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Abstract. When analyzing business cycle data, one observes that the relevant predictor variables are often
highly correlated. This paper presents a method to obtain measures of importance for the classification of data in
which such multicollinearity is present. In systems with highly correlated variables it is interesting to know what
changes are inflicted when a certain predictor is changed by one unit and all other predictors according to their
correlation to the first instead of a ceteris paribus analysis. The approach described in this paper uses directional
derivatives to obtain such importance measures. It is shown how the interesting directions can be estimated and
different evaluation strategies for characteristics of classification models are presented. The method is then applied
to linear discriminant analysis and multinomial logit for the classification of west German business cycle phases.

1 Important Measures in Classification

1.1 Economic Multipliers

Usually, the influence of one variable xi out of a set of variables xj, j = 1, . . . , p, on a
function f at a given point x0 can be measured by the partial derivative ∂f(x0)/∂xi. This
measure can be interpreted as the change of f , if xi is changed by one unit, given that
the other variables xj, j = 1, . . . , p, i 6= j, are held constant (ceteris paribus).

This information is only of value, if the variables are uncorrelated. An interesting approach
to obtain more reliable measures that can be interpreted like economic multipliers and is
based upon averaging over orderings, see Lindeman et al. (1980) and Kruskal (1987) for
linear regression and Enache and Weihs (2005) for classification.

If multicollinearity is present, the economic multipliers obtained by these methods only
reflect the relative importance of the predictors. The effect of changing one predictor
variable, e.g. by fiscal policy, on the result is not measured realistically, since the change
in one variable inflicts changes in the other variables as well.

1.2 Directional Derivatives

It is interesting to analyze the effects of changing one predictor along with the change of
all the correlated variables on the result, for example, if one is interested in the effects
of a certain fiscal policy action. To incorporate the relationships to all other variables
correctly, directional derivatives instead of partial derivatives have to be used.

? This work has been supported by the Collaborative Research Center ‘Reduction of Complexity in Multivariate
Data Structures’ (SFB 475) of the German Research Foundation (DFG).
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The directional derivative of function f with respect to x ∈ IRp at point x0 in direction
d ∈ IRp, ||d|| = 1, is defined as:

∂df(x0)

∂dx
= lim

t→0

f(x0 + td) − f(x0)

t
, (1)

if the limit exists. For practical purposes, the relation between directional derivatives and
the gradient can be used1:

∂df(x0)

∂dx
= d ′∂f(x0)

∂x
. (2)

1.3 Interpretation of Directional Derivatives

Obviously, partial derivatives are a special case of directional derivatives, that is, deriv-
atives in direction of the unit vectors. With directional derivatives, not only the change
of one variable xi is analyzed, but the simultaneous change of all variables x1, . . . , xp,
described by the direction in d. It can be interpreted geometrically as the slope of the
tangential hyperplane at point x0, but unlike partial derivatives, the direction in which
the slope is measured is not the coordinate axis of xi but rather the direction described
by d.

1.4 Estimation of the Direction Vectors

In order to develop importance measures based on directional derivatives, the correct
direction vectors have to be chosen. The direction vector corresponding to a change of
xj by one unit and the corresponding changes of the other variables according to their
correlation with xj is denoted by dj. The single elements of the direction vectors can be
estimated using simple linear regressions of all xi on xj: xi = aij + bijxj + εi, i = 1, . . . , p.
The coefficients bij can be estimated by sij/sjj and combined to a vector d̃j of estimated
slope coefficients which then has to be normalized to unit length, which gives

d̂j =
d̃j

||d̃j||
=


s1j

sjj
· sjj√Pp

i=1 s2
ij

...
spj

sjj
· sjj√Pp

i=1 s2
ij

 =


s1j√Pp
i=1 s2

ij

...
spj√Pp
i=1 s2

ij

 =
S•j

||S•j||
, (3)

that is, the jth normalized column of the empirical covariance matrix.

1.5 Importance Criteria in Classification

In classification models with K classes the influence of p predictor variables x on p(k|x),
the posterior class probability of class k, is of interest. Since there are K classes, the data
has to be split into classes not only to estimate class means and covariance matrices, but
also individual class specific direction vectors dki for each variable i. The partial derivatives

1 The prime ′ denotes the matrix transpose and ∂f(x0)
∂x the gradient.
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of selected classification models are given in section 2. The directional derivatives can then
easily be computed using equation (2). High positive values meaning a strong increase of
the posterior class probability due to the change of the predictor and high negative values
indicating a strong decrease.

The posterior probability function is usually not linear and therefore the points at which
the derivatives are to be evaluated are to be chosen carefully. In classification it is neces-
sary to distinguish different importance criteria, which help choosing the corresponding
evaluation strategy2.

Importance for class characterization

This importance measure should give an impression about the influence of the respective
variable for staying inside the class, if the class membership is already quite obvious. For
this purpose, the direction derivative can be evaluated at the respective class mean.

Importance for class separation

• evaluate at the borders between classes and average

• evaluate at uniformly distributed randomly chosen points which are closest to the class
borders and average

Such measures should give an impression about which variable has a strong importance
for staying inside the class or entering another class.

The first strategy would be more precise, but for some classification methods, the class
borders cannot be obtained analytically and have to be searched using grid search algo-
rithms, which are computationally demanding for higher dimensions. The second strategy
can then be used as an approximation.

Overall importance

• evaluate at all data points in the sample and average

• evaluate at equally distanced grid points and average

• evaluate at uniformly distributed random points and average

The first strategy takes the characteristics of the data into account, whereas the second
strategy tries to cover the space as best as possible. For high dimensional problems, this is
probably computationally not feasible and therefore the third strategy is more convenient
as an approximation of the second.

2 In the classification of times series data, especially cycle data, it may also be interesting, which variables have
the most influence on the class change and one could evaluate the derivatives at the data points where these
changes occur.
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2 Derivatives for the Selected Classification Models

Since classical LDA without dimension reduction is used here, both LDA and Logit have
K linear discriminant functions, and can therefore been written as

p(k|x) =
exp(αk + x′βk)∑K
i=1 exp(αi + x′βi)

, i = 1, . . . , K, (4)

with gradients

∂p(k|x0)

∂x
= p(k|x0) ·

[
K∑

i=1

p(i|x0) · (βk − βi)
′

]
, k = 1, . . . , K. (5)

For LDA the coefficients are αk = −1
2
µ′

kΣ
−1µk +ln(p(k)) and βk = Σ−1µk. For the Logit

model, α1 and β1 are set to 0 (reference class). The unknown parameters for each model
can be estimated from the sample.

3 Classification of the West-German Business Cycle

3.1 Data

The application of the importance measures is the classification of business cycle phases.
Quarterly west german macro economic data is analyzed, consisting of 157 observations
from 4/1955 to 4/1994. There are four classes corresponding to the four phases up-
swing (“up”), upper turning point (“utp”), downswing (“down”), and lower turning point
(“ltp”).

Heilemann and Münch (1996) reduced the predictors to a set of 13 important variables:

Y yearly growth rate of the gross national product (GNP)
C yearly growth rate of private consumption
GD government deficit as a proportion of the GNP
L yearly growth rate of the number of wage and salary earners
X netto exports as a proportion of the GNP
M1 yearly growth rate of money supply
IE yearly growth rate of equipment investments
IC yearly growth rate of construction investments
LC yearly growth rate of labour unit costs
PY yearly growth rate of GNP price deflator
PC yearly growth rate of the consumer price index
RS nominal short term interest rate
RL real long term interest rate

There is multicollinearity present in the data. The highest positive correlations are 0.868
for LC and PY and 0.776 for C and Y. The highest negative correlations are -0.656 for
RL and LC and -0.656 for RL and PY. The variable PY has a variance inflation factor3

3 VIF is the factor, by which the variance of the estimated linear regression coefficient is increased due to
multicollinearity. Typically, 10 is considered a critical value, in some references 7.
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(VIF, e.g. Neter et al. (1990)) of 16.254, which is definitely above 10. There are also three
variables (Y, LC, and RL) with variance inflation factors over 7. VIF’s are computed for
the whole sample. Within-class mutlicollinearity is even stronger (e.g. VIF = 275.467 for
PY).

3.2 Results

Class Characterization

Table 1 shows the results for both, the linear discriminant analysis and the multinomial
logit.

up utp down ltp
Var LDA Logit LDA Logit LDA Logit LDA Logit

Y 0.0003 -0.0007 0.0350 0.0210 -0.0086 -0.0072 -0.0129 -0.0010
C -0.0046 -0.0026 0.0332 0.0162 -0.0063 -0.0046 -0.0076 -0.0004
GD -0.0057 -0.0034 -0.0508 -0.0204 -0.0061 -0.0055 -0.0313 -0.0022
L 0.0012 -0.0021 0.0543 0.0290 -0.0077 -0.0072 -0.0218 -0.0016
X 0.0141 0.0050 0.0399 0.0180 0.0050 0.0093 -0.0036 -0.0008
M1 -0.0031 -0.0014 0.0425 0.0222 -0.0110 -0.0024 -0.0004 0.0000
IE 0.0028 0.0003 0.0267 0.0212 -0.0064 -0.0064 -0.0079 -0.0006
IC -0.0012 -0.0008 0.0069 0.0019 -0.0069 -0.0028 -0.0109 -0.0008
LC -0.0120 -0.0066 -0.0681 -0.0364 0.0060 -0.0017 0.0079 0.0009
PY -0.0112 -0.0056 -0.0527 -0.0260 0.0056 -0.0030 0.0125 0.0011
PC -0.0197 -0.0049 -0.0158 -0.0120 0.0100 -0.0018 0.0157 0.0012
RS 0.0003 0.0005 0.0374 0.0142 0.0176 0.0037 0.0068 0.0006
RL 0.0058 0.0049 0.0582 0.0272 0.0021 0.0011 -0.0038 -0.0006

Table 1. Variable importances (directional derivatives) for class characterization. The results of classical linear
discriminant analysis and multinomial logit.

The three most important variables for class “up” using LDA are PC, X, and LC. The
directional derivative for PC is -0.0197. This means if PC is increased by one unit (and all
other variables according to their relationship with this variable) and the system is really
deep in an upswing phase then the probability of remaining in that phase is decreasing by
1.97 percent points. Using the logit model the variable PY appears to be more important
than PC. For the “utp” class the three most important variables are LC, RL, and L in both
models. In the “down” class the two models identify different sets of important variables.
Whereas in LDA the three most important are RS, M1, and PC, the logit identifies X, Y,
and L. Important for the class characterization of the “ltp” class in both models are GD,
L, and PC.

Note, that the turning point classes in LDA have higher derivatives than the others, mean-
ing that their class probabilities change easier than those of the upswing and downswing
classes. For the logit on the other hand the class “ltp” has low derivatives at the class
centers.

Separation

Since a grid search for the class borders is computationally very demanding, points at the
borders are searched using a random simulation. (1,000 uniformly distributed data points



6 ENACHE, WEIHS, and GARCZAREK

have been generated for each class and the 10% points closest to the borders have been
chosen.) Table 2 shows the resulting importance measures for class separation.

up utp down ltp
Var LDA Logit LDA Logit LDA Logit LDA Logit

Y -0.0002 0.0048 0.0269 0.0231 -0.0126 -0.0010 -0.0134 -0.0097
C -0.0093 -0.0117 0.0244 0.0170 -0.0097 -0.0015 -0.0092 -0.0066
GD -0.0097 -0.0182 -0.0331 -0.0151 -0.0087 -0.0020 -0.0267 -0.0300
L 0.0032 0.0059 0.0440 0.0248 -0.0116 0.0004 -0.0211 -0.0252
X 0.0261 0.0404 0.0251 0.0170 0.0076 0.0036 0.0001 0.0038
M1 -0.0073 -0.0172 0.0254 0.0199 -0.0134 -0.0037 -0.0036 -0.0020
IE 0.0041 0.0129 0.0241 0.0128 -0.0091 -0.0014 -0.0097 -0.0048
IC -0.0022 -0.0043 0.0077 0.0019 -0.0095 -0.0004 -0.0113 -0.0075
LC -0.0195 -0.0462 -0.0459 -0.0218 0.0057 0.0023 0.0077 -0.0056
PY -0.0221 -0.0430 -0.0411 -0.0122 0.0051 0.0021 0.0108 -0.0020
PC -0.0371 -0.0331 -0.0149 -0.0045 0.0117 0.0024 0.0141 0.0025
RS 0.0002 0.0132 0.0190 0.0208 0.0196 0.0060 0.0075 -0.0042
RL 0.0091 0.0304 0.0369 0.0189 0.0030 -0.0004 -0.0022 0.0111

Table 2. Variable importances (directional derivatives) for class separation. The results of classical linear dis-
criminant analysis and multinomial logit.

For class “up” the three most important variables are PC, X, and PY. The value of -0.0371
for PC means that increasing PC by one unit will decrease the probability of staying in
the upswing class by 3.7 percent points. In the logit model LC is more important than
PC. LC, L, and PY are the three most important variables for class “utp” in the LDA
model, whereas in the logit model Y is more important than PY. In the “down” class
LDA identifies RS, M1, and Y as the three most important variables, in contrast to the
logit where X is more important than Y. For the “ltp” class the most important variables
for LDA are GD, L, and PC, with RL instead of PC for the logit.

Overall Importance

Here, the directional derivatives have been evaluated at each point in the sample and the
resulting values have been averaged. Table 3 shows the overall importance measures.

up utp down ltp
Var LDA Logit LDA Logit LDA Logit LDA Logit

Y 0.0025 0.0020 0.0110 0.0124 -0.0049 -0.0043 -0.0077 -0.0076
C -0.0065 -0.0087 0.0105 0.0092 -0.0034 -0.0029 -0.0049 -0.0040
GD -0.0097 -0.0138 -0.0158 -0.0093 -0.0048 -0.0050 -0.0200 -0.0239
L 0.0055 -0.0002 0.0168 0.0152 -0.0028 -0.0004 -0.0141 -0.0183
X 0.0274 0.0260 0.0117 0.0092 0.0028 0.0110 -0.0006 -0.0026
M1 -0.0054 -0.0098 0.0127 0.0110 -0.0128 -0.0120 -0.0004 0.0003
IE 0.0075 0.0077 0.0077 0.0092 -0.0044 -0.0047 -0.0044 -0.0035
IC -0.0018 -0.0033 0.0027 0.0016 -0.0050 -0.0022 -0.0065 -0.0061
LC -0.0235 -0.0332 -0.0204 -0.0150 0.0096 0.0133 0.0032 -0.0004
PY -0.0204 -0.0279 -0.0159 -0.0101 0.0091 0.0125 0.0061 0.0029
PC -0.0372 -0.0220 -0.0042 -0.0041 0.0119 0.0083 0.0084 0.0053
RS 0.0022 0.0076 0.0120 0.0095 0.0232 0.0247 0.0030 -0.0006
RL 0.0106 0.0226 0.0176 0.0119 0.0017 -0.0034 -0.0005 0.0035

Table 3. Overall variable importances (directional derivatives) for each class. The results of classical linear
discriminant analysis and multinomial logit.
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LDA Logit

up X, LC, PY, PC X, LC, PY, PC
utp L, LC, RL L, LC, RL, Y
down M1, RS, PC M1, RS, X
ltp Y, GD, L Y, GD, L

overall L, LC, PC L, LC, X

Table 4. Summary of important variables over all criteria. If one variable is important in more than one class, it
is listed in the “overall” row.

In the “up” class the three most important variables for LDA are PC, X, and LC. A PC
value of -0.0372 means that increasing PC by one unit will result in a decrease of the
probability for staying in the upswing class. For the logit model RL appears to be more
important than PC. The three most important variables for the “utp” class are LC, RL,
and L for LDA and L, LC, and Y for the logit. In the “down” class RS, M1, and PC are
important for LDA and RS, LC, and PY for the logit. And finally, for the “ltp” class the
most important variables are GD, L, and Y in both models.

4 Summary and Outlook

A method has been introduced for obtaining measures of relative importance of correlated
predictors on the value change of a dependent variable using directional derivatives. It can
be used with every differentiable output function, like linear and non linear regression or
probability functions used in supervised classification. For classification problems, several
strategies for choosing evaluation points have been presented and have been applied to
the classification of west German business cycle phases.

When comparing the importance measures for all criteria (characterization, separation,
and overall importance), one can see, that several variables are important for more than
one criterion. These important variables are listed in table 4. Apparently, L and LC
have the highest importance overall, a result confirming earlier studies (e.g. Weihs and
Garczarek (2002)). When using LDA, PC also is considered important and X likewise
when using the logit model. It can also be seen, that each class appears to have a different
set of important variables. Whereas most of the classes are dominated by production and
labor market variables, for “utp” and “down” classes also monetary variables (M1, RS,
and RL) have an important influence.

In future work, directional derivatives of other classification methods, like Fisher’s LDA
with dimension reduction, Quadratic Discriminant Analysis, and Support Vector Ma-
chines, still have to be derived. Other real world applications require quantitative and
qualitative variables as predictors. Obtaining the direction vectors for dummy variables
used to represent qualitative predictors is a problem which has to be addressed first.
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