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Summary. In this paper, an automatic synthesis methodology based on evolution-
ary computation is applied to evolve neural controllers for a homogeneous team
of miniature autonomous mobile robots. Both feed-forward and recurrent neural
networks can be evolved with fixed or variable network topologies. The efficacy of
the evolutionary methodology is demonstrated in the framework of a realistic case
study on collective robotic inspection of regular structures, where the robots are
only equipped with limited local on-board sensing and actuating capabilities. The
neural controller solutions generated during evolutions are evaluated in a sensor-
based embodied simulation environment with realistic noise. It is shown that the
evolutionary algorithms are able to successfully synthesize a variety of novel neural
controllers that could achieve performances comparable to a carefully hand-tuned,
rule-based controller in terms of both average performance and robustness to noise.

1 Introduction

Autonomous mobile robots share important characteristics with simple bio-
logical systems: robustness, simplicity, small size, flexibility and modularity.
Each individual is rather simple with limited local sensing and actuating capa-
bilities, while as a group they can accomplish difficult global tasks in dynamic
environments, without any external guidance or centralized control [3].
Design and control of such a robot swarm are difficult mainly because
their group behavior is an emergent property of their mutual interaction and
that with the environment, which become a distributed dynamical system due
to independent parallel actions of different individuals. Since the robots only
have partial perceptions based on crude noisy sensors, limited computational
capabilities and energy budget, managing the robots to solve a global task un-
der such constraints presents significant technical challenges. This is especially



true because human intelligence is specialized in individuals and centralized
control, instead of the collective intelligence shown in nature.

Evolutionary robotics [13] is a new and promising technique for automatic
design of such autonomous robots. Inspired by nature, evolutionary robotics
makes use of tools such as neural networks and evolutionary algorithms.

Inspired by biological neural networks, Artificial Neural Networks (ANN)
have been a powerful computational tool widely applied in science and en-
gineering [8]. They are often used to implement robot controllers because of
their light computational requirements and nonlinear basic elements, prop-
erties that allow for real-time control and, potentially, modular implemen-
tation of complex perception-to-action functions. ANN can be designed and
trained using various methods, including those based on evolutionary compu-
tation [14,18]. As opposed to optimization of behavior-based controllers, the
key feature of ANN evolution is that, the genotypical searching space is less
constrained by ANN models and the resulting phenotypical solution directly
shapes the robot behavior as a whole.

Evolutionary algorithms [2, 6, 12], loosely inspired from biological evolu-
tionary processes, have gained considerable popularity as tools for searching
vast, complex, deceptive, and multi-modal search spaces with little domain-
specific knowledge. In recent years, they have found natural applications in
the automatic synthesis of artificial neural networks for intelligent agents [15].
Evolutionary algorithms allow co-evolution of the network architectures as
well as the weights within task-specific design constraints. Multiple design
objectives can be expressed as fuzzy preferences and aggregated into the fit-
ness function with different weights and trade-off strategies, which can be
tuned to evolve solutions with different engineering design trade-offs [1,16].
As stochastic optimization methods, evolutionary algorithms are also good at
working in noisy environments and searching for robust solutions.

Evolution of both feed-forward and recurrent neural controllers are consid-
ered in this paper. Only synaptic weights are evolved if the ANN topology is
pre-defined; otherwise the network structure and synaptic weights are simul-
taneously evolved, where the candidate solutions can be modified by adding
or deleting hidden neurons, establishing or removing connections between any
two neurons, as well as changing values of the synaptic weights.

The efficacy of the evolutionary methodology is demonstrated in the frame-
work of a realistic case study concerned with collective robotic inspection of
regular structures. The controllers are optimized in a realistic, sensor-based,
embodied simulator, then downloaded to real hardware. If the embodied sim-
ulator is faithful enough for the target hardware platform, evolved controllers
can be easily transfered to real robots [11]. Homogeneity of the robot team
is enforced here to limit the search space, achieve scalability, and bypass the
credit assignment problem typically arising in distributed systems consisting
of individuals using only local information [7,17].

The performance of the evolutionary results is compared with that of a
hand-coded, rule-based controller carefully tuned for the same task. It will be



shown that the evolutionary algorithm appears powerful and promising for
automatic synthesis of novel ANN controllers, requiring little prior domain
knowledge or ANN structural information. The evolved solutions can serve as
good starting points for further study and optimization by human engineers.

2 Evolutionary Methodology

Based on the well-known principles of genetic algorithms (GA) and evolu-
tionary strategies (ES), our evolutionary optimization loop uses real num-
bers to encode synaptic weights, variable chromosome length to evolve ANN
structures, traditional roulette wheel selection with fitness scaling, and both
crossover and mutation genetic operations to improve candidate solutions [1].

2.1 Encoding of Artificial Neural Networks

The ANN synaptic weights are directly encoded as a sequential vector of real
numbers, as shown in Fig. 1. The vector (chromosome) length is static if
the network structure is a priori determined, where a fully connected ANN is
usually assumed and the fixed chromosome length can be computed as follows:

(1+ n)n, if ny, = 0 & feed-forward
(1+n)np + (1 +np)n, if np, > 0 & feed-forward

fe = (1+n; +no)n, if np, = 0 & recurrent (1)
(14 n; +np)np + (1 4+ np + no)n, if np, > 0 & recurrent

where n¢, n;, np, n, and “1” represent the numbers of fully connected weights,
inputs, hidden neurons, outputs, and biases, respectively.

When the ANN structure is also evolved, nj, becomes a design variable to
be optimized. So the chromosome length must also be variable to accommo-
date the variable ANN structure and evolve solutions of suitable complexity.
To give the algorithm more freedom to search for the appropriate network
structures, fewer restrictions are imposed on the number of permissible con-
nections and the variable chromosome length is computed as follows:

_— { (1 +mni)np + (1 + n; + np)n, if feed-forward @)

(14 n; +np + no)(np +n,) if recurrent

where n. represents the maximum possible number of connections, but not all
of them must be active. A non-zero real value in the genotype vector represents
the weight value of an active connection, while zeros represent inactive (non-
existent) connections. Note that the nj, = 0 cases of (1) are included in (2).

2.2 Initialization

The population is randomly initialized at the beginning of an evolutionary
run. For fixed network structure cases, all the genotype vectors are of the
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Fig. 1. Illustration of crossover scheme for two chromosomes of different lengths

same length with random values. For variable network structure cases, first
ny, is randomly selected from 1 to 102 for each individual, then the genotype
vector length is computed by (2), and each real number in the genotype vector
is set to a random value (active) or zero (inactive) with probability 50%.

The networks initialized this way might contain some useless hidden neu-
rons which do not contribute to the outputs at all. To improve the algorithm
efficiency, they are identified and removed from the network by a simple rou-
tine after initialization to make the network more concise and relevant.

2.3 Genetic Operations

Crossover and mutation are both used in the evolutionary algorithm here.
In fixed ANN structure cases, standard crossover operators can be directly
applied to two real vectors of equal length. In variable ANN structure cases,
the crossover must operate on two vectors of different lengths which repre-
sent two distinct network structures. It is known that evolutions relying on
crossover do not perform well in ANN topology optimization because of their
intrinsic disruption feature and the permutation problem [18]. To protect pos-
sible modules in the network, crossover points can not be arbitrarily chosen
along the whole genotype vector. As shown in Fig. 1, the genotype vector can
be grouped into sub-vectors or blocks according to the hidden neurons, and
the crossover implemented here only allows block-wise interchange between
the parents. The algorithm also tries to best match the sequence of the hid-
den neuron blocks of before crossover to reduce influence of the permutation
problem. Then, from all possible crossover points, as shown in Fig. 1, a random
crossover point is selected for both parents and their hidden neuron blocks
below the crossover point are exchanged to create two new offspring. For the
example shown in Fig. 1, two parents networks of 6 and 3 hidden neurons
produce two children networks of 4 and 5 hidden neurons respectively.

3 There is, however, no upper limit for n;, during the evolution.



Mutation is also a powerful tool for creating new network structures and
synaptic weights. In fixed structure cases, only Gaussian mutation is used to
change values of the synaptic weights. In variable structure cases, two extra
types of mutations are introduced. First, a hidden neuron could be added
to or removed from the current network configuration. Second, a connection
between any two neurons could be turned on or off by switching between
non-zero and zero values. When a hidden neuron is added or a connection is
switched on, the synaptic weight values are initialized as described in Sect. 2.2.

The crossover and mutation operations could also introduce useless hidden
neurons and identical individuals, which are both removed from the network
before evaluation. If identical copies are allowed to exist in the population,
the power of crossover and pool diversity are reduced, which might cause
pre-convergence of the evolution.

3 Case Study: Collective Robotic Inspection

This case study is concerned with the automatic synthesis of ANN-based
control algorithms to inspect regular structures using a homogeneous robot
swarm. The goal is to design “local” algorithms that coordinate the fine mo-
tions of the moving platforms. Sensor uncertainty and vehicle position un-
certainty should be taken into account when planning the local motions that
carry out the gross motion plan, i.e., the collective effect of the multi-vehicle
platform as a whole.

3.1 Application Background

Autonomous robots find a wide variety of applications in the real world to
release humans from various chores, especially when the working environment
is hazardous or not easily accessible by human beings. For instance, inspection
of human occupied space transportation systems and platforms is currently
heavily labor intensive, costly and time consuming. Another example could be
the inspection of propulsion systems (such as jet turbines), which is usually
performed visually by human experts using borescopes, a process which is
also time consuming and cost intensive [9]. Therefore it is desirable to have
the inspection task performed autonomously by a swarm of miniature mobile
robots in these situations. This idea is intellectually appealing and it could find
broad applications for general inspection of engineered or natural structures.

3.2 Experiment Setup and Simulation

This paper considers a simple 2-dimensional (2D) scenario, where the objects
to be inspected have regular circular shapes (20 cm in diameter), as shown in
Fig. 2(a). It is assumed that completely circumnavigating an object is a good
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Fig. 2. (a) Top view of structure inspection setup in the embodied simulator: the
bigger disks represent the cylindrical objects to be inspected while the smaller dots
are the robots; (b) Close-up of the robot model with its distance sensor rays (solid
lines); (¢) The logical diagram of the rule-based hand-coded controller.

emulation of the scanning-for-flaws maneuver. A continuous world scenario
without walls is also simulated by wrapping the robots position around to the
opposite side when they move out of one side.

The collective performance measure for this scenario depends on the ratio
of the inspected object surfaces over a pre-specified time span to all that
needed to be inspected in the world. Therefore the maximum performance
“1” can be achieved by complete coverage, i.e., fully inspecting all distinct
objects in the world, within the time limit. Note that only 12 distinct objects
are present in the world shown in Fig. 2(a) under the wrap-around condition.

The simulation scenario shown in Fig. 2 is implemented in Webots? [10], a
3-dimensional (3D), embodied, sensor-based, kinematic simulator. As shown
in Fig. 2(b), the simulated robots are miniature unicycle vehicles (5cm in
diameter), like the Khepera® robots. They are equipped with eight distance
sensors as ANN inputs with extended sensor range (10cm). The sensors are
assumed to be line sensors characterized by a linear response with the distance:
the closer the sensed object the higher the value. Integer sensor values ranging
from [0, 1023] with £10 white noise are normalized to [0, 1] before feeding
to the ANN controller. Both hidden (if any) and output neurons use sigmoid
output functions producing outputs in the range of [0, 1]. The ANN has two
outputs mapping to the two wheel speeds® of the robots, taking integer values
from [-20, 20], with each speed unit representing 8 mm/s in the real world.

4 http://www.cyberbotics.com/products/webots/
5 http://www.k—team.com/robots/khepera/
5 Either the left and right speeds, or the forward and rotation speeds.



Wheel slippage is also simulated with +10% white noise on wheel speeds at
each simulation step.

The inspection task requires the robot to approach an object to be in-
spected, inspect it with minimal redundancy and maximum speed, leave it
and search for other objects. In collective scenario the robot also needs to
avoid teammates. Although one could implement a rule-based hand-coded
controller (see Sect. 3.3) or apply behavior-based control algorithms [4], this
is nevertheless a non-trivial task for a neural controller reading eight crude
distance sensors and controlling two motor wheels directly. Indeed, the con-
troller must not only evolve basic reactive behaviors such as object search,
object inspection (i.e., follow the contour of the object) and teammate avoid-
ance but also correctly sequence them: for instance, switching from object
search to inspection when an object is found and searching for new objects
after fully inspecting an object.

3.3 Hand-coded Controller

In order to create a baseline of what level of performance is achievable in
this specific case by a traditional design method based on human intelligence,
a simple hand-coded controller based on logical rules has been implemented
for the same task. It exploits exactly the same sensor inputs and controls
the same motor outputs as the evolved ones, and can be used to evaluate and
compare with the evolved ANN controller solutions. As shown in Fig. 2(c), the
hand-coded controller is based on the robot’s distance sensor inputs and some
internal timers. There is one key parameter that controls how long the robot
keeps inspecting an object. This parameter has been optimized by systematic
search in order to get the best performance.

Although it is rather straightforward to implement such a rule-based hand-
coded controller for the simple scenario defined in Sect. 3.2, it is not obvious
how to complete the same task with a structural ANN controller. Moreover, it
might become more intractable and even infeasible to implement such a hand-
coded controller for more complex (e.g., inspection of 3D, irregular structures)
scenarios, where evolutionary algorithms might be more appealing.

4 Results and Discussions

The evolutionary algorithm was applied to evolve ANN controllers under dif-
ferent configuration settings: feed-forward or recurrent networks with or with-
out a variable number of hidden neurons, as shown in Table 1. The population
sizes of the evolutions depend on the dimension of the genotype vector to be
optimized. The first two types of neural networks are of fixed simplest topolo-
gies with shortest chromosome lengths and smaller pool sizes. The latter two
types of neural networks are of variable structures with longer (average) chro-
mosome lengths and larger pool sizes.



Table 1. Different ANN types considered in the evolutionary algorithm

ANN type description symbol pool size
feed-forward without any hidden neurons ffnh 50
recurrent without any hidden neurons rcnh 50
feed-forward with n; hidden neurons fivh 100
recurrent with n; hidden neurons rcvh 150

*Note np > 0 is a variable number.

For each type of ANN controller synthesis, a series of evolutionary ex-
periments were conducted with different output speed maps and different
coefficients in the sigmoid neuron output function. For each evolutionary ex-
periment, 5 evolutionary runs with different random seeds were performed,
each lasting for 200 generations.

Due to the noise present in the fitness evaluation of controller solutions in
the simulated environment, a noise test of 100 evaluations was applied to each
individual in the final population of each evolutionary run as well as the hand-
coded controller to get fairer performance comparisons of different controllers
(refer to Fig. 6). Different aggregation criteria (minimum, geometric mean,
average, etc.) can be used as a measure to estimate the overall performance
of each solution from its multiple fitness values. However, only one single
evaluation was applied for each individual during the evolutions, because the
evaluations in the simulated environment are significantly more computation-
ally expensive than the genetic operations and in this case single evaluation
(smallest sample size) is the most computationally effective strategy [5].

In the following sections, the inspection task was approached by three
systematic steps: the single robot single object scenario (Sect. 4.1), the single
robot multiple objects scenario (Sect. 4.2), and the multiple robots multiple
objects scenario (Sect. 4.3).

4.1 Single Robot Single Object (SRSO) Scenario

The global problem of collective robotic inspection of multiple objects in the
world can be decomposed to the microscopic interaction between a single
robot and a single object, as shown in Fig. 3(a). Here the goal of the robot is
to make one and only one full circle of the object as soon as possible without
any collisions. A short evaluation span of 500 time steps’ was chosen here.
The robot always started at the same initial position and orientation (facing
the object) for all evaluation spans here to reduce noise effects. Walls were
included in this scenario to facilitate the development of object avoidance
behavior of the ANN controllers during evolutions. Walls can be distinguished
from the circular-shaped object by their different sensory patterns.

7 Each time step simulates 64 milliseconds in real time.
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Fig. 3. (a) Screen shot of SRSO scenario; sample robot trajectories for 500 time
steps (32s) using the hand-coded controller (b) and the best evolved controller (c):
“S” represents the constant starting point and “E” the ending points, with “+”
symbols placed along the trajectories every 40 time steps (2.56s)

Figure 3 shows the sample robot trajectories of the hand-coded controller
and the best ANN controller evolved. It is interesting to note the distinct
behaviors of the two controllers shown here. The rule-based hand-coded con-
troller clearly follows the logic shown in Fig. 2(c): it goes directly to the object,
walks around it, then leaves and starts random walk. While the evolved one
just hangs around in circles after it finishes the inspection task.

It turned out that for this scenario neural controllers that had access to an
additional timer input achieved better results than those had not, and were
comparable to the hand-coded controller, which also used timers. This implies
that timing was a key factor here due to the lack of spatial clues in the world.

4.2 Single Robot Multiple Objects (SRMO) Scenario

A single robot is let to explore the multi-object scenario shown in Fig. 2(a)
in the SRMO scenario. Again the goal here is to inspect (circle around) as
much as possible the 12 distinct circular-shaped objects in the world. No walls
were simulated in this scenario since wrap-around was applied to simulate a
continuous world, similar to an unfolded ball. The evaluation span was 2000
time steps here for each ANN candidate controller during evolutions. The
robot starts from a random initial position and orientation for each evaluation.

Figure 4 shows sample robot trajectories of the hand-coded and evolved
controllers in the SRMO scenario. The difference is quite obvious. The hand-
coded controller always tries to make a full circle of each object it finds, then
walks away in rather straight lines to search for “new” objects®. Different
evolved controllers show a variety of different behaviors. The one shown in

8 Note that the robot had no clue to figure out whether a newly discovered object
was inspected before or not according to Fig. 2(c).



Fig. 4. Sample robot trajectories of the SRMO scenario for 2000 time steps (128s)
using the hand-coded controller (a) and the evolved controller (b). The dashed
lines delimit the wrap-around boundaries; “S” represents the random initial starting
points and “E” the ending points. The trajectories are shown in gradually changing
colors with “+” symbols every 40 time steps (2.56s)

Fig. 4(b) always walks in alternate curves: counterclockwise and fitly curved
when inspecting an object while clockwise and less curved otherwise. Most
engineered solutions would probably apply the strategy of the hand-coded
controller naturally, it is surprising to discover that this evolved ANN-based
strategy could work equally well here. In addition, the evolved controllers
no longer need additional temporal input here to be comparable with the
performance of the hand-coded controller, which still depends on its timers.
However, it might be more difficult for the evolved controllers to achieve
complete coverage of all objects. Because it might leave (drift away from) an
object before fully inspecting it, it would generally take longer to fully inspect
all objects in the world than the hand-coded one. One possible cause might be
that the robot could hardly achieve complete coverage within the evaluation
span, hence there was no pressure in the evolution to favor complete coverage.

4.3 Multiple Robots Multiple Objects (MRMO) Scenario

Finally a homogeneous team of five robots were employed to collectively in-
spect the multiple (12) circular objects in the world, as shown in Fig. 2(a).
The goal as well as the wrap-around and random initial conditions were the
same as those in Sect. 4.2, with an evaluation span of 800 time steps.

Figure 5 shows the sample robot trajectories of the hand-coded and evolved
controller for the MRMO scenario. Both behaviors seem to follow the respec-



Fig. 5. Sample robot trajectories of the MRMO scenario for 800 time steps (51.2s)
using the hand-coded controller (a) and the evolved controller (b). The dashed lines
delimit the wrap-around boundaries, but some trajectories beyond the boundaries
were kept to enhance the display. “S” represents the random initial starting points
and “E” the ending points. Different robots’ trajectories are shown in different colors
with different markers placed every 40 time steps (2.56s)

tive strategies discussed in Sect. 4.2. It is noteworthy for the evolution to de-
velop the obstacle (including teammates) avoidance behavior, especially when
it was not explicitly defined in the fitness function.

Figure 6 shows the performances of the hand-coded and best evolved con-
trollers under different ANN types (as shown in Table 1) for the MRMO
scenario. It is shown that the evolved controllers, especially those with a vari-
able ANN topology, seem to have achieved comparable performances as the
hand-coded controller in terms of average performance, and even slightly beat
the hand-coded controller in terms of worst performance, appearing more ro-
bust to noise. It is remarkable for the evolutionary algorithms to automatically
discover robust solutions from only single noisy evaluation of each candidate
solution during the evolutions, which verified its extraordinary ability to work
in noisy environments.

It is also observed that controllers evolved with variable ANN topologies
can generally achieve better results than those with fixed ANN topologies.
This demonstrated the power of evolutionary algorithms to synthesize appro-
priate ANN topologies for a given problem, and evolve the necessary synap-
tic weights simultaneously. Although the best evolved control strategies have
achieve the same level of performance as each other as well as the hand-coded
controller, their underlying ANN topologies are completely different, including
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Fig. 6. Coverage values achieved by the hand-coded controller (hndcd) and the
best controllers evolved under different ANN architectures (refer to the symbols in
Table 1) and selected according to (a) minimum and (b) average performance for
the MRMO scenario shown in Fig. 2(a). Each column shows the coverage values (the
green dots) obtained by one controller during the 100 evaluations in its noise test
and the error bars indicate the standard deviation

both feed-forward and recurrent ANN’s with a number of hidden neurons from
two to six. They can provide human engineers with diverse alternative can-
didate solutions that might be difficult to conceive from human intelligence.
On the other hand, no significant performance differences were observed be-
tween the feed-forward and recurrent ANN’s in all scenarios when all other
conditions were the same.

It is also noted that the evolutionary algorithm is able to adapt the con-
troller solutions according to the collective or single robot scenarios. Hence
the controllers evolved in collective scenarios can achieve better results in col-
lective scenarios than those evolved in single robot scenarios, and vice versa.

5 Conclusion and Future Work

An evolutionary algorithm was applied to automatically synthesize neural con-
trollers for autonomous robots in a noisy simulation environment with little
prior knowledge on ANN topologies. The methodology was validated in the
framework of a case study concerned with collective robotic inspection of 2D
regular structures. It was shown that the best evolved controllers can achieve
excellent and robust performances with a variety of different ANN architec-
tures, providing multiple good candidate solutions for human engineers.

In the future, the same synthesis methodology will be applied to more
complex and realistic problems such as collective robotic inspection of 3D
irregular space structures and/or jet propulsion systems. Implementation and
verification of evolved controllers with real robots would also be meaningful.
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