Skip to main content

Path Planning Optimization for Mobile Robots Based on Bacteria Colony Approach

  • Conference paper
Applied Soft Computing Technologies: The Challenge of Complexity

Part of the book series: Advances in Soft Computing ((AINSC,volume 34))

Abstract

Foraging theory originated in attempts to address puzzling findings that arose in ethological studies of food seeking and prey selection among animals. The potential utilization of biomimicry of social foraging strategies to develop advanced controllers and cooperative control strategies for autonomous vehicles is an emergent research topic. The activity of foraging can be focused as an optimization process. In this paper, a bacterial foraging approach for path planning of mobile robots is presented. Two cases study of static environment with obstacles are presented and evaluated. Simulation results show the performance of the bacterial foraging in different environments in the planned trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, U.; Surette, M.G.; Barkal; Leibler, S. (1999) Robustness in bacterial chemotaxis, Nature 397, 14 January 1999, pp. 168–171

    Article  Google Scholar 

  2. Baras, J.S.; Tan, X.; Hovareshti P. (2003) Decentralized control of autonomous vehicles, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 1532–1537

    Google Scholar 

  3. Bennewitz, M.; Burgard, W.; Thrun, S. (2002) Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots, Robotics and Autonomous Systems 41, pp. 89–99

    Article  Google Scholar 

  4. Bremermann, H.J. (1974) Chemotaxis and optimization, Journal of Franklin Institute 297, pp. 397–404

    Article  Google Scholar 

  5. Charon, N.W.; Goldstein, S.F. (2002) Genetics of mobility and chemotaxis of a fascinating group of bacteria: the spirochetes, Annual Review of Genetics 36, pp. 47–73

    Article  Google Scholar 

  6. Dhariwal, A.; Sukhatme, G.S.; Requicha, A.A.G. (2004) Bacterium-inspired robots for environmental monitoring, Proceedings of the IEEE International Conference on Robotics & Automation, New Orleans, LA, pp. 1496–1443

    Google Scholar 

  7. Dorigo, M.; Di Caro, G. (1999) The ant colony optimization meta-heuristic, in D. Corne, M. Dorigo, and F. Glover (editors), New Ideas in Optimization, McGraw-Hill, pp. 11–32

    Google Scholar 

  8. Fujimori, A.; Nikiforuk, P.N.; Gupta, M.M. (1997) Adaptive navigation of mobile robots with obstacle avoidance, IEEE Transactions on Robotics and Automation 13(4), pp. 596–602

    Article  Google Scholar 

  9. Gemeinder, M.; Gerke, M. (2003) GA-based path planning for mobile robot systems employing an active search algorithm, Applied Soft Computing, 3, pp. 149–158

    Article  Google Scholar 

  10. Kennedy, J.F.; Eberhart, R.C.; Shi, R.C. (2001) Swarm intelligence. San Francisco: Morgan Kaufmann Pub

    Google Scholar 

  11. Liu, Y.; Passino, K.M. (2004) Stable social foraging swarms in a noisy environment, IEEE Transactions on Automatic Control 49(1), pp. 30–44

    Article  MATH  MathSciNet  Google Scholar 

  12. Melchior, P.; Orsoni, B.; Lavaialle, O.; Poty, A.; Oustaloup, A. (2003) Consideration of obstacle danger level in path planning using A* and fast-marching optimization: comparative study, Signal Processing 83, pp. 2387–2396

    Article  MATH  Google Scholar 

  13. Mello, B. A.; Tu, Y. (2003) Perfect and near-perfect adaptation in a model of bacterial chemotaxis, Biophysical Journal 84, pp. 2943–2956

    Article  Google Scholar 

  14. Müler, S.D.; Marchetto, J.; Airaghi, S.; Koumoutsakos, P. (2002) Optimization based on bacterial chemotaxis, IEEE Transactions on Evolutionary Computation 6(1), pp. 16–29

    Article  Google Scholar 

  15. Passino, K.M. (2002) Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems 22(3), pp. 52–67

    Article  MathSciNet  Google Scholar 

  16. Silva, L.N.C.; Timmis, J.I. (2002) Artificial immune systems: a new computational intelligence approach, Springer-Verlag, London

    Google Scholar 

  17. Tsuji, T.; Tanaka, Y.; Morasso, P.G.; Sanguineti, V.; Kaneko, M. (2002) Bio-mimetic trajectory generation of robots via artificial potential field with time base generator, IEEE Transactions on Systems, Man and Cybernetics– Part C 32(4), pp. 426– 439

    Article  Google Scholar 

  18. Tu, J.; Yang, S.X. (2003) Genetic algorithm based path planning for a mobile robot, Proceedings of the IEEE International Conference on Robotics & Automation, Taipei, Taiwan, pp. 1221–1226

    Google Scholar 

  19. Xiao, J.; Michalewicz, Z.; Zhang, L.; Trojanowski, K. (1997) Adaptive evolutionary planner/navigator for robots, IEEE Transactions on Evolutionary Computation 1(1), pp. 18–28

    Article  Google Scholar 

  20. Ward, M. (2001) BT ponders bacterial intelligence, BBC News Online Technology, 13 September 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Sierakowski, C.A., Coelho, L.d. (2006). Path Planning Optimization for Mobile Robots Based on Bacteria Colony Approach. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds) Applied Soft Computing Technologies: The Challenge of Complexity. Advances in Soft Computing, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31662-0_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-31662-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31649-7

  • Online ISBN: 978-3-540-31662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics