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Preface

Parameterized complexity theory provides a framework for a refined analysis
of hard algorithmic problems.

Classical complexity theory analyzes and classifies problems by the amount
of a resource, usually time or space, that is required by algorithms solving
them. It was a fundamental idea, going back to the work of Hartmanis and
Stearns in the early 1960s, to measure the required amount of the resource
as a function of the size of the input. This has led to a manageable vari-
ety of complexity classes and a clean-cut theory of intractability. However,
measuring complexity only in terms of the input size means ignoring any
structural information about the input instances in the resulting complexity
theory. Sometimes, this makes problems appear harder than they typically
are. Parameterized complexity theory takes a step backwards and measures
complexity not only in terms of the input size, but in addition in terms of a
parameter, which is a numerical value that may depend on the input in an
arbitrary way. The main intention is to address complexity issues in situations
where we know that the parameter is comparatively small.

Consider, for example, the problem of evaluating a database query. Its
input has two parts, a database and the query. Observe that these two parts
will usually differ in size quite significantly; the database will be much larger
than the query. A natural parameter for a parameterized complexity analysis
of this problem is the size of the query. As a more theoretically motivated
example, consider approximation schemes for optimization problems. Their
input consists of a problem instance and an error bound ε. A natural param-
eter is 1/ε. If we can accept an error of 5% in an approximation, we have a
parameter value 1/ε = 20 for our approximation scheme. Typical parameters
for many algorithmic problems on graphs are the tree width or the maximum
degree of the input graph. Numerous other examples of naturally parame-
terized problems can be found in other application areas such as automated
verification, artificial intelligence, or computational biology.

The central notion of parameterized complexity theory is fixed-parameter
tractability. It relaxes the classical notion of tractability, polynomial time solv-
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ability, by admitting algorithms whose “nonpolynomial behavior” is restricted
by the parameter.

Of course, algorithms have always been analyzed and optimized in terms
of many different input parameters, and no complexity theory was needed to
do this. The main contribution of the theory is to provide a framework for
establishing the intractability of certain problems. In the absence of techniques
for actually proving lower bounds for natural problems, the main goal of such
a theory is to classify problems into complexity classes by means of suitable
reductions. Since the parameterized theory is two-dimensional, depending not
only on the input size but also on the parameter, it is not surprising that it
leads to a much larger variety of complexity classes and to more complicated
reductions than the classical, one-dimensional complexity theory.

Besides providing a theory of intractability, parameterized complexity the-
ory also provides a theory of fixed-parameter tractability that had significant
impact on the design of algorithms. By consciously studying parameterized
problems from different areas, researchers were able to devise new general al-
gorithmic techniques for solving parameterized problems efficiently for small
parameter values and to put existing algorithmic ideas into a larger context.
Some of these general techniques are known as the method of bounded search
trees, kernelization, color coding, and dynamic programming on tree decom-
positions.

An aspect of parameterized complexity theory that has gained importance
more recently is its close connection with an area sometimes referred to as
exact exponential worst-case complexity analysis. This area is concerned with
exact algorithms1 for hard algorithmic problems that are better than the
trivial brute-force algorithms and corresponding (exponential) lower bounds
for the running time of such algorithms. The role of the parameter in this
context is to capture more precisely the main source of the (exponential)
complexity of a problem. For example, the complexity of the satisfiability
problem for formulas of propositional logic is better analyzed in terms of the
number of variables of the input formula than in terms of its size.

Parameterized complexity theory is a fairly new branch of complexity the-
ory. It was developed by Downey and Fellows in a series of ground breaking
articles in the early 1990s. In these articles, Downey and Fellows defined the
notion of fixed-parameter tractability, came up with suitable notions of reduc-
tions, defined the most important complexity classes, and proved a number
of fundamental completeness results. Since then, numerous other researchers
have contributed to the theory. Downey and Fellows’ 1999 monograph [83]
gives a fairly complete picture of the theory then. The development has not
slowed down since then, quite to the contrary. However, we feel that the field
has matured to a degree that it deserves a comprehensive state-of-the art
introduction, which we hope to provide by this book.

1“Exact” as opposed to “approximation” algorithms.
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Organization of This Book

In Chap. 1, we introduce the central notion of fixed-parameter tractability. We
give various characterizations of fixed-parameter tractability. Furthermore, we
explain one of the most basic algorithmic techniques for the design of fixed-
parameter tractable algorithms (fpt-algorithms for short), which is known as
the method of bounded search trees.

Intractability

Chapters 2–8 are devoted to the theory of fixed-parameter intractability. We
start by defining an appropriate notion of reduction in Chap. 2. Then we
turn to the question of what might be an analogue of the classical class NP
in the world of parameterized complexity. In Chap. 3, we define and study
the class W[P], which may be seen as such an analogue of NP. We develop a
completeness theory for this class and establish its various connections with
classical complexity theory.

Whereas natural problems in NP tend to be either in PTIME or NP-
complete, there are many natural parameterized problems in W[P] that nei-
ther are in FPT nor are W[P]-complete. To classify such problems, we have
to investigate the fine structure of the class W[P]. A skeleton for this fine
structure can be obtained from descriptive complexity theory, which analyzes
and classifies problems by the syntactic form of their definitions (in suitably
formalized languages as provided by mathematical logic). It leads to a nat-
ural hierarchy of classes within W[P], the so-called W-hierarchy. Essentially,
the levels of this hierarchy correspond to the number of alternations between
universal and existential quantifiers in definitions of their complete problems.
Many natural parameterized problems turn out to be complete for the first
or second level of this hierarchy. The W-hierarchy is introduced in Chap. 5
and is further studied in Chap. 7. There is another hierarchy that extends
beyond the boundaries of W[P], the so-called A-hierarchy. It may be seen as
an analogue of the polynomial hierarchy in the world of parameterized com-
plexity. The A-hierarchy is also introduced in Chap. 5 and is further studied
in Chap. 8. The first levels of the A-hierarchy and the W-hierarchy coincide
and are studied in detail in Chap. 6.

The necessary notions from mathematical logic and descriptive complex-
ity theory are introduced in Chap. 4. Logic plays an important role in this
book, not only in providing syntactical characterizations of the levels of the
main hierarchies of intractable parameterized complexity classes, but also in
algorithmic metatheorems, which state that all problems of a certain syntactic
form are tractable. A well-known example for such a theorem is Courcelle’s
theorem, stating that all problems definable in monadic second-order logic
are fixed-parameter tractable if parameterized by the tree width of the input
structure.
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Algorithmic Techniques

Chapters 9–14 are mostly devoted to advanced algorithmic techniques for
designing fpt-algorithms. Our emphasis is always on the general techniques
and not on optimizing the running times of algorithms for specific problems.

In Chap. 9 we study a technique known as kernelization. A kernelization al-
gorithm reduces a given instance of a parameterized problem to a (presumably
smaller) instance whose size is effectively bounded in terms of the parameter
alone and does not depend on the size of the original instance. Thus kernel-
ization is a form of preprocessing with an explicit performance guarantee. In
the same chapter, we study the application of linear programming techniques
to parameterized problems. So far, such techniques have only led to a few,
albeit powerful, fixed-parameter tractability results.

In Chap. 10, we introduce the automata-theoretic method, which typically
leads to fpt-algorithms, but not necessarily polynomial time algorithms. The
automata-theoretic method plays a very important role in the design of al-
gorithms for logic-based algorithmic problems, as they can be found, for ex-
ample, in automated verification. A general theorem that can be obtained
by automata-theoretic techniques states that the model-checking problem for
monadic second-order logic on trees is fixed-parameter tractable. We also
prove superexponential (actually, nonelementary) lower bounds for the run-
ning time of fpt-algorithms for this problem.

The following two chapters are devoted to algorithms on restricted classes
of graphs and structures, specifically graphs of bounded tree width, pla-
nar graphs, and graphs with excluded minors. Based on the fixed-parameter
tractability of the model-checking problem for monadic second-order logic on
trees, which is proved in Chap. 10 by automata-theoretic means, we prove
Courcelle’s metatheorem mentioned above and give a number of applications
of this theorem. We also (briefly) discuss the main algorithmic consequences
of Robertson and Seymour’s graph minor theory. Algorithms for planar graph
problems have always received a lot of attention from researchers in param-
eterized complexity theory, and very refined techniques have been developed
for designing fpt-algorithms on planar graphs. Some of these techniques can
be generalized to larger classes of graphs, for example, classes of bounded local
tree width. Chapter 12 is an introduction into this topic.

In Chap. 13, we study specific families of problems, homomorphism prob-
lems and embedding problems (also known as subgraph isomorphism prob-
lems). We obtain a complete classification of the complexity of certain re-
strictions of homomorphism problems, which essentially says that precisely
the restrictions to instances of bounded tree width are tractable. Remarkably,
for such problems fixed-parameter tractability and polynomial time solvabil-
ity coincide. To prove the fixed-parameter tractability of restricted embedding
problems, we introduce color coding, another general technique for designing
fpt-algorithms.



Preface IX

Finally, in Chap. 14, we study the complexity of parameterized counting
problems. After introducing counting versions of the most important param-
eterized complexity classes, we focus on the counting versions of embedding
problems. We prove that counting paths or cycles in a graph is hard, even
though by the results of the previous chapter the decision problems are fixed-
parameter tractable. However, we show that the color coding technique of
the previous chapter provides randomized approximation schemes for these
counting problems.

Bounded Fixed-Parameter Tractability

The last two chapters of the book are devoted to a variant of fixed-parameter
tractability that restricts the dependence of the running time of fpt-algorithms
on the parameter. For instance, the dependence may be required to be singly
exponential or subexponential. In this way, we obtain a whole range of different
notions of bounded fixed-parameter tractability. The two most interesting of
these notions are exponential fixed-parameter tractability and subexponential
fixed-parameter tractability. We study these notions and the corresponding
intractability theories in Chaps. 15 and 16, respectively. Both theories have
interesting connections to classical complexity theory: The exponential theory
is related to limited nondeterminism and, specifically, the class NP[log2 n]
of problems that can be decided in polynomial time by a nondeterministic
algorithm that only uses log2 n nondeterministic bits. The subexponential
theory provides a framework for exponential worst-case complexity analysis.

The dependencies between the chapters of this book are shown in Fig. 0.1.
The two dashed arrows indicate very minor dependencies. In general, we have
tried to make the chapters as self-contained as possible. A reader familiar with
the basic notions of parameterized complexity theory should have no problem
starting with any chapter of this book and only occasionally going back to
the results of earlier chapters.

Throughout the book, we have provided exercises. Many of them are very
simple, just giving readers an opportunity to confirm what they have just
learned. Others are more challenging. We provide solution hints where we
consider them necessary. At the end of each chapter we include a “Notes”
section providing references for the results mentioned in the chapter and also
pointers to further readings. At the end of some chapters, we also include a
few open problems. It is not our intention to provide a comprehensive list of
open problems in the area. We have just included a few problems that we find
particularly interesting. We believe that most of them are quite difficult, some
being long-standing open problems in the area.

Prerequisites

We assume familiarity with the basic notions of complexity theory, logic, and
discrete mathematics. We provide an appendix with background material from
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Fig. 0.1. Dependencies among the chapters and sections of this book

classical complexity theory that may serve as a reference for the reader. Knowl-
edge of the appendix is no prerequisite for reading the book; the necessary
definitions and notations are always introduced in the main text. A brief intro-
duction to the relevant notions from logic and its connections with complexity
theory is given in Chap. 4.
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