agent extends predicate agent with the additionally re-
quired field dest. So far, the record predicates only required to have the fields
to hold. The predicate req defined as record req = {pc = ‘REQ} holds only
if its argument has a field pc with a value equal to the constant ‘REQ.

294 O. Michel, F. Jacquemard

Imperative Variables and Sequencing. Variables in a functional lan-
guages are not true variables: they refer to values and cannot be updated.
MGS has a notion of imperative variable (also called mutables) that can be up-
dated. The := operator allows to define such variables. For example imp := 0
defines imp with value 0 that can be later updated with the same construction.

The semi column operator ; is used to express the sequencing of expres-
sions: the value of £();g() is the value returned by g() but £() has been
computed before.

Functions. Since MGS is a functional language, it has functions as first—class
values. Functions are defined either using the construction fun like in fun
max(x, y) = if (x > y) then x else y fi or using the classical lambda
notation as in \x.\y.if (x > y) then x else y fi

Computations by fixpoints are heavily used in applications like simulations
or state space explorations. MGS provides an operator to compute iterations
and fixpoints of functions. Let £ be a function, then f[iter = n](x) com-
putes £*(x) and f[*] (x) denotes the fixpoint of f starting from x.

Functions together with mutables and iterations allows to define functions
that pass informations between calls. For example, function f defined as fun
flacc=0] (x)=(acc := acc+1l; x+acc) allows to define an accumulator acc
which stores a value that is incremented between each call. The value of
f[’iter = 10, acc = 0] (1) is 56.

A.2 Topological Collections and their Transformations

The distinctive features of the MGS language is its handling of entities
structured by abstract topologies using transformations [10]. A set of entities
organized by an abstract topology is called a topological collection. Topological
means here that each collection type defines a neighborhood relation inducing
a notion of sub—collection. A sub—collection B of a collection A is a subset of
connected elements of A and inheriting its organization from A.

Collection Types. Many different predefined and user—defined collection
types are available in MGS. We won’t describe them here since sets, multisets
and sequences are the only collection type used in this chapter.

For any collection type T, the corresponding empty collection is written
():T. The name of a collection type is also a predicate used to test if a value
is of this type: T(v) holds only if v is of type T. Each collection type can
be subtyped. The type declaration collection U = T introduces a new
collection type U which is a subtype of T. The new type U shares the same
topology as T. However, a value of type U can be distinguished from a value of
type T using the U predicate (i.e., the subtyping relation implies that U(u) =
T(u), for any value u, but not the reverse). Elements in a collection can be of
any type, including collections.

Operations on Collections. The join of two collections Cy and Cy (writ-
ten by a comma: C;,C5) is the main operation on collections. The comma

An Analysis of a Public Key Protocol with Membranes 295

operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression
1, 1+1, 2+1, ():set builds the set with the three elements 1,2 and 3, while
the expression 1, 1+1, 2+1, ():bag makes a multiset with the same three el-
ements.

Transformations. The global transformation of a topological collection C'
consists in the parallel application of a set of local transformations. A local
transformation is specified by a rewriting rule r that specifies the replacement
of a sub—collection by another one. The application of a rewriting rule 5 =
f(B,...) to a collection A:

1. selects a sub—collection B of A whose elements match the pattern 3,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C' in place of B into A.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances B; of the sub—collections matched by
the B pattern are “simultaneously replaced” by the f(B;). This is very dif-
ferent from the evaluation strategies followed by classical rewriting tools like
MAUDE 3], ELAN [2], Mury [6], MSR [4], etc.

The MGS experimental programming language implements the idea of
transformations of topological collection into the framework of a simple dy-
namically typed functional language. Collections are just new kind of values
and transformations are functions acting on collections and defined by a spe-
cific syntax using rules. Transformations (like functions) are first—class values
and can be passed as arguments or returned as the result of an application.

Sub—collection Patterns. A transformation is defined by a set of rules
(listed between braces). A pattern [that appears in the left hand side of
a rule is an expression used to select a sub—collection to be replaced. Several
operators are available; we will review here only few of them:

e Literal: a literal value matches an element with the same value. For ex-
ample, 123 matches an element with the integer value 123.

e Variable: a pattern variable ¢ matches exactly one element. The variable
a can then occur elsewhere in the rest of the rule and denotes the value
of the matched element. The identifier of a pattern variable can be used
only once in a pattern. To match an element without giving it a name, an
underscore _ can be used.

e Alias: the pattern p as X associates the variable X to the value matched
by the pattern p. X is a regular variable than can be used as previously
described.

e Neighbor: the pattern b, p matches a sub—collection composed of an
element matched by b neighbor of a sub—collection matched by p.

e Guard: p/exp matches a sub—collection matched by p such that the pred-
icate exp hold. For instance, x,y / y >z matches two neighbor elements
such that the second one is greater than the first one.

296 O. Michel, F. Jacquemard

¢ Repetition: p* matches a sub—collection made of a (possibly empty) rep-
etition of sub—collections matched by p. If p is a pattern variable, then its
value refers to the sequence of matched elements and not to one of the
individual values. For example, 3+ matches a non-empty sub—collection
made only of 3’s.

MGS and Membrane Computing. The MGS language enables a kind of
membrane computing. It embeds the rewriting of multisets (or sets) in the
following way: in a multiset, an element is susceptible to interact with any
other element, so the abstract topology of a multiset is the topology of a com-
plete connected graph: the neighbors of an element are all the other elements
in the multiset. Then, a pattern 8 can select an arbitrary sub—multiset and a
multiset rewriting rule is simply a local transformation in this topology.

A.3 Example: Computing all the n-tuple in a Set

Let S be a set of values. To compute all the n-tuples one can use the
transformation:

trans n_tuplelacc, n] = {
(_x as c) / size(c) == n / (acc := c::acc; false) => !!1(0);
=> return(acc)

}

In transformation n_tuple, parameters acc and n are mutables whose def-
inition are local to the transformation. They are set at the first call of the
transformation. Applied to a collection C, pattern of the first rule (_x as X)
/ size(X) == n) matches a sub—collection ¢ of C' of size n such that all ele-
ments of ¢ are neighbors (with respect to the topology induced by C'). Once ¢ is
found, predicate (acc := c::acc; false) is calculated: collection ¢ is added
to the accumulator (: : is the concatenation of a value to a collection) and the
value false is returned. Since the predicate does not hold, the right hand side
of the rule is not evaluated (the expression !!(0) aborts the program) and
the rule is tried against another instance, storing each time the solution of the
matching into the accumulator. Once all the possibilities have been tried and
failed, the second rule is tried. That rule succeeds in matching anything and
returns the value of the accumulator. Transformation n_tuple[acc=set: (),
n=2]((3,4,5,6,set:()));; computes all the pairs

((3, 4):’seq, (3, b5):’seq, (3, 6):’seq, (4, 3):’seq, (4, 5):’seq,
(4, 6):’seq, (5, 3):’seq, (5, 4):’seq, (5, 6):’seq, (6, 3):’seq,
(6, 4):’seq, (6, 5):’seq):’set

where (3, 4):’seqis a pair holding the two integers value.

Appendix B. MGS Code for the Description of the Attack

We give in the following sections the MGS code that implements the search
for an attack that is described in Section 4.

An Analysis of a Public Key Protocol with Membranes 297

B.1 Representing Agents, Messages and Intruder Knowledge

The code presented in this section implements the data structures defined
in Section 4.1.

Agents. One set of records is used to define agents, defined as:

record agent = { id, ni, nr, pcl};;
record alice = { dest } + agent;;
record bob = agent;;

Some records for the the various possible agent pc are defined as follows:

record req { pc = ‘REQ };;
record chal = { pc = ‘CHAL };;
{ pc = ‘AUTH };;
{ pc = ‘WAIT };;
{ pc = ‘FINISHED };;

record auth

record wait

record finished

Messages. A predicate is defined for each kind of message:

record messageReq = { na, a, kb };;
record messageChal { na, nb, ka };;
record messageAuth = { nb, kb 35

Intruder Knowledge. Finally, we define a predicate for each kind of in-
formation that the intruder will be able to reveal from the whole history of
exchanged messages:

record info_name = { name };;

record info_nonce = { nonce };;
record info_pub { pub };;
record info_priv = { priv };;

Predicates are defined for each kind of message to determine the presence
of a message of a given kind in the solution:

fun messageReqCond(a, m) = messageReq(m) & (m.kb == a.id);;
fun messageChalCond(a, m) = messageChal(m) & (m.ka == a.id)

& (m.na == a.ni);;

fun messageAuthCond(a, m) = messageAuth(m) & (m.kb == a.id)
& (m.nb == a.ni);;

fun PmessageReq(b, all) = exists(messageReqCond(b), all);;

fun PmessageChal(a, all) = exists(messageChalCond(a), all);;
fun PmessageAuth(a, all) = exists(messageChalCond(a), all);;

B.2 The Intruder Transformation Rules

The intruder’s behaviour described in Section 4.2 is defined here in terms
of MGS transformations.

Reading and Analyzing Messages. The following transformation rules de-
fine the evolution of the knowledge of the intruder, according to the messages
present in the network :

298 O. Michel, F. Jacquemard

trans intruder = {
m / messageReq(m) & exists((\k.(info_priv(k)
& (k.priv == m.kb))), neighbors(m))
=> m, {nonce = m.na}, {name = m.a};
m / messageChal(m) & exists((\k.(info_priv(k)
& (k.priv == m.ka))), neighbors(m))
=> m, {nonce = m.na}, {nonce = m.nb};
m / messageAuth(m) & exists((\k.(info_priv(k)
& (k.priv == m.kb))), neighbors(m))
=> m, {nonce = m.nb}
35
The function neighbors used in the transformation is a special form that
returns all the neighbors of the element denoted by a pattern variable.

Forging Some New Messages. In the previous section, we have described
the intruder transformation which only reveals information according to al-
ready known messages an keys. The following transformation produces new
fake messages from know informations in the solution. There is one transfor-
mation for each kind of message:

trans forge_reqlacc = set: ()] =

{
((k:info_pub), (n:info_name), (m:info_nonce)) as X
/ acc := {na = m.nonce, a = n.name, kb = k.publ},acc; false
=> 11(0);
_ => return(acc)

L HH

trans forge_challacc = set:()] =

{
((k:info_pub), (n:info_nonce), (m:info_nonce)) as X
/ acc := {na=m.nonce, nb=n.nonce, ka=k.pub},

{nb=m.nonce, na=n.nonce, ka=k.publ},acc; false

=> 11(0);
_ => return(acc)

L HH

trans forge_auth[acc = set: ()] =

{
((k:info_pub), (m:info_nonce)) as X
/ acc := {nb=m.nonce, kb=k.pub}, acc; false
=> 11(0);
_ => return(acc)

L HH

fun forge(s) =
s, forge_reqlacc=set:()](s), forge_challacc=set:()]1(s),
forge_auth[acc=set: ()] (s);;

fun attack(s) = intruder(forge(s));;

Consider the first transformation: one should remark that, since the record
made of info_pub, info name and info nonce might not be unique, we have

An Analysis of a Public Key Protocol with Membranes 299

to use the same kind of procedure described in Section A.3 to produce all
matching triple. This way, we produce all possible fake messages knowing
public keys, names of agents involved in the sessions and revealed nonces.
Function forge, applied to the solution s adds to the original solution the
result of the application of the three forge transformations.
An attack, described by the attack consists in the revealing of all possibles
informations by the intruder after having forged all possible fake messages.

B.3 Nested Multiset Rewriting A new collection type is defined: membrane
which derives from the collection type seq (membrane is then just a sequence
with a different name). The empty collection of that kind is ():membrane.

collection membrane = seq;;

The Agents. The transformations describing the behavior of each agent are
described below:

trans alice_req = {
x / (req(x) & alice(x)) => (x + {pc = ‘AUTH}),
{kb = x.dest, na = x.ni, a = x.id}
35
trans bob_chal = {
y / bob(y) & chal(y) & PmessageReq(y, neighbors(y))
=> let all_messages = filter(messageReqCond(y), neighbors(y))
in return(map((\m.((y + {pc = ‘WAIT, nr = m.na}),
{ka = m.a, na = m.na, nb = y.ni},
setify(neighbors(y)))), all_messages))
3
trans alice_auth = {
x / auth(x) & alice(x) & PmessageChal(x, neighbors(x))
=> let all_messages = filter(messageChalCond(x), neighbors(x))
in return(map((\m.((x + {pc = ‘FINISHED}),
{kb = x.dest, nb = m.nb},
setify(neighbors(x)))), all_messages))
3
trans bob_finish = {
y / bob(y) & wait(y) & PmessageAuth(y, neighbors(y))
=> let all_messages = filter(messageAuthCond(y), neighbors(y))
in return(map((\m.((y + {pc = ‘FINISHED}),
setify(neighbors(y)))),
all_messages))
35
Notice that the messages addressed to Alice are not removed from the
solution. Since they do not appear in the pattern part of the rule, they are
not matched and therefore not “consumed” from the solution.
Care has been taken in the previous transformations to generate the correct
membrane structure (this is the setify(neighbors(y)) argument in the map
of the r.h.s. of each transformation; setify computes the set of elements of

300 O. Michel, F. Jacquemard

its collection argument and the function neighbors returns all the neighbors
of the element denoted by a pattern variable).

Revealing a Successful Attack. A successful attack is to find in the chem-
ical solution the nonce of Bob revealed. Since we have a membrane of sets,
revealing a successful attack consists in looking in each set if the nonce is
revealed:

fun isbroken(x) = member ({nonce = 1}, x);;
fun broken(x) = exists(isbroken, x);;

The Initial State. The initial state is a membrane of sets with only one set:

initial := ({id = "alice", ni = 0, nr, pc = ‘REQ, dest = "charly",},
{id = "bob", ni = 1, nr, pc = ‘CHAL},
{priv = "charly"}, {pub = "charly"}, {pub = "alice"},
{pub = "bob"}, set:()
):: membrane:();;

Remark that the nr field is not set in the definitions: in this case, it is
defined with an undefined value (and will later be set to a relevant value once
a message is received).

Looking for an Attack. As stated in Section 4.3, the problem consists in
finding the correct interleaving of Alice and Bob actions leading to a successful
attack. Transformation breaks succeeds if such an interleaving exists. It is
applied on functions which is the set of the transformations describing the
agents behavior. The MGS pattern expression (_x) as F will match all possible
permutations of the elements of functions. For the sake of explanation, let
F be the sequence [fi, ..., fn] of one possible permutation. The guard checks
whether broken holds for an attack on the state attack® o f; o...oattack* o
fn(initial).

As for the search of an attack, we still look for an interleaving leading to
revealing the nonce. We now have to map and flatten the attack that follows
an action of one of the agents:

fun fmap(f, e) = flatten(map(f, e));;
trans break = {
(_x) as F / broken(fold((\fn.\s.(fmap(attack[*], fmap(fn,s)))),
initial, F))
=> return(true)

1
functions := alice_req, alice_auth, bob_chal, bob_finish, set:();;
successful := break(functioms);;

The search for an attack succeeds in less than a second on a AMD-1.4Ghz
Linux Debian/Woody computer, and reveals that the correct interleaving of
functions is, as expected, bob_finishoalice_authobob_chaloalice_req. The
implemented code and the MGS interpreter are available from URL mgs.lami.
univ-evry.fr.

