Skip to main content

Spatial Sound Localization for Humanoid

  • Conference paper
  • 541 Accesses

Part of the book series: Advances in Soft Computing ((AINSC,volume 28))

Summary

The problem of sound source separation and localization is a challenging task not commonly addressed in today’s humanoid robotics projects. Additional (prior to visual) spatial auditory information is required to control humanoid head’s attention more accurately. This is done in order to augment human-robot interaction. Humanoid head robot operates in noisy, dynamic environment. System capable of handling random noise in order to separate sound sources, and localize them in robot’s coordinate system is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blauert J (2001) Spatial Hearing. The Psychoacoustics of Human Sound Localization. MIT Press, Cambridge MA

    Google Scholar 

  2. Moore B (1999) Wprowadzenie do psychologii słyszenia. PWN, Warszawa

    Google Scholar 

  3. Hartmann W (1998) Signals, sound and sensation. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Lindsay H, Norman A (1984) Procesy przetwarzania informacji u człowieka. Wprowadzenie do psychologii. PWN, Warszawa

    Google Scholar 

  5. Knapp C, Carter C (1976) The generalized correlation method for estimation of ime delay — IEEE transactions on acoustics, speech and signal processing, Vol. ASSP-24, No. 4:320–327

    Article  Google Scholar 

  6. Natale L, Matta G, Sandini G (2002) Development of auditory — evoked reflexes: Visuo — acoustic cues integration in a binocular head — Robotics and Autonomous Systems 39:87–106

    Article  Google Scholar 

  7. Irie R (1995) Robust sound localization: an application of an audtitory perception system for humanoid robot. MIT, Cambridge MA

    Google Scholar 

  8. Martin K (1995) A computational model of spatial hearing, MIT, Cambridge MA

    Google Scholar 

  9. Wasson G (1995) Using acoustic information to control visual attention, University of Virginia VR

    Google Scholar 

  10. Nakadai K, Okuno H, Kitano H (1998) A method of peak extraction and its evaluation for humanoid, Japan Science and Technology Corp. Tokyo

    Google Scholar 

  11. Blauert J, Cobben B (1978) Some consideration of binaural cross correlation analysis —Acoustica 39:96–104

    Google Scholar 

  12. Yost W, Gourevitch (1987) Physical acoustics and measurements pertaining to directional hearing — Directional hearing 2:3–33, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  13. Feddersen W, Sandel D, Jeffress T (1957) Localization of high frequency tones — J. Acoust. Soc. Am. 29:988–911

    Article  Google Scholar 

  14. Scassellati B (1999) A binocular, foveated active vision system, MIT, Cambridge MA

    Google Scholar 

  15. Murray D (1993) Design of stereo heads — Active Vision, MIT Press, Cambridge MA

    Google Scholar 

  16. Nakadai K, Lourens T, Okuno H (2000) Active audition for humanoid, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  17. Nakadai K, Lourens T, Kitano H (2000) Expoiting auditory fovea in humanoid-human interaction, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  18. Okuno H, Nakadai K, Kitano H (2002) Non-verbal eliza-like human behaviours in human-robot interaction through real time auditory abd visual multiple-talker tracking, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  19. Nakadai K, Hidai K, Okuno H (2001) Real-time multiple speaker tracking by multi modal integration for mobile robots, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  20. Okuno H, Nakadai K, Lourens T (2001) Separating three simultaneous speeches with two microphones by integrating auditory and visual processing, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  21. Okuno H, Nakadai K, Lourens T (2000) Humanoid active audition system, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  22. Nakadai K, Hidai K, Okuno H (2001) Real-time active human tracking by hierarchical integration of audition and vision, Japan Science and Technology Corp, Tokyo

    Google Scholar 

  23. Nakadai K, Matsui T, Okuno H (2001) Active audition system and humanoid exterior design, Japan Science and Technology Corp, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Błażejewski, L. (2005). Spatial Sound Localization for Humanoid. In: Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32370-8_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-32370-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23245-2

  • Online ISBN: 978-3-540-32370-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics