Skip to main content

Mereological Foundations to Approximate Reasoning

  • Conference paper
  • 530 Accesses

Part of the book series: Advances in Soft Computing ((AINSC,volume 28))

Summary

In this article, we intend to present a synthetic account of mereological foundations for approximate reasoning along with an outline of applications of this approach to modern paradigms like Granular Computing, and Spatial Reasoning.

This article is an extended version of the plenary talk given by the author at MSRAS 2004 in Płock, Poland on June 7. 2004

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, and Uthurusamy R (eds) Advances in Knowledge Discovery and Data Mining. AAAI Press.

    Google Scholar 

  2. Borkowski L (ed)(1970) Jan Łukasiewicz. Selected Works. North Holland — Polish Sci. Publ., Amsterdam — Warsaw

    Google Scholar 

  3. Cohn AG, Varzi A (1998) Connections relations in mereotopology. In: Prade H (ed) Proceedings ECAI 98, 13th European Conference on Artificial Intelligence. Wiley, Chichester

    Google Scholar 

  4. Leśniewski S (1982) On the foundations of mathematics. Topoi 2: 7–52

    Google Scholar 

  5. Lin TY, Yao YY, Zadeh LA (eds) (2001) Rough Sets, Granular Computing and Data Mining. Physica, Heidelberg

    Google Scholar 

  6. Łing CH (1965) Representation of associative functions. Publ. Math. Debrecen 12: 189–212

    MathSciNet  Google Scholar 

  7. Łukasiewicz J (1913) Die Logischen Grundlagen der Wahrscheinlichtkeitsrechnung. Kraków (see [2])

    Google Scholar 

  8. Masolo C, Vieu L (1993) Atomicity vs. infinite divisibility. In: Freksa C, Mark DM (eds) Spatial Information Theory, LNCS vol. 692. Springer, Berlin

    Google Scholar 

  9. Pal SK, Polkowski L, Skowron A (eds) (2004) Rough-neural Computing. Techniques for Computing with Words. Springer, Berlin

    MATH  Google Scholar 

  10. Pawlak Z (1992) Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht

    Google Scholar 

  11. Pawlak Z (1982) Rough sets. Intern. J. Comp. Inf. Sci. 11: 341–356

    Article  MATH  MathSciNet  Google Scholar 

  12. Pawlak Z, Skowron A (1994) Rough membership functions. In: Yager RR, Fedrizzi M, Kacprzyk J (eds) Advances in the Dempster-Schafer Theory of Evidence. Wiley, New York

    Google Scholar 

  13. Polkowski L (2004) A note on 3-valued rough logic accepting decision rules. Fundamenta Informaticae, 61(1): 37–45

    MATH  MathSciNet  Google Scholar 

  14. Polkowski L (2003)Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory. Fundamenta Informaticae 54(1): 67–88

    MATH  MathSciNet  Google Scholar 

  15. Polkowski L (2002) Rough Sets. Mathematical Foundations. Physica, Heidelberg

    Google Scholar 

  16. Polkowski L (2001) On connection synthesis via rough mereology. Fundamenta Informaticae 46(1/2): 83–96

    MATH  MathSciNet  Google Scholar 

  17. Polkowski L, Skowron A (1996) Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4): 333–365

    Article  MATH  MathSciNet  Google Scholar 

  18. Read S (1995) Thinking about Logic: An Introduction to the Philosophy of Logic. Oxford U.P.

    Google Scholar 

  19. Skowron A, Stepaniuk J (2001) Information granules: Towards foundations of granular computing. International Journal for Intelligent Systems 16: 57–85

    Article  MATH  Google Scholar 

  20. Tsumoto S (1998) Automated induction of medical system expert rules from clinical databases based on rough set theory. Information Sciences 112: 67–84

    Article  Google Scholar 

  21. Yao YY (2004) Information granulation and approximation. In: Polkowski L, Skowron A (eds) (2004) Rough-neural Computing. Techniques for Computing with Words. Springer, Berlin [9].

    Google Scholar 

  22. Zadeh LA (1965) Fuzzy sets. Information and Control 8: 338–353

    Article  MATH  MathSciNet  Google Scholar 

  23. Zadeh LA, Kacprzyk J (eds) (1999) Computing with Words in Information/Intelligent Systems 1. Physica, Heidelberg

    MATH  Google Scholar 

  24. Ziarko W (1993) Variable precision rough set model. J. Computer and System Sciences 46:39–59

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polkowski, L. (2005). Mereological Foundations to Approximate Reasoning. In: Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32370-8_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-32370-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23245-2

  • Online ISBN: 978-3-540-32370-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics