Skip to main content

Dynamic Task Assignment in a Team of Agents

  • Conference paper
Autonome Mobile Systeme 2005

Abstract

In dynamic and complex multi-robot scenarios, the task assignment is a challenging and crucial topic, because it has to be very flexible and robust or in some sense fault-tolerant to achieve a certain degree of redundancy which is often required in these scenarios. To cope with these requirements, a dynamic task assignment approach based on self-organization principles adopted from nature is presented. In this work, a team of soccer playing robots is used to validate the suggested self-organized dynamic task assignment in dynamic domains with real-time constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, R. Lafrenz, N. Oswald, M. Schanz, M. Schulße, P. Molnär, J. Starke, and P. Levi. Three-index assignment of robots to targets: An experimental verication. In IAS-6, 2000.

    Google Scholar 

  2. H. Haken. Advanced Synergetics. Springer Series in Synergetics. Springer-Verlag, Heidelberg, Berlin, New York, 1983.

    Google Scholar 

  3. H. Haken. Synergetics, An Introduction. Springer Series in Synergetics. Springer-Verlag, Heidelberg, Berlin, New York, 1983.

    Google Scholar 

  4. M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel. Designing agent behavior with the extensible agent behavior specication language xabsl. In 7th International Workshop on RoboCup, 2003.

    Google Scholar 

  5. P. Molnär and J. Starke. Control of distributed autonomous robotic systems using principles of pattern formation in nature and pedestrian behaviour. IEEE Transaction on Systems, Men and Cybernetics: Part B, 31(3):433–436, 2001.

    Article  Google Scholar 

  6. Daniela Nicklas, Matthias Großmann, Thomas Schwarz, Steen Volz, and Bernhard Mitschang. A model-based, open architecture for mobile, spatially aware applications. Article in proceedings, Universität Stuttgart: Sonderforschungsbereich SFB 627 (Nexus: Umgebungsmodelle für mobile kontextbezogene Systeme), July 2001.

    Google Scholar 

  7. G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium Systems. Wiley, New York, 1977.

    Google Scholar 

  8. Heiko Ottenbacher. Multiagenten planmodellierung. Master’s thesis, University of Stuttgart, 2004.

    Google Scholar 

  9. RoboCup Ocial Website. http://www.robocup.org.

    Google Scholar 

  10. M. Schulèe, M. Schanz, H. Felger, R. Lafrenz, J. Starke, and P. Levi. Control of autonomous robots in the robocup scenario using coupled selection equations. In Autonome Mobile Systeme, pages 57–63. Springer, 2001.

    Google Scholar 

  11. M. Schulße, M. Schanz, H. Felger, J. Starke, and P. Levi. Dynamic control of autonomous robots using coupled selection equations. In Robotik, 2002.

    Google Scholar 

  12. SFB 627: Nexus-Spatial World Models for Mobile Context-Aware Applications. http://www.nexus.uni-stuttgart.de.

    Google Scholar 

  13. J. Starke. Kombinatorische Optimierung auf der Basis gekoppelter Selektionsgleichungen. PhD thesis, Universität Stuttgart, Verlag Shaker, Aachen, 1997.

    Google Scholar 

  14. J. Starke. Dynamical assignments of distributed autonomous robotic systems to manufacturing targets considering environmental feedbacks. In Proceedings of the 17th IEEE International Symposium on Intelligent Control (ISIC’02), pages 678–683, Vancouver, 2002.

    Google Scholar 

  15. J. Starke, C. Ellsässer, and Fukuda. Self-organized control in cooperative robots using pattern formation principles. submitted.

    Google Scholar 

  16. J. Starke and M. Schanz. Dynamical system approaches to combinatorial optimization. In D.-Z. Du and P. Pardalos, editors, Handbook of Combinatorial Optimization, volume 2, pages 471–524. Kluwer Academic Publisher, Dordrecht, Boston, London, 1998.

    Google Scholar 

  17. J. Starke, M. Schanz, and H. Haken. Self-organized behaviour of distributed autonomous mobile robotic systems by pattern formation principles. In T. Lueth, R. Dillmann, P. Dario, and H. Worn, editors, Distributed Autonomous Robotic Systems 3, pages 89–100. Springer Verlag, Heidelberg, Berlin, New York, 1998.

    Google Scholar 

  18. Oliver Zweigle, Reinhard Lafrenz, Thorsten Buchheim, Hamid Rajaie, Frank Schreiber, and Paul Levi. Cooperative agent behavior based on special interaction nets. Submitted to: Intelligent Autonomous Systems 9, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schanz, M. et al. (2006). Dynamic Task Assignment in a Team of Agents. In: Levi, P., Schanz, M., Lafrenz, R., Avrutin, V. (eds) Autonome Mobile Systeme 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30292-1_2

Download citation

Publish with us

Policies and ethics