Skip to main content

DNA Nanotechnology: an Evolving Field

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

  • 980 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Alberti and J.L. Mergny. DNA duplex-quadruplex exchange as the basis for a nano-molecular machine. Proceedings of the National Academy of Sciences of the United States of America, 100:1569–1573, 2003.

    Article  Google Scholar 

  2. J. Bath, S. Green, and A.J. Turberfield. A free-running DNA motor powered by a nicking enzyme. Angewandte Chemie International Edition, 2005. In press. Preprint DOI: 10.1002/anie.200501262.

    Google Scholar 

  3. S. Beyer, P. Nickels, and F.C. Simmel. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Letters, 5:719–722, 2005.

    Article  Google Scholar 

  4. N. Chelyapov, et al. DNA triangles and self-assembled hexagonal tilings. Journal of the American Chemical Society, 126:13924–13925, 2004.

    Article  Google Scholar 

  5. J.H. Chen and N.C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350:631–633, 1991.

    Article  Google Scholar 

  6. Y. Chen, S.H. Lee, and C. Mao. A DNA nanomachine based on a duplex-triplex transition. Angewandte Chemie International Edition, 43:5335–5338, 2004.

    Article  Google Scholar 

  7. Y. Chen and C. Mao. Reprogramming DNA-directed reactions on the basis of a DNA conformational change. Journal of the American Chemical Society, 126:13240–13241, 2004.

    Article  Google Scholar 

  8. Y. Chen, M.S. Wang, and C.D. Mao. An autonomous DNA nanomotor powered by a DNA enzyme. Angewandte Chemie International Edition, 43:3554–3557, 2004.

    Article  Google Scholar 

  9. A. Chworos, et al. Building programmable jigsaw puzzles with RNA. Science, 306:2068–2072, 2004.

    Article  Google Scholar 

  10. S.A. Claridge, et al. Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chemistry of Materials, 17:1628–1635, 2005.

    Article  Google Scholar 

  11. Z. Deng, Y. Tian, S.-H. Lee, A.E. Ribbe, and C. Mao. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angewandte Chemie International Edition, 44:3582–3585, 2005.

    Article  Google Scholar 

  12. Z.X. Deng and C.D. Mao. Molecular lithography with DNA nanostructures. Angewandte Chemie International Edition, 43:4068–4070, 2004.

    Article  Google Scholar 

  13. B. Ding, R. Sha, and N.C. Seeman. Pseudohexagonal 2D DNA crystals from double crossover cohesion. Journal of the American Chemical Society, 126:10230–10231, 2004.

    Article  Google Scholar 

  14. L.H. Eckardt, et al. DNA nanotechnology: Chemical copying of connectivity. Nature, 420:286–286, 2002.

    Article  Google Scholar 

  15. A. Ekani-Nkodo, A. Kumar, and D.K. Fygenson. Joining and scission in the self-assembly of nanotubes from DNA tiles. Physical Review Letters, 93, 2004.

    Google Scholar 

  16. L.P. Feng, S.H. Park, J.H. Reif, and H. Yan. A two-state DNA lattice switched by DNA nanoactuator. Angewandte Chemie International Edition, 42:4342–4346, 2003.

    Article  Google Scholar 

  17. T.J. Fu and N.C. Seeman. DNA double-crossover molecules. Biochemistry, 32:3211–3220, 1993.

    Article  Google Scholar 

  18. P. Hazarika, B. Ceyhan, and C.M. Niemeyer. Reversible switching of DNA-gold nanoparticle aggregation. Angewandte Chemie International Edition in English, 43:6469–6471, 2004.

    Article  Google Scholar 

  19. N.R. Kallenbach, R.I. Ma, and N.C. Seeman. An immobile nucleic-acid junction constructed from oligonucleotides. Nature, 305:829–831, 1983.

    Article  Google Scholar 

  20. A.A. Koshkin, et al. LNA (locked nucleic acid): An RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 120:13252–13253, 1998.

    Article  Google Scholar 

  21. T.H. LaBean, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society, 122:1848–1860, 2000.

    Article  Google Scholar 

  22. J.D. Le, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Letters, 4:2343–2347, 2004.

    Article  Google Scholar 

  23. H.Y. Li, S.H. Park, J.H. Reif, T.H. LaBean, and H. Yan. DNA-templated self-assembly of protein and nanoparticle linear arrays. Journal of the American Chemical Society, 126:418–419, 2004.

    Article  Google Scholar 

  24. J.W.J. Li and W.H. Tan. A single DNA molecule nanomotor. Nano Letters, 2:315–318, 2002.

    Article  Google Scholar 

  25. S.P. Liao and N.C. Seeman. Translation of DNA signals into polymer assembly instructions. Science, 306:2072–2074, 2004.

    Article  Google Scholar 

  26. D. Liu, S.H. Park, J.H. Reif, and T.H. LaBean. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proceedings of the National Academy of Sciences of the United States of America, 101:717–722, 2004.

    Article  Google Scholar 

  27. D. Liu, M.S. Wang, Z.X. Deng, R. Walulu, and C.D. Mao. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. Journal of the American Chemical Society, 126:2324–2325, 2004.

    Article  Google Scholar 

  28. D.S. Liu and S. Balasubramanian. A proton-fuelled DNA nanomachine. Angewandte Chemie International Edition, 42:5734–5736, 2003.

    Article  Google Scholar 

  29. Y. Liu, C. Lin, H. Li, and H. Yan. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angewandte Chemie International Edition, 2005. In press. Preprint DOI: 10.1002/anie.200501089.

    Google Scholar 

  30. C.J. Loweth, W.B. Caldwell, X.G. Peng, A.P. Alivisatos, and P.G. Schultz. DNA-based assembly of gold nanocrystals. Angewandte Chemie International Edition, 38:1808–1812, 1999.

    Article  Google Scholar 

  31. R.I. Ma, N.R. Kallenbach, R.D. Sheardy, M.L. Petrillo, and N.C. Seeman. Three-arm nucleic acid junctions are flexible. Nucleic Acids Research, 14:9745–9753, 1986.

    Google Scholar 

  32. C.D. Mao, W.Q. Sun, and N.C. Seeman. Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society, 121:5437–5443, 1999.

    Article  Google Scholar 

  33. C.D. Mao, W.Q. Sun, Z.Y. Shen, and N.C. Seeman. A nanomechanical device based on the B–Z transition of DNA. Nature, 397:144–146, 1999.

    Article  Google Scholar 

  34. F. Mathieu, et al. Six-helix bundles designed from DNA. Nano Letters, 5:661–665, 2005.

    Article  Google Scholar 

  35. J.C. Mitchell, J.R. Harris, J. Malo, J. Bath, and A.J. Turberfield. Self-assembly of chiral DNA nanotubes. Journal of the American Chemical Society, 126:16342–16343, 2004.

    Article  Google Scholar 

  36. P.E. Nielsen, M. Egholm, and O. Buchardt. Peptide nucleic-acid (PNA) — a DNA mimic with a peptide backbone. Bioconjugate Chemistry, 5:3–7, 1994.

    Article  Google Scholar 

  37. C.M. Niemeyer. DNA-protein nanostructures, In C.M. Niemeyer and C.A. Mirkin, editors, Nanobiotechnology: Concepts, Applications and Perspectives, pages 227–243. Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  38. C.M. Niemeyer, M. Adler, S. Gao, and L. Chi. Supramolecular DNA-streptavidin nanocircles with a covalently attached oligonucleotide moiety. Journal of Biomolecular Structure Dynamics, 20:223–230, 2002.

    Google Scholar 

  39. C.M. Niemeyer and B. Ceyhan. DNA-directed functionalization of colloidal gold with proteins. Angewandte Chemie International Edition in English, 40:3685–3688, 2001.

    Article  Google Scholar 

  40. C.M. Niemeyer, T. Sano, C.L. Smith, and C.R. Cantor. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA-streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Research, 22:5530–5539, 1994.

    Google Scholar 

  41. S.H. Park, et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Letters, 5:729–733, 2005.

    Article  Google Scholar 

  42. S.H. Park, et al. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Letters, 5:693–696, 2005.

    Article  Google Scholar 

  43. J. Qi, X.J. Li, X.P. Yang, and N.C. Seeman. Ligation of triangles built from bulged 3-arm DNA branched junctions. Journal of the American Chemical Society, 118:6121–6130, 1996.

    Article  Google Scholar 

  44. P.W.K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology, 2:2041–2053, 2004.

    Article  Google Scholar 

  45. P.W.K. Rothemund, et al. Design and characterization of programmable DNA nano-tubes. Journal of the American Chemical Society, 126:16344–16352, 2004.

    Article  Google Scholar 

  46. N.C. Seeman. Nucleic acid junctions and lattices. Journal of Theoretical Biology, 99:237–247, 1982.

    Article  Google Scholar 

  47. N.C. Seeman. From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences, 30:119–125, 2005.

    Article  Google Scholar 

  48. N.C. Seeman and P.S. Lukeman. Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports on Progress in Physics, 68:237–270, 2005.

    Article  Google Scholar 

  49. W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nano Letters, 4:1203–1207, 2004.

    Article  Google Scholar 

  50. W.M. Shih, J.D. Quispe, and G.F. Joyce. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427:618–621, 2004.

    Article  Google Scholar 

  51. J.S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126:10834–10835, 2004.

    Article  Google Scholar 

  52. L. Stryer. Biochemistry. W. H. Freeman, New York, 1995.

    Google Scholar 

  53. Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie International Edition, 2005. In press. Preprint DOI: 10:1002/anie.200463101.

    Google Scholar 

  54. Y.L. Wang, J.E. Mueller, B. Kemper, and N.C. Seeman. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry, 30:5667–5674, 1991.

    Article  Google Scholar 

  55. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-assembly. DNA Computing, 2943:126–144, 2004.

    MathSciNet  Google Scholar 

  56. E. Winfree, F.R. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-dimensional DNA crystals. Nature, 394:539–544, 1998.

    Article  Google Scholar 

  57. H. Yan, T.H. LaBean, L.P. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proceedings of the National Academy of Sciences of the United States of America, 100:8103–8108, 2003.

    Article  Google Scholar 

  58. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 301:1882–1884, 2003.

    Article  Google Scholar 

  59. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled by hybridization topology. Nature, 415, 2002.

    Google Scholar 

  60. X.P. Yang, L.A. Wenzler, J. Qi, X.J. Li, and N.C. Seeman. Ligation of DNA triangles containing double crossover molecules. Journal of the American Chemical Society, 120:9779–9786, 1998.

    Article  Google Scholar 

  61. P. Yin, H. Yan, X.G. Daniell, A.J. Turberfield, and J.H. Reif. A unidirectional DNA walker that moves autonomously along a track. Angewandte Chemie International Edition, 43:4906–4911, 2004.

    Article  Google Scholar 

  62. B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, and J.L.A. Newmann. DNA-fuelled molecular machine made of DNA. Nature, 406, 2000.

    Google Scholar 

  63. D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, and A.P. Alivisatos. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Letters, 1:32–35, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yan, H., Liu, Y. (2006). DNA Nanotechnology: an Evolving Field. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics