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Abstract. The curse of dimensionality is a well known but not entirely well-understood phenomena.
Too much data, in terms of the number of input variables, is not always a good thing. This is espe-
cially true when the problem involves unsupervised learning or supervised learning with unbalanced
data (many negative observations but minimal positive observations). This paper addresses two issues
involving high dimensional data: The first issue explores the behavior of kernels in high dimensional
data. It is shown that variance, especially when contributed by meaningless noisy variables, confounds
learning methods. The second part of this paper illustrates methods to overcome dimensionality prob-
lems with unsupervised learning utilizing subspace models. The modeling approach involves novelty
detection with the one-class SVM.

1 Introduction
High dimensional data often create problems. This problem is exacerbated if the training data is only one
class, unknown classes, or significantly unbalanced classes. Consider a binary classification problem that
involves computer intrusion detection. Our intention is to classify network traffic, and we are interested in
classifying the traffic as either attacks (intruders) or non attacks. Capturing network traffic is simple - hookup
to a LAN cable, run tcpdump, and you can fill a hard drive within minutes. These captured network con-
nections can be described with attributes; it is not uncommon for a network connection to be described with
over 100 attributes [14]. However, the class of each connection will be unknown, or perhaps with reasonable
confidence we can assume that all of the connections do not involve any attacks.

The above scenario can be generalized to other security problems as well. Given a matrix of data, X,
containing N observations and m attributes, we are interested in classifying this data as either potential
attackers (positive class) or non attackers (negative class). If m is large, and our labels, y ∈ R

N×1, are
unbalanced (usually plenty of known non attackers and few instances of attacks), one class (all non attackers),
or unknown, increased dimensionality rapidly becomes a problem and feature selection is not feasible due to
the minimal examples (if any) of the attacker class.

2 Recent Work
The primary model explored will be the one-class SVM. This is a novelty detection algorithm originally
proposed in [27]. The model is relatively simple but a powerful method to detect novel events that oc-
cur after learning from a training set of normal events. Formally stated, the one-class SVM considers
x1,x2, ...,xN ∈ X instances of training observations and utilizes the popular “kernel trick” to introduce
a non linear mapping of xi → Φ(xi). Under Mercer’s theorem, it is possible to evaluate the inner product
of two feature mappings, such as Φ(xi) and Φ(xj), without knowing the actually feature mapping. This is
possible because 〈Φ(xi), Φ(xj)〉 ≡ κ(xi,xj) [2]. Φ will be considered a mapping into the feature space, F ,
from X .

The following minimization function attempts to squeeze R, which can be thought of as the radius of a
hypersphere, as small as possible in order to fit all of the training samples. If a training sample will not fit, ζ i
is a slack variable to allow for this. A free parameter, ν ∈ (0, 1), enables the modeler to adjust the impact of
the slack variables.
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min
R∈R,ζ∈RN ,c∈F

R2 +
1

νN

∑
i

ζi (1)

subject to ‖ Φ(xi) − c ‖2≤ R2 + ζi, ζi ≥ 0 for i ∈ [N ]
The lagrangian dual of the one class SVM is shown below in equation 2.

max
α

∑
i

αiκ(xi,xi) −
∑
i,j

αiαjκ(xi,xj) (2)

subject to 0 ≤ αi ≤ 1
vN

and
∑

i

αi = 1

Cristianini and Shawe-Taylor provide a detailed explanation of one-class SVMs in [24]. Stolfo and Wang
[25] successfully apply the one-class SVM to the SEA dataset and compare it with several of the techniques
mentioned above. Chen uses the one-class SVM for image retrieval [8]. Schölkopf et. al. explore the above
formulation of the one-class SVM and other formulations in [23]. Fortunately there is also freely available
software that implements the one-class SVM, written in C++ by Chang and Lin [7].

The dimensionality problem faced by the one-class SVM has been mentioned in several papers, however
it is typically a “future works” type of discussion. Tax and Duin clearly mention that dimensionality is a
problem in [27], however they offer no suggestions to overcome this. Modeling in subspaces, which is the
proposed method to overcome this problem, is not an altogether novel concept. In data mining, subspace
modeling to overcome dimensionality is a popular approach. Aggarwal discusses this in [1]. Parsons et. al.
provide a survey of subspace clustering techniques in [21]. The curse of dimensionality is largely a function
of class imbalance and our apriori knowledge of the distribution of (x|y). This implies that the curse of
dimensionality is a problem that impacts unsupervised problems the most severely, and it is not surprising
that data mining clustering algorithms, an unsupervised method, has come to realize the value of modeling in
subspaces.

3 Analytical Investigation
3.1 The Curse of Dimensionality, Kernels, and Class Imbalance
Machine learning and data mining problems typically seek to show a degree of similarity between obser-
vations, often as a distance metric. Beyer et. al. discuss the problem of high dimensional data and distance
metrics in [3], presenting a probabilistic approach and illustrating that the maximally distant point and mini-
mally distant point converge in distance as dimensionality increases. A problem with distance metrics in high
dimensional space is that distance is typically measured across volume. Volume increases exponentially as
dimensionality increases, and points tend to become equidistant. The curse of dimensionality is explained
with several artificial data problems in [15].

Kernel based pattern recognition, especially in the unsupervised domain, is not entirely robust against
high dimensional input spaces. A kernel is nothing more than a similarity measure between two observations.
Given two observations, x1 and x2, the kernel between these two points is represented as κ(x1,x2). A large
value for κ(x1,x2) indicates similar points, where smaller values indicate dissimilar points. Typical kernels
include the linear kernel, κ(x1,x2) = 〈x1,x2〉, the polynomial kernel, κ(x1,x2) = (〈x1,x2〉 + 1)p, and
the popular gaussian kernel, κ(x1,x2) = e(−‖x1−x2‖/2σ2). As shown, these kernels are all functions of inner
products. If the variables within x1 and x2 are considered random variables, these kernels can be modeled as
functions of random variables. The fundamental premise of pattern recognition is the following:

(κ(x1,x2)|y1 = y2) > (κ(x1,x2)|y1 	= y2) (3)

If this premise is consistently true, good performance occurs. By modeling these kernels as functions of
random variables, it can be shown that the addition of noisy, meaningless input variables degrades perfor-
mance and the likelihood of the fundamental premise shown above.

In a classification problem, the curse of dimensionality is a function of the degree of imbalance. If there are
a small number of positive examples to learn from, feature selection is possible but difficult. With unbalanced
data, significant evidence is required to illustrate that a feature is not meaningful. If the problem is balanced,
the burden is not as great. Features are much more easily filtered and selected.
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A simple explanation of this is to consider a two sample Kolmogorov test [22]. This is a classical statis-
tical test to determine whether or not two samples come from the same distribution, and this test is general
regardless of the distribution. In classification models, a meaningful variable should behave differently de-
pending on the class, implying distributions that are not equal. Stated in terms of distributions, if x is any
variable taken from the space of all variables in the dataset, (Fx(x)|y = 1) should not be equivalent to
(Gx(x)|y = −1). Fx(x) and Gx(x) simply represent the cumulative distribution functions of (x|y = 1)
and (x|y = −1), respectively. In order to apply the two sample Kolmogorov test, the empirical distribution
functions of Fx(x) and Gx(x) must be calculated from a given sample, and these distribution functions will
be denoted as F ∗

N1
(x) and G∗

N2
(x). N1 will equate to the number of samples in the minority class, and N 2

equates to the number of samples in the majority class. These empirical distribution functions are easily de-
rived from the order statistics of the given sample, which is shown in [22]. The Kolmogorov two sample
test states that if the supremum of the difference of these functions exceeds a tabled critical value depending
on the modeler’s choice of α(sum of probabilities in two tails), then these two distributions are significantly
different. Stated formally, our hypothesis is that Fx(x) = Gx(x). We reject this hypothesis with a confidence
of (1 − α) if equation 4 is true.

DN1,N2 = sup
−∞<x<∞

|F ∗
N1

(x) − G∗
N2

(x)| > DN1,N2,α (4)

For larger values of N1 and N2 (both N1 and N2 greater than 20) and α = .05, we can consider equation
5 to illustrate an example. This equation is found in the tables listed in [22]:

DN1,N2,α=.05 = 1.36
√

N1 + N2

N1N2
(5)

If N2 is fixed at 100, and N1 is considered the minority class, it is possible to plot the relationship between
m and the critical value necessary to reject the hypothesis.

increasing class balance
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Figure 1. Plot of critical value for two sample Kolmogorov test with fixed N2, α = .05

Figure 1 illustrates the effect of class imbalance on feature selection. If the classes are not balanced, as
is the case when N1 = 20 and N2 = 100, there is a large value required for DN1,N2 . It is also evident that
if the classes were more severely imbalanced, DN1,N2 would continue to grow exponentially. As the classes
balance, DN1,N2 and the critical value begins to approach a limit. The point of this exercise was to show that
the curse of dimensionality is a function of the level of imbalance between the classes, and the two sample
Kolmogorov test provides a compact and statistically grounded explanation for this.
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3.2 Kernel Behavior in High Dimensional Input Space
An example is given in this section which illustrates the impact of dimensionality on linear kernels and
gaussian kernels.

Consider two random vectors that will serve as artificial data for this example.

x1 = (z1, z2, ..., zm), zi ∼ N(0, 1) i.i.d

x2 = (z1′ , z2′ , ..., zm′), zi′ ∼ N(0, 1) i.i.d

m′ = m, and let vi = zizi′

The expected value of vi is zero. vi is the product of two standard normal random variables, which follows
an interesting distribution discussed in [12]. The plot of this distribution is shown in figure 2.

Figure 2. Plot of vi = zizi′

To find the expectation of a linear kernel, it is straightforward to see that E(〈x,y〉) =
∑

i vi = E(z1z1′ +
z2z2′ + ... + zmzm′) = 0. The variance of the linear kernel can be found as follows:

fzi,zi′ (zi, zi′) is bivariate normal ⇒ fzi,zi′ (zi, zi′) =
1
2π

e
−(z2

i +z2
i′ )

2

fv(v) =
∫ ∞

−∞
fzi,zi′ (zi,

v

zi
)

1
|zi|dzi

E(v) = 0 ⇒ variance = E(v2) =
∫ ∞

−∞
v2[fv(v)]∂v = 1

(verified by numerical integration)

Again considering the linear kernel as a function of random variables, κ(x 1,x2) = 〈x1,x2〉 =
∑m

i=1 vi

is distributed with a mean of 0 and a variance of
∑m

i=1 1 = m.
In classification problems, however, it is assumed that the distributions of the variables for one class are

not the same as the distributions of the variables for the other class. Let us now consider v− as a product of
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dissimilar distributions, and v+ as a product of similar distributions. Let v− = (zi − 1)(zi′ + 1). v− will
be distributed with a mean of µ− = E(zizi′ − zi′ + zi − 1) = −1, and a variance of 3 (verified through
numerical integration). The linear kernel of the dissimilar distributions can be expressed as:

κ(x1 − 1,x2 + 1) =
m∑

i=1

v−

This linear kernel is distributed with the following parameters:

mean− = mµ− = −m, variance = mσ2 = 3m

For the similar observations, let v+ = (zi + 1)(zi′ + 1) = (zi − 1)(z′i − 1). The parameters of the
kernel for the similar observations can be found in the same manner. v + is distributed with a mean of µ+ =
E(zizi′ + zi′ + zi + 1) = 1 and a variance of σ2 = 3. The linear kernel of the similar distributions can be
expressed as:

κ(x1 + 1,x2 + 1) =
m∑

i=1

v+

This kernel is distributed with the following parameters:

mean+ = mµ+ = m, variance = mσ2 = 3m

The means and variances of the distributions of the linear kernels are easily tractable, and this is all the
information that we need to analyze the effect of dimensionality on these kernels. In the above example,
the mean of every variable for dissimilar observations differs by 2. This is consistent for every variable.
Obviously, no dataset is this clean, however there are still interesting observations that can be made. Consider
that rather than each variable differing by 2, they differ by some value ε i. If εi is a small value, or even
zero for some instances (which would be the case for pure noise), this variable will contribute minimally
in distinguishing similar from dissimilar observations, and furthermore the variance of this variable will be
entirely contributed. Also notice that at the rate of 3m, variance grows large fast.

Based on this observation, an assertion is that for the binary classification problem, bimodal variables
are desirable. Each mode will correspond to either the positive or negative class. Large deviations in these
modes, with minimal variation within a class, are also desired. An effective model must be able to distinguish
v− from v+. In order for this to occur, the model needs good separation between mean − and mean+ and
variance that is under control.

It is also interesting to explore the gaussian kernel under the same example. For the gaussian kernel,
κ(x1,y2) = e−‖x1−x2‖2/2σ2

. This kernel is entirely dependent upon the behavior of ‖ x 1 − x2 ‖2 and the
modeler’s choice of the parameter σ (which has no relation to variance).

Restricting our attention to ‖ x1 − x2 ‖2, an initial observation is that this expression is nothing more
than the euclidean distance squarred. Also, if x1 and x2 contain variables that are distributed ∼ N(0, 1), then
(x1 − x2) contains variables distributed normally with a mean of 0 and a variance of 2.

Let w = (zi − zi′)2, implying that w/2 is a chi-squarred distribution with a mean of one (which will be
annotated as χ2(1)). This also indicates that w = 2χ2(1), indicating that w has a mean of 2 and a variance of
8 (verified by numerical integration).

Therefore, ‖ x1 − x2 ‖2=
∑m

i=1 wi will have a distribution with a mean of 2m and a variance of 8m.
Notice that the variance grows much faster under this formulation, indicating even more sensitivity to noisy
variables.

The purpose of the above example is to show how every variable added will contribute to the overall
behavior of the kernel. If the variable is meaningful, the pattern contributed to the -1 class is not equivalent to
the pattern contributed to +1 class. The meaningfulness of the variable can also be considered in terms of cost
and benefit. The benefit of including a variable in a classification model is the contribution of the variable
towards pushing mean− away from mean+. The cost of including a variable involves the variance. This
variance will be included regardless of the significance of the benefit.
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3.3 The Impact of Dimensionality on the One-Class SVM
In order to illustrate the impact of dimensionality on kernels and the one-class SVM specifically, an ex-
periment with artificial data was constructed. This data models a simple pattern involving standard normal
distributions where the positive class and negative class have a difference of 2 between their means. This
model can be presented as follows:

x+1 = (z1 + 1, z2 + 1, z3, ..., zm), zi ∼ N(0, 1) i.i.d

x−1 = (z1′ − 1, z2′ − 1, z3′ ..., zm′), zi′ ∼ N(0, 1) i.i.d

The true pattern only lied in the first two variables. All remaining variables were noise. Three types
of kernels were examined: the linear kernel, polynomial kernel, and gaussian kernel. Only the results from
the gaussian kernel are shown here, however degradation of performance occurred with all kernels. The
performance metric used was the area under the ROC curve (AUC).

Table 1. One Class SVM (gaussian kernel) experiment for various dimensions on artificial data

Dimensions AUC R2

2 0.9201 0.5149
5 0.8978 0.4665
10 0.8234 0.4356
50 0.7154 0.3306

100 0.6409 0.5234
250 0.6189 0.4159
500 0.5523 0.6466

1000 0.5209 0.4059

The gaussian kernels in this experiment were tuned using an auto-tuning method. Typically for gaussian
kernels, a validation set of positive and negative labeled data is available for tuning σ. In unsupervised learn-
ing, these examples of positive labeled data do not exist. Therefore, the best tuning possible is to achieve
some variation in the values of the kernel without values concentrated on either extreme. If σ is too large,
all of the values will tend towards 1. If too small, they tend to 0. The auto tuning function ensures that the
off-diagonal values for κ(x+1,x−1) average between .4 and .6, with a min value greater than .2.

4 A Framework to Overcome High Dimensionality
A novel framework for unsupervised learning, or anomaly detection, has been investigated to solve unsu-
pervised learning problems of high dimension [10, 11]. This technique is designed for unsupervised models,
however the fusion of model output applies to any type of classifier that produces a soft (real valued) output.
This framework involves exploring subspaces of the data, training a separate model for each subspace, and
then fusing the decision variables produced by the test data for each subspace. Intelligent subspace selection
has also been introduced within this framework.

Combinations of multiple classifiers, or ensemble techniques, is a very active field of research today.
However, the field remains relatively loosely structured as researchers continue to build the theory supporting
the principles of classifier combinations [18]. Significant work in this field has been contributed by Kuncheva
in [16–19]. Bonissone et. al. investigated the effect of different fuzzy logic triangular norms based upon the
correlation of decision values from multiple classifiers [4]. The majority of work in this field has been devoted
to supervised learning, with less effort addressing unsupervised problems [26]. The research that does address
unsupervised ensembles involves clustering almost entirely. There is a vast amount of literature that discusses
subspace clustering algorithms [21]. The recent work that appears similar in motivation to our technique
include Yang et. al. who develop a subspace clustering model based upon Pearson’s R correlation [28],
and Ma and Perkins who utilize the one-class SVM for time series prediction and combine results from
intermediate phase spaces [20]. The work in this paper has also been inspired by Ho’s Random Subspace
Methods in [13]. Ho’s method randomly selects subspaces and constructs a decision tree for each subspace;
trees are then aggregated in the end by taking the mean. Breiman’s work with bagging [5] and random
forests [6] was also a significant contribution in motivating this work. Breiman’s bagging technique involves
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bootstrap sampling from a training set and creating a decision tree for each sample. Breiman also uses the
mean as the aggregator. The random forest technique explores decision tree ensembles from random subsets
of features, similar to Ho’s method.
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Figure 3. A sketch of subspace modeling to seek synergistic results.
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Figure 4. Aggregation operators

The technique we propose illustrates that unsupervised learning in subspaces of high dimensional data
will typically outperform unsupervised learning in the high dimensional data space as a whole. Furthermore,
the following hypotheses show exceptional promise based on initial empirical results:

1. Intelligent subspace modeling will provide further improvement of detection beyond a random selection
of subspaces.

2. Fuzzy logic aggregation techniques create the fuzzy ROC curve, illustrating improved AUC by selecting
proper aggregation techniques.

Promising results from this approach have been published in [10, 11]. As previously discussed, aggrega-
tion of models with fuzzy logic aggregators is an important aspect. Given unbalanced data (minority positive
class), it has been observed that fusion with T-norms behaves well and improves performance. Figure 4 illus-
trates the spectrum of fuzzy logic aggregators.

The results shown in table 2 and figure 5 illustrate the improvements obtained through our ensemble
techniques for unsupervised learning. The plot of the ROC curves shows the results from using 26 original
variables that represented the Schonlau et. al. (SEA) data [9] as one group of variables with the one-class SVM
and the result of creating 3 subspaces of features and fusing the results to create the fuzzy ROC curve. It is
interesting to notice in the table of results that nearly every aggregation technique demonstrated improvement,
especially in the SEA data, with the most significant improvement in the T-norms.

The ionosphere data is available from the UCI repository, and it consists of 34 variables that represent
different radar signals received while investigating the ionosphere for either good or bad structure. For this
experiment we again chose l = 3.

7



Table 2. Results of SEA data with diverse and non-diverse subsets

SEA data Ionosphere data
Base AUC (using all variables) .7835 .931
T-norms
minimum .90 .96
algebraic product .91 .61
T-conorms
maximum .84 .69
algebraic sum .89 .69
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Figure 5. ROC for SEA data using algebraic product with contention

5 Discussion and Conclusion
There were two components to the research presented in this paper. The first component involved exposing the
impact of the curse of dimensionality with kernel methods. This involved illustrating that more is not always
better in terms of variables, but more importantly that the impact of the curse of dimensionality grows as class
imbalance becomes more severe. Kernel methods are not immune to problems involving high dimensional
data, and these problems need to be understood and managed.

The second component of this research involved the discussion and brief illustration of a proposed frame-
work for unsupervised modeling in subspaces. Unsupervised learning, especially novelty detection, has im-
portant applications in the security domain. This applies especially to computer and network security. Future
directions for this research include exposing the theoretical foundations of unsupervised ensemble methods
and exploration of other ensembles for the unbalanced classification problem.
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