Skip to main content

Active Autonomous Object Modeling for Recognition and Manipulation

Towards a Unified Object Model and Learning Cycle

  • Conference paper
Book cover Autonome Mobile Systeme 2005

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

In this paper the aim is combine the principle of active autonomous object modeling with results from the field of computer vision and 3D geometrical modeling for recognition purposes focusing on modern robotics. The goal is to make a first step towards a unified object model and learning cycle that allow for integration of inputs from different research activities related to recognition and modeling in order to enable a robot to actively develop models over operation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chatila R: The Cognitive Robot Companion and the European Beyond Robotics Initiative. 6th EAJ International Symposium “Living with Robots”, 2004

    Google Scholar 

  2. Forsyth DA and Ponce J: Computer Vision: A Modern Approach. Prentice Hall 2002.

    Google Scholar 

  3. Miller AT, Knoop S, Allen PK, Christensen HI: Automatic grasp planning using shape primitives. In Proc. IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1824–1829, 2003.

    Google Scholar 

  4. Lowe DG: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, Vol. 60, pp. 91–110, 2004.

    Article  Google Scholar 

  5. Roobaert D, Zillich M, Eklundh JO: A Pure Learning Approach to Background-Invariant Object Recognition using Pedagogical Support Vector Learning. CVPR, Vol. 2, No. 2, pp. 351, 2001.

    Google Scholar 

  6. Fitzpatrick P, Metta G, Natale L, Rao S and Sandini G: Learning About Objects Through Action — Initial Steps Towards Artificial Cognition. Web page: citeseer.ist.psu.edu/fitzpatrick03learning.html

    Google Scholar 

  7. Oggier T, et al.: An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRangerTM). In: Proceedings of the SPIE, Vol. 5249, No. 65, 2003.

    Google Scholar 

  8. Lukacs G, Marshall AD, and Martin RR: Geometric least-squares fitting of spheres, cylinders, cones and tori. Report GML 1997/5, 1997.

    Google Scholar 

  9. Nevada R and Binford TO: Description and recognition of curved objects. Artificial Intelligence, 8(1):77–98, 1977.

    Article  Google Scholar 

  10. Leonardis A, Jaklic A, and Solina F: Superquadrics for segmenting and modeling range data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11): 1289–1295, 1997.

    Article  Google Scholar 

  11. Jaklic A, Leonardis A, and Solina F: Segmentation and Recovery of Superquadrics. Kluwer, 2000.

    Google Scholar 

  12. F. Solina and R.K. Bajcsy: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):131–147, 1990.

    Article  Google Scholar 

  13. Vapnik, VN: The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1998.

    Google Scholar 

  14. Nene SA, Nayar SK and Murase H: Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, Columbia University, 1996.

    Google Scholar 

  15. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, and Williamson RC: Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443–1471, 2001.

    Article  Google Scholar 

  16. Chang CC and Lin CJ: LIBSVM: a Library for Support Vector Machines (Version 2.31) Wep page: citeseer.ist.psu.edu/chang011ibsvm.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubacki, J., Giesler, B., Parlitz, C. (2006). Active Autonomous Object Modeling for Recognition and Manipulation. In: Levi, P., Schanz, M., Lafrenz, R., Avrutin, V. (eds) Autonome Mobile Systeme 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30292-1_29

Download citation

Publish with us

Policies and ethics