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Abstract. The curse of dimensionality is awell known but not entirely well-understood phenomena.
Too much data, in terms of the number of input variables, is not always a good thing. This is espe-
cialy true when the problem involves unsupervised learning or supervised learning with unbalanced
data (many negative observations but minimal positive observations). This paper addresses two issues
involving high dimensional data: The first issue explores the behavior of kernels in high dimensional
data. It is shown that variance, especially when contributed by meaningless noisy variables, confounds
learning methods. The second part of this paper illustrates methods to overcome dimensionality prob-
lems with unsupervised learning utilizing subspace models. The modeling approach involves novelty
detection with the one-class SVM.

1 Introduction

High dimensional data often create problems. This problem is exacerbated if the training data is only one
class, unknown classes, or significantly unbalanced classes. Consider a binary classification problem that
involves computer intrusion detection. Our intention is to classify network traffic, and we are interested in
classifying the traffic as either attacks (intruders) or non attacks. Capturing network traffic is simple - hookup
to a LAN cable, run tcpdump, and you can fill a hard drive within minutes. These captured network con-
nections can be described with attributes; it is not uncommon for a network connection to be described with
over 100 attributes [14]. However, the class of each connection will be unknown, or perhaps with reasonable
confidence we can assume that all of the connections do not involve any attacks.

The above scenario can be generalized to other security problems as well. Given a matrix of data, X,
containing N observations and m attributes, we are interested in classifying this data as either potential

attackers (positive class) or non attackers (negative class). If m is large, and our labels, y €¢ RV*1, are
unbalanced (usually plenty of known non attackers and few instances of attacks), one class (all non attackers),
or unknown, increased dimensionality rapidly becomes a problem and feature selection is not feasible due to
the minimal examples (if any) of the attacker class.

2 Recent Work

The primary model explored will be the one-class SVM. This is a novelty detection algorithm originally
proposed in [27]. The modd is relatively simple but a powerful method to detect novel events that oc-
cur after learning from a training set of normal events. Formally stated, the one-class SVM considers
X1,X2,...,XNy € X instances of training observations and utilizes the popular “kernel trick” to introduce
anon linear mapping of x; — ®(x;). Under Mercer’'s theorem, it is possible to evaluate the inner product
of two feature mappings, such as ®(x;) and ®(x;), without knowing the actually feature mapping. Thisis
possible because (®(x;), ®(x,)) = r(x;,x;) [2]. © will be considered a mapping into the festure space, F,
from X.

The following minimization function attempts to squeeze R, which can be thought of as the radius of a
hypersphere, as small as possible in order to fit al of the training samples. If atraining sample will not fit, {;
isadack variable to alow for this. A free parameter, v € (0, 1), enables the modeler to adjust the impact of
the slack variables.
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The lagrangian dual of the one class SVM is shown below in equation 2.
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Cristianini and Shawe-Taylor provide a detailed explanation of one-class SYMsin [24]. Stolfo and Wang
[25] successfully apply the one-class SVM to the SEA dataset and compare it with several of the techniques
mentioned above. Chen uses the one-class SVM for image retrieval [8]. Scholkopf et. al. explore the above
formulation of the one-class SVM and other formulationsin [23]. Fortunately there is also freely available
software that implements the one-class SVM, written in C++ by Chang and Lin [7].

The dimensionality problem faced by the one-class SVM has been mentioned in several papers, however
it is typicaly a “future works” type of discussion. Tax and Duin clearly mention that dimensionality is a
problem in [27], however they offer no suggestions to overcome this. Modeling in subspaces, which is the
proposed method to overcome this problem, is not an atogether novel concept. In data mining, subspace
modeling to overcome dimensionality is a popular approach. Aggarwal discusses thisin [1]. Parsons et. al.
provide a survey of subspace clustering techniquesin [21]. The curse of dimensionality is largely afunction
of class imbalance and our apriori knowledge of the distribution of (x|y). This implies that the curse of
dimensionality is a problem that impacts unsupervised problems the most severely, and it is not surprising
that data mining clustering algorithms, an unsupervised method, has come to realize the value of modelingin
subspaces.

3 Analytical Investigation

3.1 TheCurseof Dimensionality, Kernels, and Class Imbalance

Machine learning and data mining problems typically seek to show a degree of similarity between obser-
vations, often as a distance metric. Beyer et. a. discuss the problem of high dimensional data and distance
metricsin [3], presenting a probabilistic approach and illustrating that the maximally distant point and mini-
mally distant point convergein distance as dimensionality increases. A problem with distance metricsin high
dimensiona space is that distance is typically measured across volume. Volume increases exponentially as
dimensionality increases, and points tend to become equidistant. The curse of dimensionality is explained
with several artificial data problemsin [15].

Kernel based pattern recognition, especialy in the unsupervised domain, is not entirely robust against
high dimensional input spaces. A kernel is nothing more than a similarity measure between two observations.
Given two observations, x; and x2, the kernel between these two pointsis represented as x(x 1, x2). A large
value for x(x1, x2) indicates similar points, where smaller valuesindicate dissimilar points. Typical kernels
include the linear kernel, k(x1,x2) = (x1,x2), the polynomia kernel, k(x1,x2) = ({x1,x2) + 1)?, and
the popular gaussian kernel, s (x 1, xg) = e(~Ix1—x2 1/20%) | As shown, these kernels are all functions of inner
products. If the variableswithin x; and x5 are considered random variables, these kernels can be modeled as
functions of random variables. The fundamental premise of pattern recognition is the following:

(k(x1,%2)[y1 = y2) > (k(x1,%2)|y1 # Y2) (3

If this premise is consistently true, good performance occurs. By modeling these kernels as functions of
random variables, it can be shown that the addition of noisy, meaningless input variables degrades perfor-
mance and the likelihood of the fundamental premise shown above.

In aclassification problem, the curse of dimensionality isafunction of the degree of imbalance. If thereare
asmall number of positive examplesto learn from, feature selection is possible but difficult. With unbalanced
data, significant evidenceis required to illustrate that a feature is not meaningful. If the problem is balanced,
the burden is not as great. Features are much more easily filtered and sel ected.



A simple explanation of thisisto consider a two sample Kolmogorov test [22]. Thisis aclassica statis-
tical test to determine whether or not two samples come from the same distribution, and this test is general
regardless of the distribution. In classification models, a meaningful variable should behave differently de-
pending on the class, implying distributions that are not equal. Stated in terms of distributions, if x is any
variable taken from the space of all variables in the dataset, (F,(x)|y = 1) should not be equivalent to
(G.(x)ly = —1). Fy(z) and G, (z) smply represent the cumuiative distribution functions of (z]y = 1)
and (z]y = —1), respectively. In order to apply the two sample Kolmogorov test, the empirica distribution
functions of F,(x) and G, («) must be calculated from a given sample, and these distribution functions will
be denoted as Fy;, (z) and Gy, (x). N1 will equate to the number of samples in the minority class, and N
equates to the number of samples in the majority class. These empirical distribution functions are easily de-
rived from the order statistics of the given sample, which is shown in [22]. The Kolmogorov two sample
test states that if the supremum of the difference of these functions exceeds a tabled critical value depending
on the modeler’s choice of a(sum of probabilitiesin two tails), then these two distributions are significantly
different. Stated formally, our hypothesisisthat F,(z) = G, (x). We rgject this hypothesiswith a confidence
of (1 — «) if equation 4 istrue.

DN17N2 = sup |F1>.\</'1 (.13) - G7V2 (.13)| > DN17N270( (4)
—o0< L <00

For larger values of N1 and N, (both NV, and N, greater than 20) and o = .05, we can consider equation
5toillustrate an example. This equation isfoundin thetableslisted in [22]:

N1+ No
D a=.05 = 1. _— 5
N1,Na,a=.05 364/ NN, ©)

If N, isfixed at 100, and N, isconsidered the minority class, it is possible to plot the relationship between
m and the critical value necessary to reject the hypothesis.
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Figure 1. Plot of critical value for two sample Kolmogorov test with fixed N2, oo = .05

Figure 1 illustrates the effect of class imbalance on feature selection. If the classes are not balanced, as
is the case when N; = 20 and N, = 100, there is alarge value required for D y, n,. It is also evident that
if the classes were more severely imbalanced, Dy, n, would continue to grow exponentially. As the classes
balance, Dy, n, and thecritical value beginsto approach alimit. The point of this exercise was to show that
the curse of dimensionality is a function of the level of imbalance between the classes, and the two sample
Kolmogorov test provides a compact and statistically grounded explanation for this.



3.2 Kerne Behavior in High Dimensional I nput Space

An example is given in this section which illustrates the impact of dimensionality on linear kernels and
gaussian kernels.
Consider two random vectors that will serve as artificial datafor this example.

x1 = (21,22, ..., 2m), 2z ~ N(0,1) 1.i.d
Xo = (211, 220y ey Zms )y 22 ~ N(0,1) i.i.d
m' =m, andlet v; = z;z;

The expected value of v; iszero. v; isthe product of two standard normal random variables, which follows
an interesting distribution discussed in [12]. The plot of this distribution is shown in figure 2.
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Figure2. Plot of v; = z;zy

To find the expectation of alinear kernel, it isstraightforward to seethat £((x,y)) = >, vi = E(z121/ +
2922 + ... + zmzm) = 0. The variance of the linear kernel can be found as follows:
1 -GH:2)

f2i.2, (i, zv) isbivariaenormal = f,, ., (2, 2i) = 3¢ z
: : -

o v, 1
folv) = /_ o D)

E(v) = 0= variance = E(v?) = /OO v [fo(v)]Ov =1

(verified by numerical integration)

Again considering the linear kernel as afunction of random variables, k(x 1,x2) = (x1,X2) = > ", v;

is distributed with amean of 0 and avarianceof }_." | 1 = m.
In classification problems, however, it is assumed that the distributions of the variables for one class are
not the same as the distributions of the variables for the other class. Let us now consider v _ as a product of
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dissimilar distributions, and v as a product of similar distributions. Let v_ = (z; — 1)(zy + 1). v_ will
be distributed with amean of ©_ = E(z;zir — 2z + z; — 1) = —1, and avariance of 3 (verified through
numerical integration). The linear kernel of the dissimilar distributions can be expressed as.

k(x1—1,x2+1)= Zv,
i=1

Thislinear kernel is distributed with the following parameters:

mean_ = myu_ = —m, variance = mo? = 3m

For the similar observations, let v, = (z; + 1)(z¢ + 1) = (2; — 1)(%] — 1). The parameters of the
kernel for the similar observations can be found in the same manner. v is distributed with amean of .y =
E(zizy + zy + z; + 1) = 1 and avariance of 02 = 3. The linear kernel of the similar distributions can be
expressed as.

k(x1+ 1,x2+1) = Zv+
i=1

Thiskernel is distributed with the following parameters:

mean, = myu, = m, vaiance = mo> = 3m

The means and variances of the distributions of the linear kernels are easily tractable, and thisis al the
information that we need to analyze the effect of dimensionality on these kernels. In the above example,
the mean of every variable for dissimilar observations differs by 2. This is consistent for every variable.
Obviously, no dataset is this clean, however there are still interesting observationsthat can be made. Consider
that rather than each variable differing by 2, they differ by some value ¢;. If ¢; is a smal value, or even
zero for some instances (which would be the case for pure noise), this variable will contribute minimally
in distinguishing similar from dissimilar observations, and furthermore the variance of this variable will be
entirely contributed. Also notice that at the rate of 3m, variance grows large fast.

Based on this observation, an assertion is that for the binary classification problem, bimodal variables
are desirable. Each mode will correspond to either the positive or negative class. Large deviations in these
modes, with minimal variation within aclass, are also desired. An effective model must be able to distinguish
v_ fromv_. In order for this to occur, the model needs good separation between mean — and mean 4 and
variance that is under control.

It is also interesting to explore the gaussian kernel under the same example. For the gaussian kernel,

K(x1,yz) = e~ IPa=x217/20" This kernel is entirely dependent upon the behavior of || x1 — x2 ||2 and the
modeler’s choice of the parameter o (which has no relation to variance).

Restricting our attentionto || x; — x2 ||?, an initial observation is that this expression is nothing more
than the euclidean distance squarred. Also, if x; and x5 contain variablesthat are distributed ~ N (0, 1), then
(x1 — x2) contains variables distributed normally with a mean of 0 and a variance of 2.

Letw = (z; — 2z)?, implying that w/2 is a chi-squarred distribution with a mean of one (which will be
annotated as x?(1)). Thisaso indicates that w = 2x?(1), indicating that w has amean of 2 and a variance of
8 (verified by numerical integration).

Therefore, || x1 — x2 ||?= >_7", w; will have a distribution with a mean of 2m and a variance of 8m.
Notice that the variance grows much faster under this formulation, indicating even more sensitivity to noisy
variables.

The purpose of the above example is to show how every variable added will contribute to the overall
behavior of the kernel. If the variable is meaningful, the pattern contributed to the -1 classis not equivalent to
the pattern contributed to +1 class. The meaningfulness of the variable can also be considered in terms of cost
and benefit. The benefit of including a variable in a classification model is the contribution of the variable
towards pushing mean_ away from mean.. The cost of including a variable involves the variance. This
variance will be included regardless of the significance of the benefit.



3.3 Thelmpact of Dimensionality on the One-Class SVM

In order to illustrate the impact of dimensionality on kernels and the one-class SVM specificaly, an ex-
periment with artificial data was constructed. This data models a simple pattern involving standard normal
distributions where the positive class and negative class have a difference of 2 between their means. This
model can be presented as follows:

xy1=(21+1,20+1,23,...,2m), 2zi ~ N(0,1) i.i.d
X—1= (Zl’ - 1722/ - 1723/~-~7zm/); Zir ~ N(O, ].) i.i.d

The true pattern only lied in the first two variables. All remaining variables were noise. Three types
of kernels were examined: the linear kernel, polynomial kernel, and gaussian kernel. Only the results from
the gaussian kernel are shown here, however degradation of performance occurred with all kernels. The
performance metric used was the area under the ROC curve (AUC).

Table 1. One Class SVM (gaussian kernel) experiment for various dimensions on artificial data

[Dimensons] AUC | R* |
2 0.9201 0.5149
5 0.8978 0.4665
10 0.8234 0.4356
50 0.7154 0.3306
100 0.6409 0.5234
250 0.6189 0.4159
500 0.5523 0.6466
1000 0.5209 0.4059

The gaussian kernels in this experiment were tuned using an auto-tuning method. Typically for gaussian
kernels, avalidation set of positive and negative labeled datais available for tuning o. In unsupervised learn-
ing, these examples of positive labeled data do not exist. Therefore, the best tuning possible is to achieve
some variation in the values of the kernel without values concentrated on either extreme. If o is too large,
al of the values will tend towards 1. If too small, they tend to 0. The auto tuning function ensures that the
off-diagonal values for x(x1,x_1) average between .4 and .6, with amin value greater than .2.

4 A Framework to Overcome High Dimensionality

A novel framework for unsupervised learning, or anomaly detection, has been investigated to solve unsu-
pervised learning problems of high dimension [10, 11]. This technique is designed for unsupervised models,
however the fusion of model output applies to any type of classifier that produces a soft (real valued) output.
This framework involves exploring subspaces of the data, training a separate model for each subspace, and
then fusing the decision variables produced by the test datafor each subspace. Intelligent subspace selection
has also been introduced within this framework.

Combinations of multiple classifiers, or ensemble techniques, is a very active field of research today.
However, thefield remainsrelatively loosely structured as researchers continue to build the theory supporting
the principles of classifier combinations[18]. Significant work in thisfield has been contributed by Kuncheva
in [16-19]. Bonissone et. al. investigated the effect of different fuzzy logic triangular norms based upon the
correlation of decision valuesfrom multiple classifiers[4]. The mgjority of work in thisfield has been devoted
to supervised learning, with less effort addressing unsupervised problems[26]. The research that does address
unsupervised ensemblesinvolves clustering almost entirely. Thereisavast amount of literature that discusses
subspace clustering algorithms [21]. The recent work that appears similar in motivation to our technique
include Yang et. a. who develop a subspace clustering model based upon Pearson’s R correlation [28],
and Ma and Perkins who utilize the one-class SVM for time series prediction and combine results from
intermediate phase spaces [20]. The work in this paper has also been inspired by Ho's Random Subspace
Methodsin [13]. Ho's method randomly selects subspaces and constructs a decision tree for each subspace;
trees are then aggregated in the end by taking the mean. Breiman's work with bagging [5] and random
forests[6] was also a significant contribution in motivating this work. Breiman’s bagging technique involves
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bootstrap sampling from a training set and creating a decision tree for each sample. Breiman also uses the
mean as the aggregator. The random forest technique explores decision tree ensembles from random subsets
of features, similar to Ho's method.
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Figure 4. Aggregation operators

The technique we propose illustrates that unsupervised learning in subspaces of high dimensional data
will typically outperform unsupervised learning in the high dimensional data space as awhole. Furthermore,
the following hypotheses show exceptional promise based on initial empirical results:

1. Intelligent subspace modeling will providefurther improvement of detection beyond arandom selection
of subspaces.

2. Fuzzy logi ¢ aggregationtechniques create the fuzzy ROC curve, illustrating improved AUC by selecting
proper aggregation techniques.

Promising results from this approach have been published in [10, 11]. As previously discussed, aggrega-
tion of modelswith fuzzy logic aggregatorsis an important aspect. Given unbalanced data (minority positive
class), it has been observed that fusion with T-norms behaves well and improves performance. Figure 4 illus-
trates the spectrum of fuzzy logic aggregators.

The results shown in table 2 and figure 5 illustrate the improvements obtained through our ensemble
techniques for unsupervised learning. The plot of the ROC curves shows the results from using 26 original
variablesthat represented the Schonlau et. al. (SEA) data[9] as onegroup of variableswith the one-classSVM
and the result of creating 3 subspaces of features and fusing the results to create the fuzzy ROC curve. It is
interesting to noticein the table of resultsthat nearly every aggregationtechnique demonstrated improvement,
especially in the SEA data, with the most significant improvement in the T-norms.

The ionosphere data is available from the UCI repository, and it consists of 34 variables that represent
different radar signals received while investigating the ionosphere for either good or bad structure. For this
experiment we again chose! = 3.



Table 2. Results of SEA data with diverse and non-diverse subsets

[ [ SEA data] Tonosphere data |
[Base AUC (using all variables) | 7835 | 931 |

T-norms

[minimum [ 90 ] .96 |
| @gebraic product | 91 ] .61 |
T-conorms

[ maximum [ .84 ] .69 |
[ @gebraic sum [ 89 ] .69 |
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5 Discussion and Conclusion

Therewere two componentsto the research presented in this paper. Thefirst component involved exposing the
impact of the curse of dimensionality with kernel methods. Thisinvolved illustrating that more is not always
better in terms of variables, but moreimportantly that the impact of the curse of dimensionality growsas class
imbalance becomes more severe. Kernel methods are not immune to problems involving high dimensional
data, and these problems need to be understood and managed.

The second component of this research involved the discussion and brief illustration of a proposed frame-
work for unsupervised modeling in subspaces. Unsupervised learning, especially novelty detection, has im-
portant applicationsin the security domain. This applies especially to computer and network security. Future
directions for this research include exposing the theoretical foundations of unsupervised ensemble methods
and exploration of other ensemblesfor the unbalanced classification problem.

References

1. Charu C. Aggarwal and Philip S. Yu. Outlier Detection for High Dimensional Data. Santa Barbara, California, 2001.
Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data.

2. Kristin P. Bennett and Colin Campbell. Support Vector Machines: Hype or Hallelujah. 2(2), 2001.

3. Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When Is“Nearest Neighbor” Meaningful ?
Lecture Notes in Computer Science, 1540:217-235, 1999.

4. Piero Bonissone, Kai Goebel, and Weizhong Yan. Classifier Fusion using Triangular Norms. Cagliari, Italy, June
2004. Proceedings of Multiple Classifier Systems (MCS) 2004.



No o

© ©

10.

11.

12.
13.
14.
15.
16.
17.

18.
19.

20.

21.

AREA UNDER THE CURVE : 0.9604

1 T

0.8 1
L
|_
<
04

w 0.6 - 1
>
=
N
o

o 04r 1
w
2
o
|_

0.2 - J

Fuzzy_ROC Curve, AUC = 0.9604 ——
0 34 vars, AUC = .931
0 0.2 0.4 0.6 0.8 1

FALSE POSITIVE RATE
Figure 6. ROC plot for ionosphere data with minimize aggregation technique

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Chih  Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines.

http://www.scie.ntu.edu.tw/ cjlin/libsvm, Accessed 5 September, 2004.

Yungiang Chen, Xiang Zhou, and Thomas S. Huang. One-Class SVM for Learning in Image Retrieval. Thessaloniki,

Greece, 2001. Proceedings of |EEE International Conference on Image Processing.

William DuMouchel, Wen Hua Ju, Alan F. Karr, Matthius Schonlau, Martin Theus, and Yehuda Vardi. Computer

Intrusion: Detecting Masguerades. Statistical Science, 16(1):1-17, 2001.

Paul F. Evangelista, Piero Bonissone, Mark J. Embrechts, and Boleslaw K. Szymanski. Fuzzy ROC Curves for the

One Class SVM: Application to Intrusion Detection. Montreal, Canada, August 2005. International Joint Conference

on Neural Networks.

Paul F. Evangelista, Piero Bonissone, Mark J. Embrechts, and Boleslaw K. Szymanski. Unsupervised Fuzzy Ensem-

tlzllgts antlj(Their Usein Intrusion Detection. Bruges, Belgium, April 2005. European Symposium on Artificial Neural

works.

Andrew G. Glen, Lawrence M. Leemis, and John H. Drew. Computing the Distribution of the Product of Two

Continuous Random Variables. Computational Statistics and Data Analysis, 44(3):451-464, 2004.

Tin Kam Ho. The Random Subspace Method for Constructing Decision Forests. |EEE Transactions on Pattern

Analysis and Machine Intelligence, 20(8):832-844, 1998.

Alexander Hofmann, Timo Horeis, and Bernhard Sick. Feature Selection for Intrusion Detection: An Evolutionary

Wrapper Approach. Budapest, Hungary, July 2004. International Joint Conference on Neural Networks.

Mario Koppen. The Curse of Dimensionality. (held on the internet), September 4-18 2000. 5th Online World

Conference on Soft Computing in Industrial Applications (WSC5).

Ludmilal. Kuncheva. ’Fuzzy’ vs.’Non-fuzzy’ in Combining Classifiers Designed by Boosting. |EEE Transactions

on Fuzzy Systems, 11(3):729-741, 2003.

Ludmila |. Kuncheva. That Elusive Diversity in Classifier Ensembles. Mallorca, Spain, 2003. Proceedings of 1st

Iberian Conference on Pattern Recognition and Image Analysis.

Ludmilal. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons, Inc., 2004.

|§ (L)Jdrgl(l)%é Kunchevaand C.J. Whitaker. Measures of Diversity in Classifier Ensembles. Machine Learning, 51:181—
7, .

Junshui Maand Simon Perkins. Time-series Novelty Detection Using One-class Support Vector Machines. Portland,

Oregon, July 2003. International Joint Conference on Neural Networks.

Lance Parsons, Ehtesham Hague, and Huan Liu. Subspace Clustering for High Dimensional Data: A Review.

g 0(8£<DD Explorations, Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining,



22.

23.

24,
25.

26.

27.

28.

Vijay K. Rohatgi and A.K.Md. Ehsanes Saleh. An Introduction to Probability and Statistics. Wiley, second edition,
2001.

Bernhard Scholkopf, John C. Platt, John Shawe Taylor, Alex J. Smola, and Robert C. Williamson. Estimating the
Support of a High Dimensional Distribution. Neural Computation, 13:1443-1471, 2001.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.

Salvatore Stolfo and Ke Wang. One Class Training for Masguerade Detection. Florida, 19 November 2003. 3rd
|EEE Conference Data Mining Workshop on Data Mining for Computer Security.

Alexander Strehl and Joydeep Ghosh. Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple
Partitions. Journal of Machine Learning Research, 3:583-617, December 2002.

David M.J. Tax and Robert PW. Duin. Support Vector Domain Description. Pattern Recognition Letters, 20:1191—
1199, 1999.

Jiong Yang, Wel Wang, Haixun Wang, and Philip Yu. §-clusters: Capturing Subspace Correlation in a Large Data
Set. pages 517-528. 18th International Conference on Data Engineering, 2004.

10





