Skip to main content

Combined Learning Algorithm for a Self-Organizing Map with Fuzzy Inference

  • Conference paper
Computational Intelligence, Theory and Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 33))

Abstract

A combined learning algorithm for a self-organizing map (SOM) is proposed. The algorithm accelerates information processing due to the rational choice of the learning rate parameter, and can work when the number of clusters is unknown, as well as when the clusters are overlapping. This is achieved via the introduction of fuzzy inference that determines the level of membership of the classified pattern to each of the available classes. For neighborhood and membership functions, raised cosine is used. This function provides more flexibility and some new properties for the self-learning and clustering procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  2. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, N.Y., 1981.

    MATH  Google Scholar 

  3. P. Vuorimaa. Fuzzy self-organizing maps. Fuzzy Sets and Systems, 66:223–231, 1994.

    Article  Google Scholar 

  4. P. Vuorimaa. Use of the fuzzy self-organizing maps in pattern recognition. In Proc. 3-rd IEEE Int. Conf. Fuzzy Systems “FUZZ-IEEE’94”, pages 798–801, Orlando, USA, 1994.

    Google Scholar 

  5. E. C.-K. Tsao, J. C. Bezdek, and N. R. Pal. Fuzzy kohonen clustering networks. Pattern Recognition, 27:757–764, 1994.

    Article  Google Scholar 

  6. R. D. Pascual-Marqui, A. D. Pascual-Montano, K. Kochi, and J. M. Caraso. Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recognition, 34:2395–2402, 2001.

    Article  MATH  Google Scholar 

  7. S. Haykin. Neural Networks. A Comprehensive Foundation. Prentice Hall, Inc., Upper Saddle River, N.Y., 1999.

    MATH  Google Scholar 

  8. A. Dvoretzky. On stochastic approximation. In Proc. 3-rd Berkeley Symp. Math. Statistics and Probability, volume 1, pages 39–55. University of California Press, 1956.

    MathSciNet  Google Scholar 

  9. Ye. V. Bodyanskiy, I. P. Pliss, and T. V. Solovyova. Multistep optimal predictors for multi-variate non-stationary stochastic processes. Dokl. AN USSR, (12):47–49, 1986.

    Google Scholar 

  10. G. C. Goodwin, P. J. Ramadge, and P. E. Caines. A globally convergent adaptive predictor. Automatica, 17(1):135–140, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Cottrel and J. Fort. A stochastic model of retinotopy: a self-organizing process. Biological Cybernetics, 53:405–411, 1986.

    Article  MathSciNet  Google Scholar 

  12. H. Ritter and K. Shulten. On the stationary state of the Kohonen self-organizing sensory mapping. Biological Cybernetics, 54:234–249, 1986.

    Article  Google Scholar 

  13. H. Ritter and K. Shulten. Covergence properties of Kohonen’s topology conserving maps: fluctuations, stability, and climension selection. Biological Cybernetics, 60:59–71, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. J. Schilling, J. J. Carroll, and A. F. Al-Ajlouni. Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans. on Neural Networks, 12(1):1–15, 2001.

    Article  Google Scholar 

  15. S. Grossberg. Classical and instrumental learning by neural networks. In Proc. “Progress in Theoretical Biology”, volume 3, pages 57–141, N.Y., 1974. Academic Press.

    Google Scholar 

  16. Ye. Bodyanskiy, O. Chaplanov, V. Kolodyazhniy, and P. Otto. Adaptive quadratic radial basis function network for time series forecasting. In Proc. East West Fuzzy Coll. 2002, 10-th Zittau Fuzzy Coll., pages 164–172, Zittau/Goerlitz, 2002. HS.

    Google Scholar 

  17. Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy, and J. Wernstedt. Probabilistic neuro-fuzzy network with nonconventional activation functions. Lecture Notes in Artificial Intelligence, v.2773:973–979, 2003.

    Google Scholar 

  18. Ye. Bodyanskiy, Ye. Gorshkov, and V. Kolodyazhniy. Resource-allocating probabilistic neuro-fuzzy network. In Proc. Third Conf. of the European Society for Fuzzy Logic and Technology (EUSFLAT-2003), 10–12 September, 2003, pages 392–395, Zittau, Germany, 2003.

    Google Scholar 

  19. P. M. Murphy and D. W. Aha. UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, CA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodyanskiy, Y., Gorshkov, Y., Kolodyazhniy, V., Stephan, A. (2005). Combined Learning Algorithm for a Self-Organizing Map with Fuzzy Inference. In: Reusch, B. (eds) Computational Intelligence, Theory and Applications. Advances in Soft Computing, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31182-3_59

Download citation

  • DOI: https://doi.org/10.1007/3-540-31182-3_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22807-3

  • Online ISBN: 978-3-540-31182-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics