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Abstract

The intramolecular model (Ehrenfeucht et al, 2001) for gene assembly in ciliates
considers three operations, ld, hi, and dlad that can assemble any micronuclear
gene pattern through folding and recombination: the molecule is folded so that
two occurrences of a pointer (short nucleotide sequence) get aligned and then
the sequence is rearranged through recombination of pointers. In general, the
sequence rearranged by one operation can be arbitrarily long and may consist of
many coding and non-coding blocks. We consider in this paper some restricted
variants of the three operations, where only one coding block is rearranged at a
time. We present in this paper the molecular model of these simple operations.
We also introduce a mathematical model for the simple operations, on three
levels of abstractions: MDS descriptors, signed permutations, and signed double
occurrence strings. Interestingly, we show that simple assemblies possess rather
involved properties: a gene pattern may have both successful and unsuccessful
assemblies and also more than one successful strategy.
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1 Introduction

The stichotrichous ciliates have a very unusual way of organizing their genomic
sequences. In the macronucleus, the somatic nucleus of the cell, each gene is a
contiguous DNA sequence. Genes are generally placed on their own very short
DNA molecules. In the micronucleus, the germline nucleus of the cell, the genes
are placed on long chromosomes separated by noncoding material. However,
the genes in the micronucleus are organized completely differently than in the
macronucleus: a micronuclear gene is broken into pieces called MDSs (macronu-
clear destined sequences) that are separated by noncoding blocks called IESs
(internally eliminated sequences). Moreover, the order of MDSs (compared
to their order in the macronuclear version of a given gene) may be shuffled
and some MDSs may be inverted. The ciliates may have several copies of the
macronucleus (all identical to each other) and several micronuclei (all identical
to each other) – the exact number of copies depends on the species. During
sexual reproduction, ciliates destroy the old macronuclei and transform a mi-
cronucleus into a new macronucleus. In this process, ciliates must assemble
all micronuclear genes by placing in the proper (orthodox) order all MDSs to
yield a functional macronuclear gene. Pointers, short nucleotide sequences that
identify each MDS, play an important role in the process. Each MDS M begins
with a pointer that is exactly repeated in the end of the MDS preceding M in
the orthodox order. The ciliates use the pointers to splice together all MDSs in
the correct order.

The intramolecular model for gene assembly, introduced in [10] and [28]
consists of three operations: ld, hi, and dlad. In each of these operations, the
micronuclear chromosome folds on itself so that two or more pointers get aligned
and through recombination, two or more MDSs get combined into a bigger
composite MDS. The process continues until all MDSs have been assembled.
For details related to ciliates and gene assembly we refer to [16], [21], [22], [23],
[24], [25], [26], [27]. For details related to the intramolecular model and its
mathematical formalizations we refer to [4], [5], [8], [9], [13], [14], [15], [29], [30],
as well as to the recent monograph [6]. For a different intermolecular model we
refer to [18], [19], [20].

There are no restrictions in general on the number of nucleotides between
the two pointers that should be aligned in a certain fold. However, all avail-
able experimental data are consistent with restricted versions of our operations,
in which between two aligned pointers there is at most one MDS, see [6], [7],
and [12]. In this paper we propose a mathematical model that takes this re-
striction into account by considering “simple” variants of ld, hi, and dlad. The
model is formulated in terms of MDS descriptors, signed permutations, and
signed double occurrence strings.

2 Mathematical preliminaries

For an alphabet Σ we denote by Σ∗ the set of all finite strings over Σ. For a
string u we denote by dom(u) the set of letters occurring in u. We denote by
λ the empty string. For strings u, v over Σ, we say that u is a substring of v,
denoted u ≤ v, if v = xuy, for some strings x, y.

Let Σn = {1, 2, . . . , n} and let Σn = {1, 2, . . . , n} be a signed copy of Σn.
For any i ∈ Σn we say that i is a unsigned letter, while i is a signed letter. For a
string u = a1a2 . . . am over Σn∪Σn, its inversion u is defined by u = am . . . a2a1,
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where a = a, for all a ∈ Σn.

A (unsigned) permutation π over an interval ∆ = {i, i+1, . . . , i+l} is a bijec-
tive mapping π : ∆ → ∆. We often identify π with the string π(i)π(i+1) . . . π(i+
l). We say that π is (cyclically) sorted if π = k (k +1) . . . i+ l i (i+1) . . . (k−1),
for some i ≤ k ≤ i+l. A signed permutation over ∆ is a string ψ over ∆∪∆ such
that ‖ψ‖ is a permutation over ∆. We say that ψ is (cyclically) sorted if ψ =
k (k +1) . . . i+ l i (i+1) . . . (k− 1) or ψ = (k − 1) . . . (i + 1) i (i + l) . . . (k + 1) k,
for some i ≤ k ≤ i + l. Equivalently, ψ is sorted if either ψ, or ψ is a sorted
unsigned permutation. In the former case we say that ψ is sorted in the orthodox
order, while in the latter case we say that ψ is sorted in the inverted order.

There is rich literature on sorting (signed and unsigned) permutations, both
in connection to their applications to computational biology in topics such as
genomic rearrangements or genomic distances, but also as a classical topic in
discrete mathematics, see, e.g., [1], [2], [11], [17].

3 The intramolecular model

We present in this section the intramolecular model: the folds and the recom-
binations for each of the operations ld, hi, and dlad, as well as their simple
variants.

3.1 The structure of micronuclear genes

A micronuclear gene is broken into coding blocks called MDSs (macronuclear
destined sequences), separated by non-coding blocks called IESs (internally-
eliminated sequences). In the macronucleus however, all MDSs are spliced to-
gether into contiguous coding sequences, with no IESs present anymore. It is
during gene assembly that ciliates eliminate IES and splice MDSs together. A
central role in this process is played by pointers, relatively short nucleotide se-
quences at both ends of each MDS. As it turns out, the pointer in the end of
the (i − 1)st MDS (in the order given by the macronuclear gene sequence), say
Mi−1 coincides as a nucleotide sequence with the pointer in the beginning of
the ith MDS, say Mi, for all i.

Based on these observation, we can represent the micronuclear genes by
their sequences of MDSs only. E.g., we represent the structure of the mi-
cronuclear gene encoding the actin protein in Sterkiella nova by the sequence
of MDSs M3 M4 M6 M5 M7 M9 M2 M1 M8, where we indicate that the second
MDS, M2, is inverted in the micronucleus. Moreover, in some cases, we rep-
resent each MDS by its pair of pointers: we denote by i the pointer in the
beginning of the ith MDS Mi. Thus, MDS Mi can be represented by its
pair of pointers as (i, i + 1). The first and the last MDSs are special, and
so M1 is represented by (b, 2) and Mk by (k, e), where b and e are special
beginning/ending markers. In this case, the gene in Figure 1 is represented
as (3, 4)(4, 5)(6, 7)(5, 6)(7, 8)(9, e)(3, 2)(b, 2)(8, 9). One more simplification can
also be made. The gene may be represented by the sequence of its pointers only,
thus ignoring the markers and the parenthesis above – this representation still
gives enough information to trace the gene assembly process. Details on model
forming can be found in [6].
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Figure 1: Structure of the micronuclear gene encoding actin protein in Sterkiella
nova.

3.2 Three molecular operations

Three molecular operations, ld, hi, dlad were conjectured in [10] and [28] for gene
assembly. In each of them, the micronuclear genome folds on itself in such a way
that certain types of folds may be formed and recombination may take place,
see Figure 2. It is important to note that all foldings are aligned by pointers.
We refer for more details to [6].

ld(i) ld(ii) ld(iii) hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Figure 2: Illustration of the ld, hi, dlad molecular operation showing in each
case: (i) the folding, (ii) the recombination, and (iii) the result.

It is known that ld, hi, and dlad can assemble any gene pattern or, in other
words, any sequence of MDSs can be transformed into an assembled MDS (b, e)
(in which case we say that it has been assembled in the orthodox order) or (e, b)
(we say it has been assembled in the inverted order), see [6] and [7] for formal
proofs.

3.3 Simple operations for gene assembly

Note that all three operations ld, hi, dlad are intramolecular, that is, a molecule
folds on itself to rearrange its coding blocks. For a different, intermolecular
model for gene assembly, see, [18], [19], and [20].

Since ld excises one circular molecule, that molecule can only contain non-
coding blocks (or, in a special case, contain the entire gene, see [6] for details on
boundary ld): we say that ld must always be simple in a successful assembly. As
such, the effect of ld is that it will combine two consecutive MDSs into a bigger
composite MDS. E.g., consider that MiMi+1 is a part of the molecule, i.e., MDS
Mi+1 succeeds Mi being separated by one IES I. Thus, pointer i + 1 has two
occurrences that flank I: one in the end of MDS Mi and the other one in the
beginning of MDS Mi+1. Then ld makes a fold as in Figure 2:ld(i) aligned by
pointer i + 1, excises IES I as a circular molecule and combines Mi and Mi+1

into a longer coding block as shown in Figure 2:ld(ii)-ld(iii).
In the case of hi and dlad, the rearranged sequences may be arbitrarily large.

E.g., in the actin I gene in S.nova, see Figure 1, pointer 3 has two occurrences:
one in the beginning of M3 and one, inverted, in the end of M2. Thus, hi is
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applicable to this sequence with the hairpin aligned on pointer 3, even though
five MDSs separate the two occurrences of pointer 3. Similarly, dlad is applicable
to the MDS sequence M2M8M6M5M1M7M3M10M9M4, with the double loops
aligned on pointers 3 and 5. Here the first two occurrences of pointers 3, 5
are separated by two MDSs (M8 and M6) and their second occurrences are
separated by four MDSs (M3, M10, M9, M4).

It turns out however that all available experimental data, see [3], are consis-
tent with applications of the so-called “simple” hi and dlad: particular instances
of hi and dlad where the folds, and thus the rearranged sequences contain only
one MDS. We define the simple operations in the following.

p q p r
δ1 δ2

q p r p
δ1 δ2

Figure 3: The MDS/IES structures where the simple hi-rule is applicable. Be-
tween the two MDSs there is only one IES.

p q r1 p q r2

δ1 δ2 δ3

r1 p q r2 p q
δ1 δ2 δ3

Figure 4: The MDS/IES structures where simple dlad-rules is applicable.
Straight line denotes one IES.

An application of the hi-operation on pointer p is simple if the part of the
molecule that separates the two copies of p in an inverted repeat contains only
one MDS and one IES. We have here two cases, depending on whether the first
occurrence of p is incoming or outgoing. The two possibilities are illustrated
in Figure 3, where the MDSs are indicated by rectangles and their flanking
pointers are shown.

An application of dlad on pointers p, q is simple if the sequence between the
first occurrences of p, q and the sequence between the second occurrences of p, q

consist of either one MDS or one IES. We have again two cases, depending on
whether the first occurrence of p is incoming or outgoing. The two possibilities
are illustrated in Figure 4.

Recall that an operation ld is always simple (by definition) in the intramolec-
ular model so that no coding sequence is lost.

One immediate property of simple operations is that they are not universal,
i.e., there are sequences of MDSs that cannot be assembled by simple operations.
One such example is the sequence (2, b)(4, e)(3, 4)(2, 3). Indeed, neither ld, nor
simple hi, nor simple dlad is applicable to this sequence.

4 Formal models for simple operations

We introduce in this section a formal model for simple operations. The model is
formulated on three level of abstraction: MDS descriptors, signed permutations,
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and signed double occurrence strings.

4.1 Modelling by MDS descriptors

As noted above, micronuclear gene patterns may be represented by the sequence
of their MDSs, while MDSs may be represented only by the pair of their flanking
pointers, ignoring the rest of the sequences altogether. Indeed, since all the folds
required by gene assembly are aligned on pointers, and the splicing of MDSs
takes place through pointers, the whole process can be tracked even with this
(remarkable) simplification. Thus, an MDS Mi is represented as(i, i + 1), while
its inversion is denoted as (i + 1, i). A sequence of such pairs will be called MDS
descriptor and will be used to represent the structure of micronuclear genes. We
define the notion formally in the following.

Let M = {b, e, b, e} be the set of markers and their inversions, and Πκ =
{2, 3, . . . , κ} ∪ {2, 3, . . . , κ} the set of pointers and their inversions, where κ is
the number of MDS in the gene of interest. In the following, κ is an arbitrary
but fixed nonnegative integer.

Let then

Γκ = { (b, e), (e, b), (b, i), (i, b), (i, e), (e, i) | 2 ≤ i ≤ κ }

∪ { (i, j) | 2 ≤ i < j ≤ κ }.

For each x ∈ Πκ ∪ M, let

x̂ =






1, if x ∈ {b, b},

κ + 1, if x ∈ {e, e},

‖x‖, if x ∈ Πκ.

For each δ = (x, y) ∈ Γκ, let δ̂ = [min{x̂, ŷ},max{x̂, ŷ} − 1].

Example 1. Let δ = (4, 5)(8, 6)(b, 4)(8, e)(5, 6). Then the pairs occurring in

δ have the following values: (̂4, 5) = [4, 4], (̂8, 6) = [6, 7], (̂b, 4) = [1, 3],

(̂8, e) = [8, 8] and (̂5, 6) = [5, 5].

Consider δ ∈ Γ∗

κ, δ = δ1δ2 . . . δn, with δi ∈ Γκ for each i. We say that δ is

an MDS descriptor if the intervals δ̂i, for i = 1, 2, . . . , n, form a partition of the
interval [1, κ + 1].

For each micronuclear gene pattern, its associated MDS descriptor is ob-
tained by denoting each MDS by its pair of pointers or markers.

Example 2. The MDS descriptor associated to gene actin in S.nova, see Fig-
ure 1, is (3, 4) (4, 5) (6, 7) (5, 6) (7, 8) (9, e) (3, 2) (b, 2) (8, 9).

We can now define the simple operations as rewriting rules on MDS descrip-
tors in accordance with the molecular model shown in Figures 3 and 4.

(1) For each pointer p ∈ Πκ, the ld-rule for p is defined as follows:

ldp(δ1(q, p)(p, r)δ2) = δ1(q, r)δ2, (ℓ1)

ldp((p,m1)(m2, p)) = (m2,m1), (ℓ2)

where q, r ∈ Πκ ∪ M, m1,m2 ∈ M and δ1, δ2 ∈ Γ∗

κ.
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(2) For each pointer p ∈ Πκ, the sh-rule for p is defined as follows:

shp(δ1(p, q)(p, r)δ2) = δ1(q, r)δ2, (h1)

shp(δ1(q, p)(r, p)δ2) = δ1(q, r)δ2, (h2)

where q, r ∈ Πκ ∪ M, and δi ∈ Γ∗

κ, for each i = 1, 2, 3.

(3) For each pointers p, q ∈ Πκ, the sd-rule for p, q is defined as follows:

sdp,q(δ1(p, q)δ2(r1, p)(q, r2)δ2) = δ1δ2(r1, r2)δ3, (d1)

sdp,q(δ1(r1, p)(q, r2)δ2(p, q)δ3) = δ1(r1, p)(q, r2)δ2(p, q)δ3, (d2)

where r1, r2 ∈ Πκ ∪ M, and δi ∈ Γ∗

κ, for each i = 1, 2, 3.

For an MDS descriptor δ and operations ϕ1, . . . , ϕn, n ≥ 1, a composition
ϕ = ϕκ . . . ϕ1 is an assembly strategy for δ, if ϕ is applicable to δ. Also, ϕ is
successful for δ if either ϕ(δ) = (b, e) (in which case we say that δ has been
assembled in the orthodox order) or ϕ(δ) = (e, b) (and we say that δ has been
assembled in the inverted order).

Example 3. The actin gene in S.nova may be assembled by simple operations
as follows. If δ = (3, 4) (4, 5) (6, 7) (5, 6) (7, 8) (9, e) (3, 2) (b, 2) (8, 9), then

ld4(δ) = (3, 5) (6, 7) (5, 6) (7, 8) (9, e) (3, 2) (b, 2) (8, 9)

sd5,6(ld4(δ)) = (3, 7) (7, 8) (9, e) (3, 2) (b, 2) (8, 9)

ld7(sd5,6(ld4(δ))) = (3, 8) (9, e) (3, 2) (b, 2) (8, 9)

sd8,9(ld7(sd5,6(ld4(δ)))) = (3, e) (3, 2) (b, 2)

sh3(sd8,9(ld7(sd5,6(ld4(δ))))) = (e, 2) (b, 2)

sh2(sh3(sd8,9(ld7(sd5,6(ld4(δ)))))) = (e, b).

4.2 Modelling by signed permutations

The gene structure of a ciliate can also be represented as a signed permutation,
denoting the sequence and orientation of each MDS, while omitting all IESs.
E.g., the signed permutation associated to gene actin I in S.nova is 3 4 6 5 7 9 2 1 8.
The rearrangements made by ld, hi, dlad at the molecular level leading to bigger
composite MDSs correspond to permutations that combine two already sorted
blocks into a longer sorted block. Thus, in the framework of permutations,
assembling a gene is equivalent to sorting the permutation associated to the
micronuclear gene as exaplined bellow. Indeed, the gene is assembled once all
MDSs are placed in the correct order.

When formalizing the gene assembly as a sorting of permutations we will
effectively ignore the operation ld observing that once such an operation becomes
applicable to a gene pattern, it can be applied at any later step of the assembly,
see [4] and [8] for a formal proof. In particular, we can assume that all ld

operations are applied in the last stage of the assembly, once all MDSs are
sorted in the correct order. In this way, the process of gene assembly can indeed
be described as a process of sorting the associated signed permutation, i.e.,
arranging the MDSs in the proper order, be that orthodox or inverted.

It is worth noting that the signed permutations are equivalent with the MDS
descriptors as far as their expressibility is concerned. Indeed, the mapping ψ

defined so that ψ(i) = (i, i+1), for all 1 < i < κ, ψ(1) = (b, 2), and ψ(κ) = (κ, e)
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is a bijective morphism between the set of signed permutations and the set of
MDS descriptors. Some differences do exist when modelling gene assembly with
descriptors or permutations. E.g., modelling the assembly with MDS descriptors
is a rewriting process of eliminating pointers, leading ultimately to assembled
descriptors with no pointers. On this level, we can keep track of every pointer
in the gene assembly – this is often useful. The downside is that the descriptors
introduce a tedious mathematical notation and reasoning about them is typically
involved. The signed permutations on the other hand represent an elegant,
classical topic in mathematics and a large literature about them exists. Gene
assembly on permutations becomes a process of sorting signed permutations, a
topic that is well-studied in the literature. An additional technical advantage
here is that the base alphabet of the permutation does not change through
the process as it is the case with the descriptors. The downside of the signed
permutations is that they do not denote the pointers explicitly.

The molecular model of simple operations in Figures 3 and 4 can be formal-
ized as a sorting of signed permutations as follows.

(2’) For each p ≥ 1, shp is defined as follows:

shp(x (p + 1) . . . (p + k + 1) p y) = x (p + k + 1) . . . (p + 1) p y,

shp(x p . . . (p − k)(p + 1) y) = x (p − k) . . . p (p + 1) y,

shp(x p (p + k + 1) . . . p + 1 y) = x p (p + 1) . . . (p + k + 1) y,

shp(x (p + 1)(p − k) . . . p y) = x (p + 1) p . . . (p − k) y,

where k ≥ 0 and x, y, z are signed strings over Σn. We denote Sh = {shi |
1 ≤ i ≤ n}.

(3’) For each p, 2 ≤ p ≤ n − 1, sdp is defined as follows:

sdp(x (p − i) . . . p y (p − i − 1) (p + 1) z) = x y (p − i − 1) (p − i) . . . p (p + 1) z,

sdp(x (p − i − 1) (p + 1) y (p − i) . . . p z) = x (p − i − 1) (p − i) . . . p (p + 1) y z,

where i ≥ 0 and x, y, z are signed strings over Σn. We also define sdp as
follows:

sdp(x (p + 1)(p − i − 1) y p . . . (p − i) z) = x (p + 1) p . . . (p − i) (p − i − 1) y z,

sdp(x p . . . (p − i) y (p + 1) (p − i − 1) z) = x y (p + 1) p . . . (p − i) (p − i − 1) z,

where i ≥ 0 and x, y, z are signed strings over Σn. We denote Sd =
{sdi, sdi | 1 ≤ i ≤ n}.

We say that a signed permutation π over the set of integers {i, i+1, . . . , i+l}
is sortable if there are operations φ1, . . . , φk ∈ Sh∪Sd such that (φ1 ◦ . . .◦φk)(π)
is a (cyclically) sorted permutation. We also say in this case that φ1 ◦ . . . ◦ φk

is a sorting strategy for π. We say that π is Sh-sortable if φ1, . . . , φk ∈ Sh and
we say that π is Sd-sortable if φ1, . . . , φk ∈ Sd. A composition φ is called an
unsuccessful strategy for π if φ(π) is an unsortable permutation.

Example 4. (i) Permutation π1 = 34 5 6 1 2 is sortable and a sorting strategy
is sh1(sh4(sh3(π1))) = 3 4 5 6 1 2. Permutation π′

1 = 34 5 6 1 2 is unsortable.
Indeed, no sh operations and no sd operation is applicable to π′

1.

(ii) Permutation π2 = 13 4 2 5 is sortable and it has only one sorting strategy:
sh4(sd2(π2)) = 1 2 3 4 5.
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(iii) There exist permutations with several successful strategies, even leading
to different sorted permutations. One such permutation is π3 = 35 1 2 4.
Indeed, sd3(π3) = 5 1 2 3 4, while sd4(π3) = 3 4 5 1 2.

(iv) The simple operations yield a nondeterministic process: there are permu-
tations having both successful and unsuccessful sorting strategies. One
such permutation is π4 = 13 5 7 9 2 4 6 8. Note that sd3(sd5(sd7(π4))) =
1 9 2 3 4 5 6 7 8 is an unsortable permutation. However, π4 can be sorted,
e.g., by the following strategy: sd2(sd4(sd6(sd8(π4)))) = 1 2 3 4 5 6 7 8 9.

(v) Permutation π5 = 13 5 2 4 has both successful and unsuccessful sorting
strategies. Indeed, sd3(π5) = 1 5 2 3 4, an unsortable permutation. How-
ever, sd2(sd4(π5)) = 1 2 3 4 5 is sorted.

(vi) Applying a cyclic shift to a permutation may render it unsortable. Indeed,
permutation 2 1 4 3 5 is sortable, while 5 2 1 4 3 is not.

(vii) Consider the signed permutation π7 = 111 3 9 5 7 2 4 13 6 15 8 10 12 14 16.
Operation sd may be applied to π7 on integers 3, 6, 9, 11, 13, and 15 .
Doing that however leads to a unsortable permutation:

sd3(sd6(sd9(sd11(sd13(sd15(π7)))))) = 1 5 6 7 2 3 4 8 9 10 11 12 13 14 15 16.

However, omitting sd3 from the above composition leads to a sorting strat-
egy for π7: let

π′

7 = sd6(sd9(sd11(sd13(sd15(π7))))) = 1 3 5 6 7 2 4 8 9 10 11 12 13 14 15 16.

Then sd2(sd4(π
′

7)) is a sorted permutation.

(viii) Consider the signed permutation π8 associated to the actin gene in S.nova,
π8 = 34 6 5 7 9 2 1 8. A sorting strategy for π8 is shown bellow (compare it
with Example 3):

sd5(π8) = 3 4 5 6 7 9 2 1 8

sd8(sd5(π8)) = 3 4 5 6 7 8 9 2 1

sh2(sd8(sd5(π8))) = 9 8 7 6 5 4 3 2 1

sh1(sh2(sd8(sd5(π8)))) = 9 8 7 6 5 4 3 2 1.

4.3 Modelling by signed double occurrence strings

The structure of a gene may be simplified by representing only the sequence of
its pointers, see [4], [6], and [8]. Indeed, since the assembled gene has no pointers
anymore and all the operations are based on the sequence and orientation of
pointers, such a simplification is possible. The strings we obtain are called
signed double occurrence strings and are defined in the following.

Let Σ be an alphabet and Σ its signed copy. A string v ∈ (Σ ∪ Σ)∗ is a
signed double occurrence string if for every letter a ∈ dom(v), v has exactly two
occurrences from the set {a, a}. We also say then that v is a legal string. If v

contains both substrings a and a, then a is positive in u; otherwise, a is negative
in u.

Example 5. Consider the signed string u = 24 3 2 5 3 4 5 over ∆5. Clearly, u

is legal. Pointers 2 and 5 are positive in u, while 3 and 4 are negative in u.
On the other hand, the string w = 24 3 2 5 3 5 is not legal, since 4 has only one
occurrence in w.
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We can associate a unique legal string to any gene pattern by writing its
sequence of pointers only. Formally, we can define the following mapping:
µ((i, j)) = i j, for all 2 ≤ i < j ≤ κ, µ((b, k)) = i, µ((k, e)) = i, for all
2 ≤ k ≤ κ, and µ((b, e)) = λ. Then µ defines a morphism from the set of
MDS descriptors to the set of legal string. We say that µ(δ) is the legal string
associated to δ.

Example 6. The MDS descriptor associated to the actin gene in S.nova is
δ = (3, 4) (4, 5) (6, 7) (5, 6) (7, 8) (9, e) (3, 2) (b, 2) (8, 9). Its legal string, obtained
from δ by writing only the sequence of pointers and their orientations is

3 4 4 5 6 7 5 6 7 8 9 3 2 2 8 9.

We refer to [6] for the formalization of the intramolecular model on the
level of legal strings. We only define in the following the simple operations
as rewriting rules on legal strings. Without risk of confusion, we will use the
notation ld, sh and sd also for legal strings.

The simple operations can be defined as rewriting rules on legal strings as
follows.

(1”) For each pointer p ∈ Πκ, the ld-rule for p is defined by

ldp(u1 p p u2) = u1 u2.

where u1, u2 ∈ (Σ ∪ Σ)∗. Let Ld = {ldp | p ∈ Πκ, κ ≥ 2}.

(2”) For each pointer p ∈ Πκ, the sh-rule for p is defined by

shp(u1 p u2 p u3) = u1 u2 u3,

where u1, u2, u3 ∈ (Σ∪Σ)∗ and |u2| ≤ 1. Let Sh = {shp | p ∈ Πκ, κ ≥ 2}.

(3”) For each pointers p, q ∈ Πκ, the sd-rule for p, q is defined by

sdp,q(u1 p q u2 p qu3) = u1 u2 u3,

where u1, u2, u3 ∈ (Σ ∪ Σ)∗. Let Sd = {sdp,q | p, q ∈ Πκ, κ ≥ 2}.

A composition ϕ = ϕn . . . ϕ1 of operations from Ld∪Sh∪Sd is a string
reduction of u, if ϕ is applicable to u. Also, ϕ is successful for u if ϕ(u) = λ,
the empty string.

Example 7. The signed double occurrence string associated to the actin gene
in S.nova is u = 34 4 5 6 7 5 6 7 8 9 3 2 2 8 9. Here is a successful reduction of u

using only simple operations (compare it with Examples 3 and 4(viii)):

ld4(u) = 3 5 6 7 5 6 7 8 9 3 2 2 8 9

sd5,6(ld4(u)) = 3 7 7 8 9 3 2 2 8 9

ld7(sd5,6(ld4(u))) = 3 8 9 3 2 2 8 9

sd8,9(ld7(sd5,6(ld4(u)))) = 3 3 2 2

sh3(sd8,9(ld7(sd5,6(ld4(u))))) = 2 2

sh2(sh3(sd8,9(ld7(sd5,6(ld4(u)))))) = λ.

9



5 Discussion

In this paper we introduced a molecular model of the so-called simple opera-
tions, a restricted variant of the intramolecular model for gene assembly. In
simple operations the type of fold that a micronuclear chromosome has to make
during an assembly is very restricted: only one MDS is moved during the sub-
sequent recombination. While this variant is not universal anymore, it is still
powerful enough to assemble all known micronuclear gene patterns. A num-
ber of questions (research topics) considering simple operations are natural and
worth investigating. One of the most important ones is: what are the gene pat-
terns that can be assembled using the simple operations? Also, we noticed that,
while the simple model is not universal anymore, it remains non-deterministic:
there are gene patterns that have both successful and unsuccessful assembly
strategies. Deciding if a given pattern may be assembled by simple operations
and finding/characterizing its successful strategies is another important prob-
lem. From a computational point of view, a study of the complexity of the
simple assemblies seems very interesting. A detailed study of simple operations
was already initiated in [12].
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