Skip to main content

A Unified Architecture for the Control Software of a Robot Swarm: Design and Investigation Results

  • Conference paper
  • 2880 Accesses

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

In this work a unified approach for modeling of micro-robot swarms and for development of the controlling software architecture for individual robots is presented. The approach leads to swarm models with self-organized behavior and reflects the complexity of the considered swarm scenarios. The application of the presented approach is demonstrated by example scenarios with several complexity levels. Additionally, some techniques for the investigation of the phenomena of self-organization are discussed. These techniques allow for instance the determination of areas in the parameter space, i.e. the parameter settings leading to a specific aimed behavior. Through our simulation experiments we demonstrated, that the hardware requirements for applications using real micro-robots can be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium Systems. Wiley, New York, 1977.

    Google Scholar 

  2. H. Haken. Advanced Synergetics. Springer-Verlag, 1983.

    Google Scholar 

  3. J. Starke, M. Schanz, and H. Haken. Self-organized behaviour of distributed autonomous mobile robotic systems by pattern formation principles. In T. Lueth, R. Dillmann, P. Dario, and H. Worn, editors, Distributed Autonomous Robotic Systems 3, pages 89–100. Springer Verlag, Heidelberg, Berlin, New York, 1998.

    Google Scholar 

  4. M. Becht, T. Buchheim, P. Burger, G. Hetzel, G. Kindermann, R. Lafrenz, N. Oswald, M. Schanz, M. Schulé, P. Molnár, J. Starke, and P. Levi. Three-index assignment of robots to targets: An experimental verification. In IAS-6, 2000.

    Google Scholar 

  5. M. Schulé, M. Schanz, H. Felger, R. Lafrenz, J. Starke, and P. Levi. Control of autonomous robots in the robocup scenario using coupled selection equations. In P. Levi and M. Schanz, editors, Autonome Mobile Systeme, pages 57–63. Springer, 2001.

    Google Scholar 

  6. J. Starke. Dynamical assignments of distributed autonomous robotic systems to manufacturing targets considering environmental feedbacks. In Proceedings of the 17th IEEE International Symposium on Intelligent Control (ISIC’02), pages 678–683, Vancouver, 2002.

    Google Scholar 

  7. C.W. Reynolds. Steering behaviors for autonomous characters. Game Developers Conference 1999, San Francisco, 1999.

    Google Scholar 

  8. C.W. Reynolds. Interaction with groups of autonomous characters. Proceedings of Game Developers Conference 2000, 2000.

    Google Scholar 

  9. C. Saloma, G.J. Perez, G. Tapang, M. Lim, and C. Palmes-Saloma. Self-organized queuing and scale-free behavior in real escape panic. Proceedings of National Academy of Science, 100, 2003.

    Google Scholar 

  10. H. Yamaguchi and T. Arai. Distributed and autonomous control method for generating shape of multiple mobile robot group. In Proc. of the IEEE International Conference on Intelligent Robots and Systems, pages 800–807, 1994.

    Google Scholar 

  11. H. Yamaguchi and J.W. Burdick. Asymptotic stabilization of multiple nonholonomic mobile robots forming group formations. In Proc. of the 1998 IEEE International Conference on Robotics and Automation, pages 3573–3580, 1998.

    Google Scholar 

  12. S. Nouyan and M. Dorigo. Chain formation in a swarm of robots. Technical Report TR/IRIDIA/2004-18, IRIDIA, Université Libre de Bruxelles, March 2004.

    Google Scholar 

  13. V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole avoidance in a swarm-bot. Robotics and Autonomous Systems, 2005. to appear.

    Google Scholar 

  14. R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. “CLARAty: Coupled layer architecture for robotic autonomy”. Technical Report D-19975, JPL Technical Report, 2000.

    Google Scholar 

  15. I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and Won Soo Kim. “CLARAty: An architecture for reusable robotic software”. In Proc. of SPIE Aerosense Conference, Orlando, Florida, 2003.

    Google Scholar 

  16. R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivanid, V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling of embedded systems. In Embedded Software, First Intern. Workshop, LNCS 2211. Springer, 2001.

    Google Scholar 

  17. Th. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchical hybrid systems. In Proc. of the Fourth International Workshop on Hybrid Systems: Computation and Control (HSCC), LNCS 2034. Springer, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avrutin, V., Koch, A., Lafrenz, R., Levi, P., Schanz, M. (2006). A Unified Architecture for the Control Software of a Robot Swarm: Design and Investigation Results. In: Levi, P., Schanz, M., Lafrenz, R., Avrutin, V. (eds) Autonome Mobile Systeme 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30292-1_6

Download citation

Publish with us

Policies and ethics